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A NEW METHOD OF SOLVING THE BASIC PLANE
BOUNDARY VALUE PROBLEMS OF STATICS OF THE

ELASTIC MIXTURE THEORY

M. BASHELEISHVILI AND K. SVANADZE

Abstract. The basic plane boundary value problems of statics of the elastic
mixture theory are considered when on the boundary are given: a displace-
ment vector (the first problem), a stress vector (the second problem); differ-
ences of partial displacements and the sum of stress vector components (the
third problem). A simple method of deriving Fredholm type integral equa-
tions of second order for these problems is given. The properties of the new
operators are established. Using these operators and generalized Green for-
mulas we investigate the above-mentioned integral equations and prove the
existence and uniqueness of a solution of all the boundary value problems in
a finite and an infinite domain.
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1. Some Auxiliary Formulas and Operators

In the two-dimensional case, the basic homogeneous equations of statics of
the elastic mixture theory have the form (see [1] and [2]):

a1∆u′ + b1 grad div u′ + c∆u′′ + d grad div u′′ = 0,

c∆u′ + d grad div u′ + a2∆u′′ + b2 grad div u′′ = 0,
(1.1)

where ∆ is the two-dimensional Laplacian, grad and div are the principal opera-
tors of the field theory, u′ = (u′1, u

′
2) and u′′ = (u′′1, u

′′
2) are partial displacements,

ak, bk (k = 1, 2), c, d are the known constants characterizing the physical prop-
erties of a mixture, and at that

a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5,

b1 = µ1 + λ1 + λ5 − ρ2α2/ρ, b2 = µ2 + λ2 + λ5 + ρ1α2/ρ,

d = µ3 + λ3 − λ5 − ρ1α2/ρ ≡ µ3 + λ4 − λ5 + ρ2α2/ρ,

ρ = ρ1 + ρ2, α2 = λ3 − λ4,

(1.2)

where µ1, µ2, µ3, λ1, λ2, λ3, λ4, λ5, ρ1, ρ2 are new constants also characterizing
the physical properties of the mixture and satisfying the definite conditions
(inequalities) [2].
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In the theory of elastic mixtures, the displacement vector is usually denoted
by u = (u′, u′′), while the four-dimensional vector by u = (u1, u2, u3, u4) or
u1 = u′1, u2 = u′2, u3 = u′′1, u4 = u′′2.

The system of basic equations (1.1) can be rewritten (equivalently) as fol-
lows:

a1∆u′ + c∆u′′ + b1 grad θ′ + d grad θ′′ = 0,

c∆u′ + a2∆u′′ + d grad θ′ + b2 grad θ′′ = 0,
(1.3)

where

θ′ =
∂u′1
∂x1

+
∂u′2
∂x2

, θ′′ =
∂u′′1
∂x1

+
∂u′′2
∂x2

. (1.4)

Let us consider the variables z = x1 + ix2, z̄ = x1 − ix2, by which x1 =
z+z̄
2

, x2 = z−z̄
2i

. Then

∂

∂x1

=
∂

∂z
+

∂

∂z̄
,

∂

∂x2

= i
(

∂

∂z
− ∂

∂z̄

)
,

∂

∂z
=

1

2

(
∂

∂x1

− i
∂

∂x2

)
,

∂

∂z̄
=

1

2

(
∂

∂x1

+ i
∂

∂x2

)
.

(1.5)

Elementary calculations give

∆ = 4
∂2

∂z∂z̄
, θ′ =

∂U1

∂z
+

∂U1

∂z̄
, θ′′ =

∂U2

∂z
+

∂U2

∂z̄
, (1.6)

where

U1 = u1 + iu2, U2 = u3 + iu4. (1.7)

Using formulas (1.5), (1.6) and (1.7), system (1.3) can be written in terms of
two complex equations

2a1
∂2U1

∂z∂z̄
+ 2c

∂2U2

∂z∂z̄
+ b1

∂θ′

∂z̄
+ d

∂θ′′

∂z̄
= 0,

2c
∂2U1

∂z∂z̄
+ 2a2

∂2U2

∂z∂z̄
+ d

∂θ′

∂z̄
+ b2

∂θ′′

∂z̄
= 0.

After substituting here the values of θ′ and θ′′ from (1.6) we obtain

(2a1 + b1)
∂2U1

∂z∂z̄
+ (2c + d)

∂2U2

∂z∂z̄
+ b1

∂2U1

∂z̄2
+ d

∂2U2

∂z̄2
= 0,

(2c + d)
∂2U1

∂z∂z̄
+ (2a2 + b2)

∂2U2

∂z∂z̄
+ d

∂2U1

∂z̄2
+ b2

∂2U2

∂z̄2
= 0.

Hence, by some elementary transformations, we have

∂2U

∂z∂z̄
+ ε>

∂2U

∂z̄2
= 0, (1.8)



BVPS OF STATICS OF ELASTIC MUIXTURE TEORY 429

where

ε> =

[
ε1, ε3

ε2, ε4

]
,

δ0ε1 = 2(a2b1 − cd) + b1b2 − d2, δ0ε2 = 2(da1 − cb1),

δ0ε3 = 2(da2 − cb2), δ0ε4 = 2(a1b2 − cd) + b1b2 − d2,

δ0 = (2a1 + b1)(2a2 + b2)− (2c + d)2 ≡ 4∆0d1d2 > 0,

∆0 = m1m3−m2
2 > 0, m1 = l1+

l4
2

, m2 = l2+
l5
2

, m3 = l3+
l6
2

,

d1 = (a1 + b1)(a2 + b2)− (c + d)2 > 0, d2 = a1a2 − c2 > 0,

l1 =
a2

d2

, l2 = − c

d2

, l3 =
a1

d2

,

l1 + l4 =
a2 + b2

d1

, l2 + l5 = −c + d

d1

, l3 + l6 =
a1 + b1

d1

.

(1.9)

Equation (1.8) represents basic homogeneous equations of statics of the elastic
mixture theory in the complex-vector form. One can likewise esily verify the
validity of the identity

ε> = −1

2
`m−1, (1.10)

where

` =

[
`4, `5

`5, `6

]
, m−1 =

1

∆0

[
m3, −m2

−m2, m1

]
, (1.11)

`k (k = 4, 5, 6), ∆0 and mk (k = 1, 2, 3) are defined from (1.9).
In addition to the vector

U =

(
u1 + iu2

u3 + iu4

)
, (1.12)

using the formulas

iv1 − v2 = m1ϕ1(z) + m2ϕ2(z)− z

2

[
`4ϕ′1(z) + `5ϕ′2(z)

]
− ψ1(z),

iv3 − v4 = m2ϕ1(z) + m3ϕ2(z)− z

2

[
`5ϕ′1(z) + `6ϕ′2(z)

]
− ψ2(z),

(see [3], p.242), we write the vector V as

V =

(
v1 + iv2

v3 + iv4

)
, (1.13)

where v1, v2, v3, v4 are the components of the vector v. As is known from [3], U
and V are the conjugate vectors, i.e., V , like U , satisfies equation (1.8).
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Using analogues of the general Kolosov–Muskhelishvili representations from
[3], we can write

U =mϕ(z)+
`

2
zϕ′(z)+ψ(z), V = i

[
−mϕ(z)+

`

2
zϕ′(z)+ψ(z)

]
, (1.14)

where ϕ(z) and ψ(z) are arbitrary analytic vectors

m =

[
m1, m2

m2, m3

]
, (1.15)

m1,m2,m3 are defined from (1.9).
By (1.14) it is obvious that

U + iV = 2mϕ(z). (1.16)

Let us now introduce the vectors

{
TU =


(

{
Tu)2 − i(

{
Tu)1

(
{
Tu)4 − i(

{
Tu)3


 ,

{
TV =


(

{
Tv)2 − i(

{
Tv)1

(
{
Tv)4 − i(

{
Tv)3


 , (1.17)

where U and V are defined from (1.12), (1.13), (1.14), κ is an arbitrary constant
matrix:

κ =

[
κ1, κ3

κ3, κ2

]
. (1.18)

Using the formula

(

{
Tu)2 − i(

{
Tu)1

(
{
Tu)4 − i(

{
Tu)3


 =

∂

∂s(x)

[
− 2ϕ(z) + (2µ− κ)U

]

(see [3], p. 236) and (1.16), we can rewrite (1.17) as follows:

{
TU =

∂

∂s(x)

[
(A− 2E − κm)ϕ(z)

+ (2µ− κ)
`

2
zϕ′(z) + (2µ− κ)ψ(z)

]
,

{
TV = i

∂

∂s(x)

[
− (A− 2E − κm)ϕ(z)

+ (2µ− κ)
`

2
zϕ′(z) + (2µ− κ)ψ(z)

]
,

(1.19)

where E is the unit matrix and

A = 2µm, µ =

[
µ1, µ3

µ3, µ2

]
,

∂

∂s(x)
= n1

∂

∂x2

− n2
∂

∂x1

, (1.20)

n = (n1, n2) is an arbitrary unit vector.
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If κ = 0, then
{
T ≡ T , where T is the stress operator. Now (1.19) can be

rewritten as

TU =
∂

∂s(x)

[
(A− 2E)ϕ(z) + Bzϕ′(z) + 2µψ(z)

]
,

TV = i
∂

∂s(x)

[
− (A− 2E)ϕ(z) + Bzϕ′(z) + 2µψ(z)

]
,

(1.21)

where

B = µ`. (1.22)

In addition to the operator T , we will need from (1.19) the particular case of
the matrix κ, where

κ = 2µ−m−1. (1.23)

In that case
{
T ≡ N , where N is the pseudostress operator which plays an

important part in studying the first boundary value problem.

Taking into account (1.14), (1.19) and (1.23), for the operator N we obtain

NU = −im−1 ∂V

∂s(x)
, NV = im−1 ∂U

∂s(x)
. (1.24)

These relations are important when investigating the basic plane boundary value
problems of statics of an elastic mixture.

Put now in (1.19)

ϕ(z) =
(A− 2E − κm)−1

2πi

∫

S

ln σg(y) dS,

ϕ′(z) = −(A− 2E − κm)−1

2πi

∫

S

g(y)

σ
dS, (1.25)

ψ(z) = −(2µ− κ)−1

2πi

∫

S

ln σg(y) dS +
`(A− 2E − κm)−1

4πi

∫

S

ζ

σ
g(y) dS ,

where σ = z − ξ, σ = z − ξ, ξ = y1 + iy2, g(y) is the complex vector we seek
for. It is assumed here that

det |A− 2E − κm| 6= 0, det |2µ− κ| 6= 0. (1.26)

In the sequel we will see that these restrictions are actually fulfilled.
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Substituting (1.25) into (1.19) and performing some elementary transforma-
tions, we obtain

{
TU =

1

π

∫

S

∂θ

∂s(x)
g(y) dS

− (2µ− κ)`(A− 2E − κm)−1

4πi

∫

S

∂

∂s(x)

σ

σ
g(y) dS,

{
TV = − 1

π

∫

S

∂ ln r

∂s(x)
g(y) dS

− (2µ− κ)`(A− 2E − κm)−1

4π

∫

S

∂

∂s(x)

σ

σ
g(y) dS,

(1.27)

where

r =
√

(x1 − y1)2 + (x2 − y2)2 , θ = arctg
y2 − x2

y2 − x1

. (1.28)

By (1.25) and (1.14) we obtain

U =
m(A− 2E − κm)−1

2πi

∫

S

ln σg(y) dS − (2µ− κ)−1

2πi

∫

S

ln σg(y) dS

− `(A− 2E − κm)−1

4πi

∫

S

σ

σ
g(y) dS,

V =−m(A−2E−κm)−1

2π

∫

S

ln σg(y) dS− (2µ−κ)−1

2π

∫

S

ln σg(y) dS

− `(A− 2E − κm)−1

4π

∫

S

σ

σ
g(y) dS.

(1.29)

Let us show that U and V satisfy equation (1.8) for any κ. Indeed, by (1.29)

∂2U

∂z∂z̄
=

`(A− 2E − κm)−1

4πi

∫

S

g(y)

σ2
dS,

∂2U

∂z̄2
=

m(A− 2E − κm)−1

2πi

∫

S

g(y)

σ2
dS.

Now by virtue of (1.10) we conclude that U satisfies (1.8). In a similar manner
one can show that V , too, satisfies (1.8).

Next, using (1.29), we calculate the operator
{0

T , where κ0 is an arbitrary real
matrix (different from κ).
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By (1.25) we have

{0

T U =
∂

∂s(x)

[
(A− 2E − κ0m)(A− 2E − κm)−1

2πi

∫

S

ln σg(y) dS

− (2µ− κ0)(2µ− κ)−1

2πi

∫

S

ln σg(y) dS

− (2µ− κ0)`(A− 2E − κm)−1

4πi

∫

S

σ

σ
g(y) dS

]
,

{0

T V =
∂

∂s(x)

[−(A− 2E − κ0m)(A− 2E − κm)−1

2π

∫

S

ln σg(y) dS

− (2µ− κ0)(2µ− κ)−1

2π

∫

S

ln σg(y) dS

− (2µ− κ0)`(A− 2E − κm)−1

4π

∫

S

σ

σ
g(y) dS

]
.

Assume that κ and κ0 satisfy the equation

(A− 2E − κ0m)(A− 2E − κm)−1 + (2µ− κ0)(2µ− κ0)
−1 = 0. (1.30)

Then the preceding formulas can be rewritten as follows:

{0

T U = −(2µ− κ0)(2µ− κ)−1

[
1

πi

∫

S

∂ ln r

∂s(x)
g(y) dS

+
(2µ− κ)`(A− 2E − κm)−1

4πi

∫

S

∂

∂s(x)

σ

σ
g(y) dS

]
,

{0

T V = (2µ− κ0)(2µ− κ)−1

[
i

π

∫

S

∂θ

∂s(x)
g(y) dS

− (2µ− κ)`(A− 2E − κm)−1

4π

∫

S

∂

∂s(x)

σ

σ
g(y) dS

]
.

(1.31)

Comparing (1.27) and (1.31), we obtain

{0

T U =−i(2µ−κ0)(2µ−κ)−1
{
TV,

{0

T V = i(2µ−κ0)(2µ−κ)−1
{
TU. (1.32)

We introduce the following definition: if κ and κ0 satisfy equation (1.30),

then the operators
{0

T and
{
T are self-conjugate ones, i.e., identities (1.32) are

valid. Let us consider some particular cases. Let κ = 0; then
{
T ≡ T and from

(1.30) it follows that

κ0 = 2µ− 2(A− E)−1µ. (1.33)
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Therefore
{0

T ≡ L. Thus the operators T and L are self-conjugate ones. Formulas
(1.32) take the form

TV = i(A− E)LU, TU = −i(A− E)LV. (1.34)

If in (1.30) κ is defined from (1.23), then
{
T ≡ N and to obtain the conjugate

operator we have the indefiniteness. But this does not mean that no conjugate
operator exists for N . We use here formula (1.24) which implies that for N the
conjugate operator is N . Let us rewrite formula (5.15) from [4] as

∫

D+

{
T (u, u) dy1 dy2 =

∫

S

u
{
Tu dS ≡ Im

∫

S

U
{
TU dS, (1.35)

where Im is the imaginary part, U and
{
TU are defined from (1.12) and (1.17),

D+ is the finite domain bounded by the closed contour S. From the latter
formula we obtain two formulas to be used below. For κ = 0 and κ = 2µ−m−1,
(1.35) respectively yields

∫

D+

T (u, u) dy1 dy2 =
∫

S

uTu dS≡ Im
∫

S

UTU dS, (1.36)

∫

D+

N(u, u) dy1 dy2 =
∫

S

uNu dS≡ Im
∫

S

UNU dS≡ Im
∫

S

V NV dS,
(1.37)

where T (u, u) and N(u, u) are defined in [4], pp. 75–76. Formulas (1.35),
(1.36) and (1.37) hold for the infinite domain D− = E2\D+ as well provided
that conditions (5.22) from [4] are fulfilled. In that case we have

∫

D−

{
T (u, u) dy1 dy2 =−

∫

S

u
{
Tu dS ≡−Im

∫

S

U
{
TU dS, (1.38)

∫

D−

T (u, u) dy1 dy2 =−
∫

S

uTu dS≡−Im
∫

S

UTU dS, (1.39)

∫

D−

N(u, u) dy1 dy2 =−
∫

S

uNu dS≡−Im
∫

S

UNUdS≡− Im
∫

S

V NV dS. (1.40)

These formulas play an essential role in investigating the basic plane boundary
value problems of statics for an elastic mixture.

2. The First Boundary Value Problem

The first boundary value problem is formulated as follows: Find, in the do-
main D+(D−), a vector U which belongs to the class C2(D+) ∩ C1,α(D+ ∪
S)[C2(D−) ∩ C1,α(D− ∪ S)], is a solution of equation (1.8) and satisfies the
boundary condition

(u)± = f(t), (2.1)
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where f is a given vector on the boundary, the signs + and −− denote the
limits from inside and from outside. Note that for the infinite domain D− the
vector U additionally satisfies the following conditions at infinity:

U = O(1),
∂U

∂xk

= O(ρ−2), k = 1, 2, (2.2)

where ρ2 = x2
1 + x2

2.
The direction of the external normal is assumed to be the positive direction

of the normal, i.e., the direction from D+ into D−.
First we are to write a Fredholm integral equation for the first boundary value

problem. Using formulas (1.14) and choosing ϕ(z) and ψ(z) in the form

ϕ(z) =
m−1

2πi

∫

S

∂ ln σ

∂s(y)
g(y) dS,

ψ(z) = − 1

2πi

∫

S

∂ ln σ

∂s(y)
g(y) dS +

`m−1

4πi

∫

S

∂

∂s(y)

ζ

σ
g(y) dS,

after some simple transformations we have by (1.10) that

U =
1

π

∫

S

∂θ

∂s(y)
g(y) dS +

ε>

2πi

∫

S

∂

∂s(y)

σ

σ
g(y) dS, (2.3)

V = − 1

π

∫

S

∂ ln r

∂s(y)
g(y) dS +

ε>

2π

∫

S

∂

∂s(y)

σ

σ
g(y) dS, (2.4)

where θ and r are defined from (1.28), g(y) is the complex vector we seek for,
while the values of σ and σ are given above (see §1).

Let us first investigate the first internal problem. Passing to the limit in (2.3)
as x → t ∈ S and using the boundary condition (2.1), to define the vector g we
obtain the following Fredholm integral equation of second order:

g(t) +
1

π

∫

S

∂θ

∂s(y)
g(y) dS +

ε>

2πi

∫

S

∂

∂s(y)

σ

σ
g(y) dS = f(t), (2.5)

where f ∈ C1,β(s) (β > 0) is a given vector on the boundary, and

θ = arctg
y2 − x2

y1 − x1

, σ = t− ζ, σ = t̄− ζ̄ , t = t1 + it2. (2.6)

From (2.5) we have

∂g

∂s(t)
+

1

π

∫

S

∂2θ

∂s(t)∂s(y)
g(y) dS +

ε>

2πi

∫

S

∂2

∂s(t)∂s(y)

σ

σ
g(y) dS =

∂f

∂s(t)
.

Taking into account that s ∈ C2,α (α > 0), the latter formula implies
∫

S

∂2θ

∂s(t)∂s(y)
g(y) dS ∈ C0,α(S) and

∫

S

∂2

∂s(t)∂s(y)

σ

σ
g(y) dS ∈ C0,α(S)
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and since f ∈ C1,β (0 < β < α ≤ 1), from (2.5) we obtain g ∈ C1,β(s).
Let us prove that the homogeneous equation correspending to (2.5) has only a

trivial solution. Assume that it has a nontrivial solution denoted by g0. By the
same reasoning as above we can easily find that g0 ∈ C1,α(s) and NU0 ∈ C0,α(s).
Applying (1.37), we have u0(x) = C, x ∈ D+, where C is an arbitrary constant
vector. But since (U0)

+ ≡ 0, we have U0(x) = 0. Taking into account that for
g0 ∈ C1,α(s), (NU0)

+−(NU0)
− = 0, we obtain (NU0)

− = 0. Using now formula
(1.40), we obtain U0(x) = C x ∈ D− for the domain D−. Since the potential
U0(x) is equal to zero at infinity, we have U0(x) = 0 for x ∈ D− and, using the
formula (U0)

+ − (U0)
− = 2g0, we obtain g0 = 0. Therefore the homogeneous

equation has only a trivial solution. We have proved that, by the first Fredholm
theorem, equation (2.5) is solvable for an arbitrary right-hand part f ∈ C1,β(s)
(β > 0).

One can prove that a solution of equation (2.5) exists iff s ∈ C1,α and f ∈
C1,β(s), 0 < β < α ≤ 1. The proof is the same as in [5].

Let us now consider the first external boundary value problem. Its solution
is sought for in the form

W = U(x) + U(0), (2.7)

where U is defined by formula (2.3), and

U(0) =
1

π

∫

S

∂

∂s(y)
arctg

y2

y1

g(y) dS +
ε>

2πi

∫

S

∂

∂s(y)

ζ

ζ̄
g(y) dS. (2.8)

The origin is assumed to lie in the domain D+.
Taking into account the boundary behavior of the potential U(x) and the

boundary condition (2.1), to define the unknown vector g we obtain from (2.7)
the Fredholm integral equation of second order

− g(t) +
1

π

∫

S

∂θ

∂s(y)
g(y) dS +

ε>

2πi

∫

S

∂

∂s(y)

σ

σ
g(y) dS + U(0) = f(t). (2.9)

where θ, σ, σ are defined by (2.6). Quite in the same manner as above, one can
prove that a solution of equation (2.9), if it exists, belongs to the class C1,β(s)
for s ∈ C2,α and f 1,β(s), 0 < β < α ≤ 1.

Let us show now that equation (2.9) is always solvable. For this it is sufficient
that the homogeneous equation corresponding to (2.9) have only a trivial solu-
tion. Denote the homogeneous equation (which we do not write) by (2.9)0 and
assume that it has a solution different from zero which is denoted by g0. Denote
the corresponding potentials and values by W0, U0 and U0(0). Using (1.40), we
obtain W0(x) = α. But (W0)

− = 0 and therefore α = 0 and W0(x) = 0, x ∈ D−.
Hence, for x →∞, we obtain

U0(0) = 0. (2.10)

In that case, (2.7) implies W ≡ U0(x) = 0 and NU0(x) = 0, x ∈ D−. Since
under our restrictions (NU0)

+ − (NU0)
− = 0, and (NU0)

− = 0, we obtain
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(NU0)
+ = 0. Hence by (1.37) we have U0(x) = β, x ∈ D+. But by (2.10)

U0(0) = 0 and, obviously, β = 0. Thus U0(x) = 0, x ∈ D+. Taking into account
that (U0)

+ − (U0)
− = 2g0 and (U0)

+ = 0, (U0)
− = 0 we obtain g0 = 0. Thus

our assumption is not valid. Equation (2.9) has a solution for an arbitrary
right-hand part.

As above, here, too, we can note that a solution of equation (2.9) exists iff
s ∈ C1,α and f ∈ C1,β(s), 0 < β < α ≤ 1.

So far it has been assumed that the principal vector of external forces, stress
components and rotation at infinity are equal to zero. The general case with
these values given and different from zero is considered applying a reasoning
similar to that used in [6]. When D+ is a multiply-connected finite domain, the
proof of the existence of solutions for this domain is easy and carried out as in
[6].

3. The Second Boundary Value Problem

The second boundary value problem is posed as folows: Find, in the domain

D+(D−), a vector U which belongs to the class C2(D+) ∩ C1,α(D
+
)[C2(D−) ∩

C1,α(D−∪S)], is a solution of equation (1.8) and satisfies the boundary condition

(TU)± = F (t), (3.1)

where F is a given vector on the boundary. For an infinite domain we have
conditions (2.2).

To derive Fredholm integral equations of second order for the second bound-
ary value problem is not difficult. Indeed, after substituting κ = 0 into (1.25)
and (1.27), we obtain

TU =
1

π

∫

S

∂θ

∂s(x)
g(y) dS − H

2πi

∫

S

∂

∂s(x)

σ

σ
g(y) dS,

TV = − 1

π

∫

S

∂ ln r

∂s(x)
g(y) dS − H

2π

∫

S

∂

∂s(x)

σ

σ
g(y) dS,

(3.2)

where U and V are defined as follows:

U =
m(A− 2E)−1

2πi

∫

S

ln σg(y) dS − µ−1

4πi

∫

S

ln σg(y) dS

− `(A− 2E)−1

4πi

∫

S

σ

σ
g(y) dS,

V = −m(A− 2E)−1

2π

∫

S

ln σg(y) dS − µ−1

4π

∫

S

ln σg(y) dS

− `(A− 2E)−1

4π

∫

S

σ

σ
g(y) dS.

(3.3)
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Here, as above, g(g) is the complex vector we seek for,

H =

[
H1, H2

H3, H4

]
,

where

H1 = 1− 2λ5

∆2d2

[
(a1 + c)A3 + (a2 + c)(A4 − 2)

]
,

H2 =
2λ5

∆2d2

[
(a1 + c)(A2 − 2) + (a2 + c)A2

]
,

∆2 = (A1−2)(A4−2)−A2A3 > 0, H3 = 1−H1, H4 =1−H2,

(A− 2E)−1 =
1

∆2

[
A4 − 2, −A2

−A3 A1 − 2

]
, µ−1 =

1

∆1

[
µ2, −µ3

−µ3, µ1

]
;

(3.4)

the other values contained in (3.2) and (3.3) are defined in the preceding
paragraph.

Let us first consider the second boundary value problem for the domain D+.
By (3.1), to define the vector g we find from (3.2) that

− g(t) +
1

π

∫

S

∂θ

∂s(t)
g(y) dS − H

2πi

∫

S

∂

∂s(t)

σ

σ
g(y( dS = F (t), (3.5)

where θ, σ and σ are given from (2.6). We think that it is advisable to modify
equation (3.5). To do so, we add to the left-hand side the expression

1

2π

[
∂θ

∂s(t)

∫

S

g(y) dS − H

2πi

∂

∂s(t)

σ(t)

σ(t)

∫

S

g dS

]
+

1

4πi

(
1
1

)
∂

∂s(t)

1

t̄
·M,

where

M =
[
− i

∂

∂z
(U1 + U2) + i

∂

∂z̄
(U1 + U2)

]

x1=x2=0
, (3.6)

U1 and U2 and their conjugates are defined in (3.3). As above, it is assumed
that the origin lies in the domain D+.

Thus we obtain the equation

− g(t) +
1

π

∫

S

∂θ

∂s(t)
g(y) dS − H

2πi

∫

S

∂

∂s(t)

σ

σ
g(y) dS +

1

2π

∂θ(t)

∂s(t)

∫

S

g(y) dS

− H

4πi

∂

∂s(t)

σ(t)

σ(t)

∫

S

g(y) dS +
1

4πi

(
1
1

)
∂

∂s(t)

1

t̄
M = F (t). (3.7)

Let us now show that if equation (3.7) has a solution, then it is necessary
that

∫

S

g dS = 0 (3.8)
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and

M = 0, (3.9)

provided that the principal vector and the principal moment of external forces
are equal to zero.

Indeed, by some simple calculations, from (3.7) we obtain
∫

S

g dS =
∫

S

F dS, M =
∫

S

Re t̄(F1 + F2)dS. (3.10)

If the principal vector
∫
S FdS and the principal moment

∫
S Re t(F1 + F2)dS

are equal to zero, then
∫
S gdS = 0 and M = 0, which was required to be shown.

Thus if the requirement that the principal vector and the principal moment
of external forces be equal to zero is fulfilled, then any solution g of equation
(3.7) is simultaneously a solution of the initial equation (3.5).

Let us now prove that equation (3.7) is always solvable. To this end, consider
the homogeneous equation obtained from (3.7) for F = 0 and prove that it has
no solutions different from zero. Let g0 be any solution of this homogeneous
equation. Since F = 0, it is obvious that conditions (3.8) and (3.9) are fulfilled
for g0. In that case the obtained homogeneous equation corresponds to the
boundary condition

(TU0(t))
+ = 0, (3.11)

where U0(x) is obtained from (3.3) if g is replaced by g0. Using (3.11) and (1.36)
we obtain

U0(x) = α + iβ1

(
1
1

)
z, x ∈ D+, (3.12)

where α is an arbitrary constant vector, and β1 is an arbitrary constant value.
Since M0 = 0, (3.12) implies β1 = 0 and we obtain U0(x) = α, x ∈ D+.
Hence, in view of (1.24), we have

NU0(x) = −im−1 ∂V0(x)

∂s(x)
= 0

and

V0(x) = β, x ∈ D+, (3.13)

where V0(x) are defined from (3.3) if g = g0 and β is an arbitrary constant vector.
By (3.2), from (3.13) we obtain TV0(x) = 0, x ∈ D+, and since (TV0(t))

+ −
(TV0(t))

− = 0, we have (TV0(x))− = 0. Applying now formula (1.39) we find

V0(x) = α + iβ1

(
1
1

)
z, x ∈ D−,

Hence, since V0(x) is bounded at infinity, we have β1 = 0 and V0(x) = α,
x ∈ D−. In that case U0(x) = β and TU0(x) = 0, x ∈ D−. Taking into account
that (TU0)

− − (TU0)
+ = 2g0 and (TU0)

+ = 0, (TU0)
− = 0 we obtain g0 = 0.
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Thus we proved that the homogeneous equation corresponding to equation
(3.7) has no solutions different from zero.

Therefore equation (3.7) has one and only one solution g. On substituting this
value g into formula (3.3), we obtain a solution of the second boundary value
problem provided that the requirement for the principal vector and the principal
moment of external forces to be equal to zero is fulfilled. Displacements U are
defined to within rigid disolacement, while stresses are defined precisely.

Let us now consider the second boundary value problem in the domain D−.
Its solution is to be sought for in the form

W (x) = U(x)− µ−1

8π

(
1
1

)
1

z̄
M, (3.14)

where U are defined from (3.3), and

M = −i
[
∂(V1 + V2)

∂z
− ∂(V 1 + V 2)

∂z̄

]

x1=x2=0
, (3.15)

V are given from (3.3).

From (3.14) we readily have TW = TU(x)− 1
4π

(
1
1

)
∂

∂s(x)
1
z̄
·M.

Passing here to the limit as z → t ∈ S and taking into account (3.1), we
obtain

g(t) +
1

π

∫

S

∂θ

∂s(t)
g(y) dS − H

2πi

∫

S

∂

∂s(t)

σ

σ
g(y) dS

− 1

4π

(
1
1

)
∂

∂s(t)

1

t̄
M = F (t). (3.16)

Performing integration, from (3.16) we esily have 2
∫
S g dS =

∫
S F dS.

So far it has been assumed that the principal vector of external forces is equal
to zero. This means that

∫

S

g dS = 0. (3.17)

The latter condition implies that the vector U(x) from (3.3) is unique and
bounded.

Now let us show that equation (3.16) is always solvable. To this end, consider
the homogeneous equation which is obtained from (3.16) when F = 0. We
have to prove that this homogeneous equation has no solutions different from
zero. Assume the contrary and denote by g0 some solution of this homogeneous
equation. Since F = 0, condition (3.17) is fulfilled for g0.

Note that the homogeneous equation corresponds to the boundary condition
(TW0(t))

− = 0. Using formula (1.39), we have W0(x) = 0, x ∈ D−, or, by
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(3.14), we can write

U0(x)− µ−1

8π

(
1
1

)
1

z̄
M0 = 0, x ∈ D−.

Obviously, for the conjugate vector we have

V0(x)− iµ−1

8π

(
1
1

)
1

z̄
M0 = c, x ∈ D−, (3.18)

where c is an arbitrary constant vector. Calculating the stress vector and taking
into account (3.2), from (3.18) we obtain

− 1

π

∫

S

∂ ln r

∂s(t)
g0(y) dS − H

2π

∫

S

∂

∂s(t)

σ

σ
g0(y) dS

− i

4π

(
1
1

)
∂

∂s(t)

1

t̄
·M0 = 0, t ∈ S.

Now we have to calculate the principal moment of this vector. After lengthy
but obvious trasformations we have M0 = 0.

We have thus proved that V0(x) = C for x ∈ D−. But since (TV0)
− =

(TV0)
+ = 0, by (1.36) we obtain

V0(x) = α + iβ1

(
1
1

)
z, x ∈ D+, (3.19)

where α is an arbitrary constant vector, and β1 is an arbitrary constant scalar.
Since M0 = 0, (3.19) readily implies 0 = M0 = 4β1 = 0.
In that case we have V0(x) = α, x ∈ D+, and U0(x) = β, x ∈ D+, where β is

a constant vector. Thus (TU0(t))
− − (TU0(t))

+ = 2g0 = 0.
Therefore the homogeneous equation corresponding to equation (3.16) has no

solutions different from zero. This means that equation (3.16) has one and only
one solution when the principal vector of external forces is equal to zero.

Like in §2, here too we can note that a solution of the second boundary
value exists iff the principal vector of external forces, and stress and rotation
components are given values. It is understtod that in that case the displacement
vector at infinity is unbounded.

The existence of solutions of the second boundary value problem can also be
proved when D+ is a finite multiply-connected domain.

4. The Third Boundary Value Problem

In the case of the third boundary value problem the following values are given
at the boundary:

∂

∂s(x)

[
u3 − u1 + i(u4 − u2)

]
, (Tu)2 + (Tu)1 − i

[
(Tu)4 + (Tu)3

]
,
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where u1, u2, u3, u4 are the components of the four-dimensional vector U , and
(TU)1, (TU)2, (TU)3, (TU)4 are the components of the stress vector TU .

By virtue of (1.12), (1.14) and (1.21), these value can be rewritten as

∂

∂s(x)

{[
m2 −m1, m3 −m2

B1 + B3, B2 + B4

]
ϕ(z) +

[
`5−`4

2
, `6−`5

2
B1 + B3, B2 + B4

]
zϕ′(z)

+

[
−1, 1

2(µ1 + µ3), 2(µ2 + µ3)

]
ψ(z)

}
= F (x), (4.1)

where

F (x) =

(
∂

∂s(x)
[u3 − u1 + i(u4 − u2)]

(Tu)2 + (Tu)4 − i[(Tu)1 + (Tu)3]

)
≡

(
U2 − U1

(TU)1 + (TU)2

)
, (4.2)

U1, U2, (TU)1 and (TU)2 are defined from (1.12) and (1.21).
Now we can formulate the thirs boundary value problem: Find, in the domain

D+(D−), a vector U which belongs to the class C2(D+) ∩ C1,α(D+)[C2(D−) ∩
C1,α(D− ∪ S)], is a solution of equations (1.8), and satisfies the boundary con-
dition

(F (t))± = F (t), (4.3)

where F (t) is a given vector on the boundary. Conditions (2.2) are fulfilled at
infinity.

For this problem we need to derive Fredholm integral equations of second
order.

Let

ϕ(z) =
1

2πi∆3

[
B2 + B4, m2 −m3

−(B1 + B3), m2 −m1

] ∫

S

ln σg(y) dS, (4.4)

where g is the complex vector we seek for, and

∆3 = 2(m1 + m3 − 2m2 −∆0a0) > 0, (4.5)

where a0 = µ1 + µ2 + 2µ3 ≡ a1 + a2 + 2c. Note that the proof for ∆3 > 0 is
given in [7].

After lengthy but elementary calculations we obtain

1

∆3

[
`5−`4

2
, `6−`5

2
B1 + B3, B2 + B4

] [
B2 + B4, m2 −m3

−(B1 + B3), m2 −m1

]
=

[
−K0, −α0

0, 1

]
, (4.6)

where

K0 =
a0(b1b2 − d2)

2∆3d1d2

, α0 =
∆0

∆3

(ε1 + ε3 − ε2 − ε4), (4.7)

while ε1, ε2, ε3, ε4 are defined from (1.9).



BVPS OF STATICS OF ELASTIC MUIXTURE TEORY 443

In view of (4.4) and (4.6), expression (4.1) takes the form

∂

∂s(x)

{
1

2πi

∫

S

ln σg(y) dS +
K

2πi

∫

S

z

σ
g(y) dS

+

[
−1 1

2(µ1 + µ3), 2(µ2 + µ3)

]
ψ(z)

}
= F (x), (4.8)

where

K =

[
K0, α0

0, −1

]
(4.9)

Let us now choose ψ(z) in (4.8) as follows:
[

−1 1
2(µ1 + µ3), 2(µ2 + µ3)

]
ψ(z) = − 1

2πi

∫

S

ln σg(y) dS − K

2πi

∫

S

ζ

σ
g(y) dS,

Then (4.8) takes the final form

1

π

∫

S

∂θ

∂s(x)
g(y) dS +

K

2πi

∫

S

∂

∂s(x)

σ

σ
g(y) dS = F (x). (4.10)

First we consider the third boundary value problem in the domain D+. By
the boundary condition, to define the unknown vector g we find from (4.10) the
Fredholm integral equation of second order

− g(t) +
1

π

∫

S

∂θ

∂s(t)
g(y) dS +

K

2πi

∫

S

∂

∂s(t)

σ

σ
g(y) dS = F (t), (4.11)

where θ, σ and σ are defined from (2.6).
To investigate (4.11), its advisable to consider, instead of (4.11), the equation

− g(t) +
1

π

∫

S

∂θ

∂s(x)
g(y) dS +

K

2πi

∫

S

∂

∂s(y)

σ

σ
g(y) dS − i

2π

(
0
1

)
∂

∂s(t)

1

t̄
M

+
1

2π

[
∂θ(t)

∂s(t)

∫

S

g dS − H

2i

∂

∂s(t)

t

t̄

∫

S

g dS

]
= F (t), (4.12)

where

M = (−i)
(

∂U2

∂z
− ∂U2

∂z̄

)

x1=x2=0
, (4.13)

and θ(t) are given from (2.6) at y1 = y2 = 0.
From (4.12) we readily obtain

∫

S

g dS =
∫

S

F dS, M = Re
∫

S

t̄F2(t) dS. (4.14)
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Let us prove that equation (4.12) is always solvable. Assume the contrary
and denote any solution of the homogeneous equation corresponding to (4.12)
by g0. On account of (4.14) we have

∫

S

g0 dS = 0, M0 = 0, (4.15)

where M0 is obtained from (4.13) after replacing g by g0.
In that case the homogeneous equations for (4.12) and (4.11) coincide, but to

the homogeneous equation for (4.11) there corresponds the boundary condition
(F (t))+ = 0.

Using (1.16) and taking into account that (U01)
+ − (U02)

+ = C and∫
S(TU0)

+dS = 0, we obtain

U0(x) = α + iβ1

(
1
1

)
z, x ∈ D+,

where α and β1 are arbitrary constants. By (4.15) we have U0(x) = α, x ∈ D+.
The conjugate vector V0(x) defined from (1.14) has the form V0(x) = β, x ∈

D+, where β is another constant value. By repeating the arguments used above
for the vector U0 we get

(V01 − V02)
− = (V01 − V02)

+ = α1,
[
(TV0)1 + (TV0)2

]−
=

[
(TV0)1 + (TV0)2

]+
= 0.

Using now (1.39) for the vector V0, we have

V0(x) = γ + iδ0

(
1
1

)
z, z ∈ D−,

where γ is an arbitrary constant vector, and δ0 is an arbitrary constant scalar.
Since the vector V0(x) is equal to zero at infinity, we have δ0 = 0, γ = 0 and
V0(x) = 0, x ∈ D−. In that case, the conjugate vector U0(x) is U0(x) = C,
x ∈ D−. Applying (4.15), we have

U0(x) = 0, x ∈ D−. (4.18)

Taking into account (4.17) and (4.18) it is easy to obtain

∂

∂s(t)
(U01 − U02)

− − ∂

∂s(t)
(U01 − U02)

+ = 2g01 = 0,

[
(TU0)1 + (TU0)2

]− −
[
(TU0)1 + (TU0)2

]+
= 2g02 = 0.

This means that g0 = 0 and our assumption is not correct.
Thus we have proved that equation (4.12) is solvable for any right-hand part.

By substitution this value of g into (4.11) we obtain a solution of the third
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boundary value problem when
∫
S F1dS = 0 and the principal moment of external

forces is equal to zero.
The investigation of the third internal value is finished.
Finally, let investigate the third boundary value problem in the domain D−.

Its solution will be sought for in the form

1

π

∫

S

∂θ

∂s(x)
g(y) dS +

K

2πi

∫

S

∂

∂s(x)

σ

σ
g(y) dS

− 1

2π

(
0
1

)
∂

∂s(x)

1

z̄
M = F (x), (4.19)

where

M = (−i)
(

∂V2

∂z
− ∂V 2

∂z̄

)

x1=x2=0
. (4.20)

To define the vector g, from (4.19) we obtain the Fredholm integral equation
of second order

g(t) +
1

π

∫

S

∂θ

∂s(t)
g(y) dS +

K

2πi

∫

S

∂

∂s(t)

σ

σ
g(y) dS

− 1

2π

(
0
1

)
∂

∂s(t)

1

t̄
M = F (t). (4.21)

After obvious transformations, the latter equation gives

2
∫

S

g dS =
∫

S

F dS. (4.22)

Let us prove that equation (4.21) is always solvable. Assume that the homo-
geneous equation corresponding to (4.21) has a nonzero solution denoted by g0.
Since F = 0, (4.22) implies

∫
S g0 dS = 0.

This means that both U0 and the conjugate vector V0 are equal to zero at
infinity. Applying (1.39), we obtain U0(x) = 0, V0(x) = 0.

On account of (4.21), for F = 0 we have

− 1

π

∫

S

∂ ln r

∂s(t)
g0 dS−K

2π

∫

S

∂

∂s(t)

σ

σ
g0 dS− i

2π

(
0
1

)
∂

∂s(t)

1

t̄
M0 =0. (4.23)

The latter equation implies M0 = 0. Now (4.23) takes the form (TV0(t))
+ =

(TV0(t))
− = 0. Applying (1.36) for the vector V0 we obtain

V0(x) = α + iβ1

(
1
1

)
z, x ∈ D+.

Since M0 = 0, we have β1 = 0 and V0(x) = α, from which it follows that
U0(x) = β, x ∈ D+, where β is an arbitrary constant vector. Now by the
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boundary condition we have

∂

∂s(t)
(U01 − U02)

− − ∂

∂s(t)
(U01 − U02)

+ = 2g01 = 0,

[
(TU0)1 + (TU0)2

]− −
[
(TU0)1 + (TU0)2

]+
= 2g02 = 0.

Thus we have proved that the homogeneous equation corresponding to (4.21)
has only a trivial solution. By choosing among solutions of (4.21) those satisfy-
ing the condition

∫
S F1dS = 0 we obtain a solution of the third boundary value

problem in the domain D−.

References

1. T. R. Steel, Applications of a theory of interacting continua. Q. J. Mech. Appl. Math.
20(1967), No. 1, 57–72.

2. D. G. Natroshvili, A. Ya. Jagmaidze, and M. Z. Svanadze, Some problems of
the linear theory of elastic mixtures. (Russian) Tbilisi Univ. Press, Tbilisi, 1986.

3. M. O. Basheleishvili, Analogues of the Kolosov–Muskhelishvili general representation
formulas and Cauchy-Riemann conditions in the theory of elastic mixtures. Georgian
Math. J. 4(1997), No. 3, 223–242.

4. M. O. Basheleishvili, Two-dimensional boundary-value problems of statics of the
theory of elastic mixtures. Mem. Differential Equations Math. Phys. 6(1995), 59–105.

5. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchu-
ladze, Three-dimensional problems of the mathematical theory of elasticity and ther-
moelasticity. (Translated from Russian) North-Holland Series in Applied Mathematics
and Mechanics, v. 25, North-Holland Publ. Co., Amsterdam–New York–Oxford, 1979;
Russian original: Nauka, Moscow, 1976.

6. M. O. Basheleishvili, Two-dimensional problems of elasticity of anisotropic bodies.
Mem. Differential Equations Math. Phys. 16(1999), 9–140.

7. M. O. Basheleishvili, Application of analogues of general Kolosov–Muskhelishvili
representations in the theory of elastic mixtures. Georgian Math. J. 6(1999). No. 1,
1–18.

(Received 25.12.2000)

Authors’ addresses:

M. Basheleishvili
I. Vekua Institute of Applied Mathematics
Tbilisi State University
2, University St., Tbilisi 380043
Georgia

K. Svanadze
A. Tsereteli Kutaisi State University
59, Queen Tamar Ave., Kutaisi 384004
Georgia


