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Abstract. Boundary integral equations of elasticity theory in a plane do-
main with a peak at the boundary are considered. Solvability and uniqueness
theorems as well as results on the asymptotic behaviour of solutions near the
peak are obtained.
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1. INTRODUCTION

The theory of elastic potentials for domains with smooth boundaries is well
developed (see the monographs [6], [17]). For domains with piecewise smooth
boundaries “without zero angles” theorems on the unique solvability of integral
equations of elasticity were obtained in [7] by a method which does not use
Fredholm and singular integral operators theories. Solutions of integral equa-
tions are expressed by the inverse operators of auxiliary exterior and interior
boundary value problems, i.e., theorems on the solvability of boundary integral
equations follow from the theory of elliptic boundary value problems in domains
with piecewise smooth boundaries.

We apply the same approach to integral equations of the plane elasticity
theory on a contour with a peak. We also use the complex form of solutions to
the elasticity equations suggested by G. V. Kolosov. This method was further
developed by N. I. Muskhelishvili (see [16]).

Since even for smooth functions in the right-hand side these integral equa-
tions, in general, have no solutions in the class of summable functions, we study
modified integral equations for which theorems on the unique solvability prove
to be valid.

Using the same method we obtained (see [9]-[11]) asymptotic formulas for
solutions of integral equations of the logarithmic potential theory near cusps
on boundary curves. This approach permitted us also to find, for each integral
equation, a pair of weighted L,-spaces such that the corresponding integral
operator maps one space onto another (see [12]-[15]).
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In the recent articles [1], [2], criteria of solvability in weighted L,-spaces of
boundary integral equations of the logarithmic potential theory on contours with
peaks were obtained. The method used in these papers is based on reducing of
boundary value problems to the Riemann—Hilbert problem for analytic functions
on the unit circumference.

Here we give a brief description of the results obtained in the present paper.

Let 2 be a plane simply connected domain bounded by a closed piecewise
smooth curve S with a peak at the origin O. Suppose that either € or its
complement €2¢ is described in the Cartesian coordinates z,y near O by the
inequalities k_(z) < y < k4 (x), 0 < x < 0, where k4 are C*°-functions on [0, ¢]
satisfying

k:(0) =K,(0)=0 and & (0)>r (0).
In the first case we say that O is an outward peak and in the second one O is
an inward peak.

We introduce the class M, (v > —1) of infinitely differentiable on S\{O}
vector-valued functions h admitting representations hy(z) = x"q+(x) on the

arcs S. = {(z,k(x)) : z € (0,6]}, where the vector-valued functions gy
belong to C*°[0, 4] and satisfy |g;+(0)| + |¢—(0)| # 0. Let DM denote the set
n= Y N,
v>—1

and let M3 (B > —1) be the class of differentiable vector-valued functions on
S\{O} satistying
c"(2) =0, z=x+iy=(z,y), r=0,1.
We introduce the class 9 as
m= |J ms.

B>-1
For domains with an outward peak we put
Mewe = | M.
B>—1/2
We consider the interior and exterior first boundary value problems
Ny =pAu+ AN+ p)Vdive =0 in Q, u=g on S, (DT)
ANu=01in Q) u=g on S, u(z)=0(1) as |z| — o0,

and the interior and exterior second boundary value problems

N'u=0in Q Tu=h on S, (NT)
ANu=01in Q° Tu=h on S, u(z)=o0(l) as |z| — o0,

for the displacement u = (uy,us). Here T'(O, n¢) is the traction operator

T(O¢,n¢) u = 2u0u/On + An div u + pln, rot ul,



BOUNDARY INTEGRAL EQUATIONS OF PLANE ELASTICITY 573

where n = (ng,n,) is the outward normal to the boundary S at the point ( =
(&,m), and A, p are the Lamé coefficients. Henceforth we shall not distinguish a
displacement u = (uy, us) and a complex displacement u = u; + fus.

A classical method for solving the first and second boundary value problems
of elasticity theory consists in representing their solutions in the form of the
double-layer potential

Wo(2) = [{T(0cne) T (2O} o(C)dsc.
S

and the simple-layer potential

Vr(z) = /F(Z,C)T(C)dSC, z=(z,y) € Q or Q°,
S

where * denotes the passage to the transposed matrix and I" is the Kelvin—
Somigliana tensor

A+ 3u 1 10
He O =5t 2 {log =3 (0 1)

Ap 1 ((x—§)2 (x—i)(y—n)>}
A+3u |z =P\ =y —-n  (y—n)? .

For the problems Dt and N~ the densities of the corresponding potentials can
be found from the systems of boundary integral equations

—2'c+Wo=yg (1)

and
277+ TVr =h. (2)
Under certain general conditions on ¢ in (1) there exist solutions ™ and u~
of the problems D and D~ in  and Q¢ with the boundary data g satisfying

g@z) =lim [ T(5Q) (T(@nou* () = T )™ (Q))dsc +u™(00) (3)

e—0

{S:I¢I>e}

on S\ {O}. Let v~ denote a solution of N'~ in Q¢ vanishing at infinity, with
the boundary data T'u™ on S\ {O}. We can choose v~ so that, for w =
v —u” 4+ u (00) on z € S\ {0}, the equality

wz) = 2lim [ {T(0,n) T (2, QY w(Qdse = —2p(2) +2u™(00)  (4)
{s:[¢|>e}

holds. Solutions of equations (1) and (2) are constructed by means of (3) and
(4). So, the function

oc=v —g
is a solution of (1). A solution of (2) can be obtained as follows. Let us introduce
the solution v~ of N~ in Q¢ with the boundary data h, vanishing at infinity,
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and the solution u™ of Dt in Q equal to v~ on S\ {O}. Under sufficiently
general assumptions on h we can select v~ and u™ so that the density

T=Tu" —h

satisfies (2).

Inward peak. In fact, the integral equation (1), in general, has no solutions in
M even if g € N vanishes on S;.. However, for a function from N, with v > 3
the solvability of (1) can be attained by changing the equation in the following
way. A solution u of the problem DT is sought as the sum of the double-layer
potential with density ¢ and the linear combination of explicitly given functions
A1, Ay and As with unknown real coefficients

u(z) = Wao(z) + a1 A1(z) + caAz(2) + c3.A3(2).
The functions Ay, As, Az are given by

l

A2 = ot 22— T 2 4
L
-1 — o 1/2 1no ~
+i(/§ )y — )[2/<;Im(z3/210g2)—Szl/QIOgZImZ_
STK
91T o] — W V%
21
As(z) = _262[2/<¢Im 224 2712 0m 2] —
i
— a_ 1 1/2 1ng ~
~ Qo= ) o (32 1og 2) + 377 Tog 2 T = +
8TuK
— ) “1/9 1 »3/2
+2212Im 2] + L[2/§ Im 2%/? — 321/2Tm z] + QMZB/Q’
21 24
] —a ) (k+1
As(z) = SRS S (ay —a )kt )[2/<;Im (+"log 2) +
L ATk
—_— 1 2
+4zlog zIm z + 2z Im 2] + MZQ’

Ju

where
k=A+3u)/A+p) and Q =[(ay +a_) — (ay —a_)/2k+2a_] /2.

Here and in the sequel by symbols 2”(log 2)* we mean the branch of the analytic
function taking real values on the upper boundary of the slit along the positive
part of the real axis. By the limit relation for the double-layer potential we
obtain

270+ Wo + 1AL+ oAy + c3 Az = g (5)

for the pair (o, c), where ¢ = (¢1, 3, ¢3).
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We prove the uniqueness assertion for equation (5) in the class of pairs {o, c}
with ¢ € 9 and ¢ € R? in Theorem 5. The solvability of (5) with the right-
hand side g € M,, v > 3, in M x R? is proved in Theorem 6. Moreover, in the
same theorem we derive the following asymptotic formula for ¢ near the peak:

o(z) = (a(log z)? + Blogz + 7) V24078, z€8,

with positive .

A solution v of the problem N~ with the boundary data h from 9, v > 3, is
sought in the form of the simple-layer potential V7. The density 7 satisfies the
system of integral equations (2) on S\{O}. In Theorems 7 and 8 we prove that
if h has the zero mean value on S, then equation (2) has the unique solution 7

in the class 991 and this solution admits the following representation on the arcs
Sii

m2(2) = axz 2+ O(1).

Outward peak. We represent a solution u of the problem DT as the double-
layer potential Wo. The density o is found from the system of integral equations
(1). It is proved that the kernel of the integral operator in (1) is two-dimensional
in the class M. Solutions of the homogeneous system of integral equations (1)
are functions obtained as restrictions to S of solutions to the homogeneous
problem N ~. Near the peak these displacements have the estimate O(r~'/2)
with 7 being the distance to the peak. So M., is the uniqueness class for
equation (1). The situation where (1) has at least two solutions is considered
in Theorem 9.

The non-homogeneous integral equation (1) is studied in Theorem 10. We
show that the solvability in 91 holds for all functions g from the class 91, v > 0.
One of the solutions of (1) has the representations on Sy

o(z) = ez’ 1 +O(1) for v #1/2,
o(r) = Bz ?loga + O(1) for v =1/2.

The integral equation (2) is uniquely solvable in the class 9t if the right-hand
side h € N, with v > 0 satisfies

/hds:(), /h{’ds:o,
S S

where ( is any solution of the homogeneous equation (1) in the class 9. In
order to remove the orthogonality condition we are looking for a solution v of
the problem N~ with the boundary data h from 91 as the sum of the simple-
layer potential V7 and the linear combination of functions g;(z), 02(z) with
unknown coefficients

v(z) = V71(2) + t101(2) + t202(2).
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The functions gx(z), k = 1,2, are defined by complex stress functions (complex
potentials) ¢r(z), ¥i(2):

0(2) = 5 [wo2) = 4T — )
pe=(25)" we=3(E)"
wa(z) =1 <ZZ_ZOZO>1/2, P(z) = ; (zlz_zoz(])lh,

where zg is a fixed point in §2. The boundary equation
2 Y TVr+tTo +t:Tos =h (6)

is considered with respect to the pair (7,t), where 7 is the density of the simple-
layer potential and t = (¢, t,) is a vector in R?. In Theorems 11 and 12 we prove
the existence and uniqueness of the solution of (6), respectively. In Theorem 12
we also study the asymptotic behaviour of solutions. We prove that for h € M,
with 0 < v < 1 the density 7 has the following representations on the arcs Sy:

7(z) = Bea” ' + O(a™1/?) for 0 <v <1/2,
7(z) = ez logz + Bea? + O(logz)  for v =1/2,
7(x) = e ? + Bz’ + O(log z) for 1/2 <v < 1.

Assertions on the asymptotics of solutions to problems D™ and N~ are col-
lected in Theorems 1-4.

2. BOUNDARY VALUE PROBLEMS OF ELASTICITY

We represent densities of integral equations of elasticity theory by means of
solutions of certain auxiliary interior and exterior boundary value problems.
The auxiliary results concerning such problems are collected in this section.

2.1. Asymptotic behaviour of solutions to the problem D*. We in-
troduce some notation to be used in the proof of the following theorem and
elsewhere.

Let 3 > 0. As in [5], by W} 4(G) we denote the weighted Sobolev space with

the norm
' 1/2
(Z / \Vk<eﬂff>\2dtdu) ,

k=0

where V¥ is the vector of all derivatives of order k. By WQIﬁ(G) we mean the
completion of C§° in the W} 5(G)-norm and let Wy 5 = Ly g.
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Theorem 1. Let 2 have an outward peak. Suppose that g is an infinitely
differentiable function on the curve S\{O} and let g have the following repre-
sentations on the arcs Si:

n+1
Z QY (log z)a*+ + O(:E”’LQJF”_‘E), z=x+iy, v>—1,

where Qﬁﬁ’ are polynomials of degree j and € is a small positive number.
Suppose the above representations can be differentiated n+ 2 times. Then the
problem D' has a solution u of the form

() = 3= [enl2) = 0D = 5al3)] +uafe), = € 9 (")
where V*ug(z) = O(|z|"72%) for k=10,...,n and
on(z) = 1§ pék:—i—Z)(lOg Z)z”+k_1,
k=0

Z P(k+2 (log z) 2" T+1.

Here P;j) and Pg) are polynomials of degree j.

Proof. (1) We are looking for a displacement vector wu, such that the vector-
valued function g, = g —u, belong to C*(S\{O}) and (g,)+(x) = 2¥(¢n)+ (),
where (qn)i are inﬁnitely differentiable on [0,d] and satisfy V¥(q,)+(z) =
O(x™=F=5) &k = 0,...,n + 2, on the arcs Sy with ¢ being a small positive
number.

To this end, we use the method of complex stress functions (see [16], Ch.II).
The displacement vector u is related to complex potentials ¢ and 1) as follows:

2pu(z) = k() — 20'(2) — ¥(2),
where functions ¢ and v are to be defined by the boundary data of the problem
DT.
It suffices to consider a function ¢(z) coinciding with ALz (logx)™ on S..
We shall seek the functions ¢ and ¢ in the form

o(z) = 271 i B (log Z)m_k +e02”(log 2)™

k=0

W(z) = P Z i (log Z)m”€ + 992" (log 2)™
k=0

for v # 1. There exist By, Y&, €0 and dg such that kp(z)—z¢'(2) —1(2) restricted
to Sy is equal to 2uAyz” (log z)™ plus terms of the form cyz'(log x)7, admitting
the estimate O(z”(logz)™1).
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We substitute expansions of ¢ and 1) in powers of x along S+ into the equation

5 (e(2) = )~ V) = ale), z=atiyes.

Comparing the coefficients in z”(log z)™ and z“~!(log )™ we obtain the system

{ (WL (0) — K" (0)) (v — 1)(Rbo + (v — 3)Fo + 70 = dyu( A — AL)
KBy — (v — 1)%—%:0

with respect to Gy and vy. Let us choose ¢y arbitrarily. Then ¢y is defined by
the equation
Key — VEg — Op = p(Ay +A)
i .
— LRLO) + R(O)w — (b + (v~ 3) +70)

If Oy are given, then ~y, (k > 1) are found from the chain of equations

KB — (v —1)B =y — (m—k+1)B_1 =0.
In the case v = 1 we seek the functions ¢ and v in the form

m+1

o(z) = Z Br(log Z)er_lC + e0z(log 2)™,
k=0
m+1

Y(2) = > w(logz)™ T + §oz(log 2)™ .
k=0

The coefficients 3y and vy are found from the system
{ ’160 - % = 07
i(m 4+ 1)(KL(0) = K2(0)) (Ko — o +70) = 2u(Ay — A_).

Further, we choose ¢ arbitrarily and find ¢y from the equation

e — 20— By = (m+ 1) + Ay + AL) = S(1(0) + 57.(0)) (6o — o+ ).

Given [, we find 7, (k > 1) from the chain of equations
Hﬂk—%: (m—i—l—k)ﬂk_l.

(ii) By u™™ we denote a vector-valued function equal to g, on S\{O} and
satisfying the estimates

uM (2) = O(|z|"*1Hv=2), VR (2) = Ol %), k=1,....,n+2.

Let the vector-valued function u(® be the unique solution of the boundary value
problem

Au® = AU i Q) u® e WHQ). (8)
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After the change of the variable z = (7! (¢ = £ +1n), equation (8) with respect
to U (¢,n) = u(2)(|<%, — ) takes the form
L(9,0,) UD = A*U® + L(0,0,) UP = FY in A,

where a curvilinear semi-infinite strip A is the image of Q, L(0t,0,) is the
second order differential operator with coefficients having the estimate O(1/¢)
as £ — +o0, and VEFW(¢) = O(|¢| v 27%2) k=0,...,n.

Let p be a function from the class C§°(R) vanishing for £ < 1 and equal to 1
for £ > 2, and let p,(&) = p(§/r). Clearly,

E"L(0, 0y) U = AU + R(8, 0,) U,

where R(0g, 0,) is the second order differential operator with coefficients admit-
ting the estimate O(1/£) as & — 400. Therefore the boundary value problem

AT? 4 p,U? =F2 in A, UP =0 on 9A,
where
FO(¢,n) =¢"FO (¢, n) and VEFO(&n) = O(E > "9, k=0,...,n,

is uniquely solvable in W21 (A) for large r. From the local estimate

1T yyms2 ange-1<eesnyy < COHS‘L(HXF@)HWQ”(A) + HXU(2)HL2(A)) . 9)

where yx belongs to C5°(¢ —2,£+2) and equals to one in ({—1,£+1), and from
the Sobolev embedding theorem it follows that the vector-valued function U
and its derivatives up to order n are bounded as & — co. We set

U (&, m) = "UD(En) and VUD(E ) = O(E™), k=0,....n.
Clearly, U® belongs to the space Wi (A) and satisfies
£(0,0,)0 = FO)

for £ > 2r. Using a partition of unity and the same local estimate we obtain
that U® — U®) € W) N W32 (Ay,), where Ay, = AN {€ > 2r}).

Let D(0, 0,)) denote the differential operator A* continuously mapping W21 5N
W352(I0) into Wy (IT), where IT={(&,7) : =+, (x)/2<n < —K" (x)/2}. Eigen-
values of the operator pencil D(ik, 0,) are nonzero roots of the equation

o’k? = k(sinh ak)?,

where o = (+/L(0) — x”(0))/2 and k = (A + 3u)/(A + p). Since the operator
D(0¢, 0y) is the “limit” operator for L£(0¢, d,) and since the real axis has no
eigenvalues of D(ik, 0,), there exists 3 > 0 such that

U —U® e Wpi2n Wy 4(A)



580 V. G. MAZ'YA AND A. A. SOLOVIEV

(cf. [5], [8]). Now, since U® = U®) + (U® —U®) it follows from the Sobolev
embedding theorem that

VkU(Z)(f,n) =0([¢™) for k=0,....n

Therefore from (i) and (ii) we find that the function u = u, + u™® + u® is
a solution of the problem DT and has the required representation (7) with
ug = u +u®. O

Corollary 1.1. Let g have the following representations on the arcs Sy:

n+1
Z q (k) k—I—u ( n+2+1/)’ U _1’

with real coefficients qf). Then the functions ¢, and ¥, in (7) have the form

n+1

on(z) = Boz ™" + (Bro + P log 2) + Z B2t
k=2

n+1

Un(2) =702+ (110 + 1 logz) + > 2!
k=2
forv =20,
n+1 n+1
©on(2) = (Boo + Bolog z) + Z Bz, Yn(2) = (0,0 + 70,1 10g 2) + Z V2"
= k=1
forv =1, and
n+1 n+1

Zﬁ Zk‘-I—l/ 1’ Q,Dn Z,y Z/c—f—l/ 1

otherwise.

Theorem 2. Let Q2 have an inward peak. Suppose g is an infinitely differen-
tiable function on the curve S\{O} and its restrictions to the arcs Sy have the
representations

g+(2) =" QY™ (log 2)2*t + O™ 129), v > —1,

where Qg) are polynomials of degree j and € is a small positive number. Suppose
that these representations can be differentiated n + 2 times. Then the problem
Dt has a solution of the form

u(z) = 1

2 [5(n(2) + 0:(2)) = 2(24(2) + ¢L(2))

— W) + 6:(2))] + u0(2). (10)
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where Viug(z) = O(|z["TM+1==2) ¢ = 1,... . n. The complex potentials p,,
Un, ©s and P, are represented as follows:

n

(Pn(z) _ Z ngﬂ)(log Z) k+1/’ wn Z P(k+2 lOgZ k+1/’
k=0 k=0
p P

0e(2) = D Rom(log2)z™2 ¥.(2) = Y Rym(logz)z™2.

—_

1 m=

3
I

Here Péj), Pqij) are polynomials of degree j, Ry, Rym are polynomials of
degree [((m —1)/2], and p =2(n + [v] + 1).

Proof. We are looking for a displacement vector u,, such that the vector-valued
function g, = g — u, on S\{O} belong to C*°(S\{O}) and V*(g,)+(z) =
O(z" 37k for k = 1,...,n+2. We use the method of complex stress functions.
It suffices to take g(z) equal to Aiz¥(logz)™ on Si. As in Theorem 1, we
introduce the potentials

o(2) = Bz (log 2)™ and ¥(z) = 72" (log )"

for v # m/2, m € Z such that kp(z) — 2¢/(2) — ¥(2) on Sy is the sum of
211ALx” (log )™ and terms of the form cira’(logx)?, admitting the estimate
O(z"(log z)™~1). We substitute the expansions of ¢ and ¢ in powers of x along
Sy into the equation

1
2

The coefficients 3,, and 7, are found from the system

Kﬁm - Vﬁim_fyim: 2/LA+
647;7”//{ﬁm _ Vﬁim_’yim _ 2#627;7”/14_ )

5 (kp(2) —2¢/(2) = U(2)) = g(2), z=a+iy€S.

If v = m/2 we seek the functions ¢ and 1 in the form

o(z) = (ﬁmvl(log 2)™ 4+ B..0(log z)m)z”
Y(z) = <7m71(log 2)™ M 4 5,,0(log z)m)z”
In this case 3,1 and 7,1 are found from the system
/{ﬁm,l - Vﬁm,l — Tm,1 = 0,
Ay — (—1)mA_
m(m+1)

’iﬁm,l + Vﬁm,l + Tm,1 = Z,u

Finally, we choose [3,,, o arbitrarily. Then 7, is defined by the equation

/{ﬁm,o - Vﬁm,O - Ym0 = 2MA+ + (m + ]-)ﬁm,l .
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(ii) Let u™™ be a vector-valued function equal to g, on S\{O} and admitting
the estimates

uM(2) = O(]2]""*3) and VFuV(2) = O(|2|"™*27%), k=1,...,n+2,
in a neighborhood of the peak. By u® = (u\”, u?)
the Dirichlet problem

A*u® = —A*D in Q, u? e Wzl(Q)

we denote the solution of

Let A be the image of 2 under the mapping (r,0) — (t,0), where r, 6 are polar
coordinates of (x,y) and t = log(1/r). The vector-valued function U®)(t,6)
with the components

u§2) (e7*,0) cosf + u§2)(6_t, 0)sinf and ugz)(e_t, 0) cos O — u?)(e_t, 0)sind,
is a solution of the equation
AU L KUP = FO in W}(A),
where FU(t,0) = O(e~"*+*2). Here K is the first order differential operator

K < “A+2u =+ 3;0(6/80))
— \(A+31)(0/00) — '

From the local estimate
1T yms2 angeo1<e<esny) < COHSt(HXF(”HW;(A) + HXU@)HLQ(M) , o (11)

where x belongs to C5°(¢ — 2,¢ + 2) and equals to 1 in (£ —1,¢ + 1), it follows
that U® e W2 n WL (A).

By D(0y, 0p) we denote the operator A* + K continuously mapping Wjﬁ N
W3 3*(I1) into W35(I1), where II = {(£,0) : 0 < § < 2m,¢t € R}. Eigenvalues
of the operator pencil D(ik, dy) are the numbers k = il/2, where ¢ € Z, ¢ # 0.
The multiplicity of each eigenvalue is equal to 2 and the maximum length of
the Jordan chain for each eigenvector (multiplicity of eigenvector) is equal to
1. Therefore, the strip 0 < Imz < 3, where § € (n+ [v]+ 1,n+ [v] 4+ 3/2),
contains p = 2(n + [v] 4+ 1) eigenvalues of D(ik, ).

Since F) € Wi'5(A), U? admits the representation (cf. [5], [8])

p
@) = 3 v 4w,

where V*) = (Vl(k), Vz(k)) are linear independent vector-valued functions satis-
fying (A* + K)V® =0 in Ag = AN {t > R} and vanishing on A N {t > R},

k) ¢ W;EQ(AR) and W ¢ W;EQ(AR). Making the inverse change t = —logr
we obtain

chv (r,0) + wh (r,0),
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where v®) (r,0) = V™ (log(1/r),0) - ¢ and ViwD(r,0) = O(r"+M+1=4) for
¢ =1,...,n. Using the method of complex stress functions and repeating the
above-mentioned arguments we find

P 1
S (z) = o [iu(2) = P - T + (),
k=1

where Vi@ (z) = O(|z["+H1=4) for ¢ = 1,...,n and

©.(2) = €1z1/2 + 92+ (€30 + €31 log Z)Z3/2 + -+ Ry, 1(log Z)Zn+[l/]+1/2’
77Z}*(Z) = (5121/2 + 092 + (5370 + (53’1 log Z)Z3/2 4+ R¢7p_1(10g Z)Zn+[y]+1/2,

It follows from (i) and (ii) that the vector-valued function u = u, + u™ + u(?

is the required solution of the problem Dt with uy = uV +w® +w®. O

Corollary 2.1. Let g have the following representations on the arcs Si.:

n+1
g:l:(Z) = Z(O{Eﬁﬁl)logx + agfao))xk?-‘ru _I_ O(I‘n+y+2)
k=0

forv#m/2, m € Z, where &f’i) are real numbers. Then the functions p, and
Yy in (10) have the form

n

%<2) _ Z(ﬁ(k,l)logz + ﬁ(k,O))ZkJru,
k=0

n

%(z) _ Z(v(k,l)log 2+ ,y(k,O))zk—i-u
k=0

with %, kD ¢ C.

2.2. Asymptotic behaviour of solutions to the problem N ~. We intro-
duce the weighted space W*?(Q2¢) with the inner product

(Fiofohnpi= 3 [ p7420D° D" Fodudy,

la|<k Qe

where p(z) = (1 + |z[2). By W*#(Q°) we denote the completion of Cg°(€2°) in
Whe(Q).

Theorem 3. Let €2 have an inward peak. Suppose that h is an infinitely dif-
ferentiable vector-valued function on S\{O}, [¢hds =0 and let the restriction
of h to S1 admit the representation

n—1
ha(z) =) HF D (log 2)2* + O(a™79), v > -1,
k=0
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where Hj(tj) are polynomials of degree j and € is a small positive number. Let
this representation be differentiable n times. Then the problem N~ with the
boundary data h has a solution v bounded at infinity, satisfying the condition

V.P. [ Tvds = lim / Tvds =0, (12)
s {4€S, |a|>e}

and, up to a linear function o + icz with real coefficient ¢, represented in the

form
o(z) = ;M [Knl2) = 22 (2) — Bul2)] + v0(2) (13)

Here VFuy(2) = O(|z|"" %) fork=1,...,n—1,

p 220 m 22 v—2
#al2) Z(mzzjoﬁo, (og zo—z> ) <zo—z>
n+1 k+v—
+ > Pl (log =0 ) ( =0 ) : 2,

1 20 — R 20 — %
P 220 m 220 v—2
o) =i 2 (o 2 ) ) (225)
¥nl2) Z(mzzo%’ (OgZO—Z ) 20— 2
n+1 k+v—2
plet2) (1 220 ) ( Z20 )
* kz::l ¥ 08 20— 2/) \z0— 2 ’

where By m and Yo m are real numbers, p=1ifv #0,1,2,3, andp = 2 otherwise,
Pq()j) and Péj) are polynomials of degree j.

Proof. (i) We are looking for a displacement vector v, such that the traction
hn, = h — T, belong to C*°(S\{0}) and admit the estimates

Vk(hn)i(z) = O(x"+”_k_5), z =x+ iy,

on Sy for kK = 0,...,n. To this end we represent the boundary condition of
the problem N~ with the boundary data h in the Muskhelishvili form (see [16],
Ch.II, Sect. 30)

p(2) + 2¢'(2) +9(2) = f(2), z€5\{0}. (14)

Here ¢ and 1) are complex stress functions and f has the form

f(z)=—i / hds + const, z¢€ S,
(02)"
where by (0z) " we denote the arc of S connecting 0 and z. As f in (14), it suffices

to consider the function +ih 2" (logx)™ on Si. In a small neighborhood of
the peak, we are looking for complex potentials ¢ and ) in the form

3 ,0p I

p(2) =) (Z (mnjk)!ﬁ;’k(log Z)pk> =2

r=0 “k=0
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and
3 ,p

U(z) =) (Z (mni!k)n v (log Z)p'“) T2,

r=0 “k=0
where p = m if v # 0,1,2,3 and p = m + 1 otherwise. As in Theorem 1, we
find coefficients of ¢ and ¢ so that the restriction of ¢(2) 4+ z¢'(2) + ¥ (2) to Sy
is the sum of +ihyz” ! (logz)™ and terms of the form ciz’(logx)’, admitting
the estimate O(z ™ (logz)™™1).
The coefficients 8¢, 7oz & =0,...,m, are defined by the system

{ﬁe,k + (v =2)Bh, + 7 ox = Aok
Bor— =484,k =70k = Bok,

where Agr = Bor = 0 for £ = 0 and Ay = —567,#1, By, = ﬁgy,H if £k =
1,...,m. We find

Refl, =Revhe =0, k=0,....m,
and

(3—V)Imﬁ670 :Imﬂ),oa
B=v)ImfBo,=Imyg, +ImBg, ;. k=1,...,m.

The coefficients 8 ;, and v/  satisfy

5/1,0“‘(”_1)5/1,04‘7,1,0:07
v—3)(v—2
5/1,0 - (V_3)5/1,0—711,0 ( ) )

v—1
Hence it follows that

(k(0) + 72(0)) Im B0 -

(=3 —2)
4(v—1)

Ref1, = (k(0) + £7(0)) Im B,

Revig=—-vRef, and Imy|,=—(v—2)Im 3.
We set
Imvy},=ImpB],=0.

The coefficients 37 ; and v ; are found from the system

Bli+ =181 +7v11=-0B,
5/1,1_@_3)5,1,1_7/1,1:5,1,0
—3)(v—2

L =3 -2)

v—1

v —2v—1

(v —1)?

(K1(0) + K (0)Tm 35,  (19)

(£ (0) + £7.(0)) Im B0 -
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Summing up these equations we obtain
—-3)(v—2)

Refii = g’ Ay —1)

(+5(0) + £2(0)) Im B,

2_9, -1
T (R0 + R 0) T

Rey’l’1 = —y Reﬁ'L1 — Reﬁ’w.
From the first equation of system (15) we find

Im’Vll,l =—(v-2) Imﬁll,l - Im/6/1,0-

We set
ImBy, =Imyi; =0.
The real parts of 31, and v}, k = 2,...,m, are found from the systems
{ﬁak + (v — 1)ﬂ’1k +7/17k = A,
Bin— =3B — 71k = Bur,
where

Al,k - _6,17k—17

1
By = o1 (ﬁa,kq —2(v— 2)ﬁll,k—1 —7’1,k—1 - ﬂll,k—Q)

NCAURLAD)

(Tm B4y +(2v = 5)Im Bl

+(v—=3)(v—2) Imﬁgyk) :

Let Im B, = 0, k = 2,...,m. The coefficients Im 35, and Im 3, are calcu-
lated by the system

{ﬁ'270+uﬁ’270+’y'2,0=142,0, (16)
5/2,0 —(v— 2)5/2,0 - 7’2,0 = Bsp,
where
Agp = —;i/@’_’F(O)/{Z 0)(v—3)(v—2) Imﬁ{w,
. h—l— + h_ (V - 2)<V - 3) " " /
Bao = QV(EC{_(O) — 1" (0)) + 3 (k5(0) + £Z(0)) Im B 4
—2 -3 —4
= =2 IR () w00 0) + (20))) T
# DW= 0 0) 4w 0)) Re L.

v
System (16) is solvable if
(v—=2)(v—=3)(r+2)

3

(K1(0) = £7(0))*Im By = —8Im(hy + ). (17)
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We express Im 3, from (17). Summing up the equations of system (16) we
find Re 85, Then Rev} is defined from the first equation in (16)

Reh = —(v + 1) Re b,

We choose Im 3, arbitrarily and find Im 5, from the equation

1
(v—1) Imﬁ;’o + Imy’z0 = ini(O)mZ(O)(V —-3)(v—2) Imﬁfw.

The coefficients 35, and 75, are found by the equation

i 0k (0) (20— 5) Im B+ (v —3) (v —2) Tm B

5/2,1+V5'2,1 +751 = 5

We set
ImfBo, =Imyy, =0 and RefB); =Revs, =0.
Let 35, be chosen. Then 5, is subject to
1
(= ) Im B~ Ty, = RO (0)(20 — 5) I B

Finally, given 35, arbitrarily, we define 75, k > 2, recursively

1
Bt 1B 7 = iRt ()87 (0) (Im By +(20 = 5)Im By
+<I/—3)(V—2)Imﬂg7k).
We set
ImpBg, =Imvyg, =0 and Ref);, =Revyh, =0, k>2,

and choose Im 35, and Im~ '}, to satisfy

1
—(=DImfFy, —Tmyy, = SR (0)RZ(0)Im Fopy + (20 = 5) Im G y).

The exceptional cases v = 0,1, 2,3 can be treated similarly. We set

zz0 \PF 2z \"Hv 2
)= 5 (S o o2 ) (22)
r=0 \ k=0 0 — <
p—k 220 r+v—2
(1 , Q°,
0= (S 7)) ()

where zj is a fixed point of Q2. We choose 3, and v, so that in the decompo-
sitions of ¢, and 1), along S the coefficients in 2 *(logx)™, k = 0,1,2, m =
1,...,p, coincide with the corresponding coefficients in the decompositions of

¢ and .
The displacement vector v, is defined by

vn(2) = (2p) 7" (Kpu(2) — 20, (2) — () -
Then Vv, = O(]z|72) as |z| — oo and satisfies V.P. [ Tv, ds = 0.
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(ii) Let f,1 and f, 2 denote the components of the vector-valued function f,

on S\{O} defined by

fa(2)=—i / hy ds + const.

(02)°

We set ‘

1

An = T4 fn,ldx + fn,Qdy

27

and consider the function
n+[u]+1 k
Xn(2) = An (log<1—z)+ > Ck< = > ) z € Q°,
20 k=1 20 — %

where 2 is a fixed point in Q2 and the coefficients ¢, are chosen so that x,(z) =
O(|z|"*"+2) as 2 tends to zero. If by v{) we denote the displacement vector
v (2) = (1/2p)x(2), then To(Y) = i(9/0s)x,. For the traction h{l) = h,, —TvV

on S\{O} with the components hY and hYY) the principal vector Jg D (2)ds

and the principal moment [ [(m—xo)h%) (x,y)— (y—yo)hflll) (z, y)} ds with respect

to zo = (20, Y0) € 2 are equal to zero.

We need to construct a displacement vector v(?) with the given stress h{) on
S. To this end, we represent the boundary conditions of this problem via the
Airy function F'(z) biharmonic in Q¢ (see [16], Ch.II, Sect. 30). We have F' =b
and OF/0n = d on S\{O}, where the functions b and d belong to C*(S\{O})
and admit the estimates

b(p) = O(Ip|"™*""7%), d(p) = O(lp|™*"*"™%), p € S\{O},
because of their relation with h():
Fz) = [ @, =) () = (0 = 9)hi @e,y)lds, = = (2,y) € S\{O),

(02)"

—(2) = (/ hidds +C 5 (2) = / KW ds + Cs.

02)° (02)

(16)

Let Fi(z) in Q€ satisfy
Fi(p) = b(p), (0F1/0n)(p) = d(p) on S\{O},
and admit the estimate
VAR (2) = O(|z|" %) k=0,...,n+2, as 2 —0.
We can assume also that p~2A2F] € Ly(Q°). Then the boundary value problem
N’ Fy = —A’Fy in Q°, F, =0F,/0n=0 on S,

is uniquely solvable in W22(Q¢) (cf. [4]).
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We use the Kelvin transform setting

U(¢) = [CPF(1/¢), (=& +in€ A,

where A is the image of Q¢ under the inversion ¢ = 1/z. We have A?U = H in
A, where H(¢) = O(|[¢|™"*=3¢). As in Theorem 1, we can construct a vector-

valued function UY) € W2(A N {¢ > 2R}) such that VEUWD (€, 1) = O(&™"),
k=0,...,n, AU =Hin AN{¢ > 2R} for large R and U — UV belongs to
(W3 nWE2)(AN{E > 2RY).

By U (0, 9,) we denote the operator A? continuously mapping VV22 ﬁﬂWQEQ(H)
into W3'5?(IT), where IT = {(f, n): —kL(x)/2 <n< =K' (x)/Q} The eigenval-
ues of the operator pencil U(ik, 0,) are nonzero roots of the equation

(ak)? — (sinhak)® = 0,

where o = (k. (0) — x”(0))/2. Since the real axis contains no eigenvalues of
U(ik,0,), there exists a positive 3 such that

U—-UY e Wi nWis (AN {€ > 2R})

(cf. [5], [8]). Hence and from the Sobolev embedding theorem it follows that
U —Uél) and its derivatives up to order n have the estimate O ( exp(—¢ )) as & —

+00. Thus U = UM 4+ (U — UY) admits the estimate VFU (€, ) = O(|¢|1)
for k =1,...,n. Therefore the Airy function F'(z), equal to Fi(z) + Fy(z), has
the representation

F(z) = 0(2["™") and V*F(z) = O(|z]" ™), k=1,....n.
A displacement vector v® corresponding to F(z) has the form

v(2) = a+icz + 09 (2),

n

where ¢ is a real coefficient and Vkvff())(z) = O(|z|""?72). Since the gradient
Vu@ of the displacement vector v(?) is square summable in a neighborhood of
infinity, we have

TvPds — 0
|z|=Rn

for a certain sequence {R,}, R, — oo. This and the condition [¢hds = 0
imply

/ Tv® ds = 0.

S

From the first Kolosov formula

AF(2) = 4Re(0) (2)
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(see [3], Sect. 8.4) it follows that Re(¢(?)'(2), where ¢(?) is the complex po-
tential corresponding to v(?)| is square summable in a neighborhood of infinity.

Therefore

0
PP (z) =icz+ Y. bz ", ceR.
k=—0o0
The second Kolosov formula
O*F I?*F 9*F

a7 ?) ~ G ()~ 2 () = 2260 () + (U2 (2)

(see [3], Sect. 8.4) implies that the derivative of the second complex potential
Y@ (2) is also square summable in a neighborhood of infinity. Therefore we
have

DO Z 4

k=—00

Thus the displacement vector v(?) admits the representation

1

% (k4 1)icz + O(1).
Hence, up to a rigid displacement equal to (2u)~*(k + 1)icz, the constructed
displacement vector vff) is bounded at infinity. We remove this rigid displace-
ment term since it is a solution of the homogeneous problem N ~. Thus the
displacement vector v = v, + v + v is a solution of the problem N~ It has
the required representation (13) and satisfies condition (12). O

v (z) =

Corollary 3.1. Let the polynomials Hj(cl) satisfy
Im (H(0) + HY(0)) = Im ((9H /01)(0) + (9H /01)(0)) = 0.

Then the solution of the problem N~ has a finite energy integral and can be
represented in form (13) with

p+1
( Z ﬂl m 1Og

n+1 k+v—2
e o222 (2
+ kz::Z o og PO ,

m 220 v—1
(ZO — Z)

where B1m, Y1.m are real numbers, p=1ifv=
and Péj), PQEJ]) are polynomials of degree j.

< 220 >k+l/2
20— 2 ’

—1,0,1,2, and p = 2 otherwise,
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Corollary 3.2. Let h have the representation
hi(z) = hgtl)x_l/2 + hg)xlﬂ log x + hg)xl/Q + ...

on Si. Then the problem N~ with the boundary data h has a solution in the
class MM if and only if

Im (A" + M) =0, Im(h? +r?) =0,
1
RehVa_ + Reh9%1¥—-§ Im (n® +r®) = 0.

Theorem 4. Let 2 have an outward peak. Suppose that h is a C*-function
on S\{O} and its restrictions to the arcs Sy have the representations

n—1
ha(2) =) H(ik)(log )2’ + O™, v > -2
k=0

Here H(ij) are polynomials of degree at most j. Suppose the above representations
can be differentiated n times and

VP/h@zO.

Then the problem N~ with the boundary data h on S has a solution v bounded
at infinity, admaitting the representation

0(2) = = [k (pul2) + 2(2)) — () + 2L2))

2
~ (0n(@) + 9u(@) | + () (18)

up to a linear function a+1icz with real coefficient c, and satisfying the condition

/Tvds:().

Here VFuy(2) = O(|z["™=%), k = 0,...,n — 1, the complex potentials ©,, 1y,
have the form
(k+1) <log 22 ) ( 22 )"”*”
20—2/) \zp— 2 ’

-En
e

ZO—Z 0— %

where Péj) and Pdf are polynomials of degree j, and

m 22 2720 \F/2
D) (22
k=1

20 — R 0 —

m k/2
Z20 220

0= Z (e 25) (572)
¥i(2) k; v (log ——— ) (—



592 V. G. MAZ'YA AND A. A. SOLOVIEV

where R,y and Ry are polynomials of degree at most [(k —1)/2] and m is the
largest integer not exceeding 2(n + v) + 1.

Proof. We choose a displacement vector v,, such that h, = h — Tv, belongs to
C>*(S\{O}) and (h,)+(z) = O(z™*"). To this end, as in Theorem 3, we use
the method of complex stress functions. It is convenient to write the boundary
conditions of the problem N~ in the Muskhelishvili form

p(2) +2¢'(2) +9(2) = f(2), z€ 5.
Here
f(z)=—i / hds + const,
(02)"
where by (0z)~ we denote the arc of S connecting 0 and 2. It suffices to consider
a function f(z) of the form +ih z" ™ (logx)™ on arcs S+. We set

)= () (20 )",

zZ — 20 Z— 20
220 v+1 220 m
zZ— 20 zZ— 20

for v #n/2, n € Z, where 2 is a fixed point in (.

We show that there exist (3, and 7, such that the function p,(z)+zp,'(z)+
¥, (z) on Sy is equal to the sum of +ihyz”*!(logz)™ and a linear combination
of the functions cyz’(logz)’, admitting the estimate O(z" " (logx)™ ).

As in Theorem 2, we decompose ,, and 1, in powers of x along S.. Coeffi-
cients (3,, and v, in 2" (logx)™ are found from the system

B+ (V4 1) B+ = iy
™ By A+ (V4 1) B + Y = —ih_e* ™.

In the case v =n/2, n € Z the functions ¢, and v, are defined by

22 m+1 22 m 22 v+1
)= (s (e 2 (22 ) (22
Z— 2 Z— 20 Z—Z0

o m+1 22 m 22 v+1
1= (i 2 22 ) (22
zZ— 20 zZ— 20 zZ— 20

where zj is a fixed point in 2. The above coefficients 3,1 and v, are found
from the system

Bm,l + (l/ + 1)ﬂm,1 + Ym,1 = 07

hy + (—1)™h_ -
2r(m + 1)

ﬁm,l - (V + 1)6m,1 - TYm,1 = —
Given (,,0, we find 7,, 0 by the equation
ﬁm,O + (V + 1)5771,0 + '7m,0 - Zh-‘r + (m + 1)ﬁm,1 .
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After the complex stress functions ¢,, and 1, have been found, the displacement
vector v,, is defined by means of

vn(2) = 20)7" (ron(2) = 207,(2) = Un(2)) -

Since V.P. [¢ hds = 0, we have HJ(FO) = —HY for —2 < v < —1. Therefore

lim / T, ds = 0.

e—0
{q€Qe, lql=<}
Hence we arrive at V.P. [¢Tv,ds = 0.
(ii) As in Theorem 3, we can construct the displacement vector v!) so that

vV (2) = O(|z|" M) as 2 — 0

and v{!) vanishes at infinity. Furthermore, the stress function h{") = h,, — Tv(V
on S has the zero principal vector and the zero principal moment with respect
to any point zy € €.

We find a displacement vector v2) with given h(!) on S. To this end, we
express the boundary condition of this problem via the Airy function F' in Q°.
Let F' = b and 0F/0n = d on S. Taking into account the relation of b and d
with 21 we have d(z) = O(|z["*1*"), b(z) = O(|z|"*?*¥) for z € S\{O}.

We represent the Airy function F(z) as the sum Fy(z) + Fy(z), where F(z)
is chosen so that it vanishes at infinity, satisfies the conditions

Fi(z) =b(z), 0Fi(z)/On=4d(z) on S

and admits the estimate V¥ F(2) = O(|z|""?"7%), k = 0,...,n+2, in a neigh-
borhood of the origin. Then F(z) is a unique solution of problem

N*Fy = —-A’F in Q°, F, =0F,/On=0 on S

in W22(Q°) with p(z) = (14 |2[)? (see [4]).

We make the change of variable ¢ = log(1/r), r =
age of the domain Q¢ under the mapping (r,0) —
coordinates of (z,y). The function U(t,0) = Fy(e™*

) 2 92
(m”) + 55 W+892]U(t,9)

= H(t,0) in AN{t> R}

|z|. Let A be the im-
(t,0), where r,0 are polar
,0) solves the equation

L(0y, 09)U(t,0) =

[ 0*  0?

and satisfies U = OU/On = 0 on OAN{t > R}, where VFH (t,0) = O(e~("2+1)t),

k=20,...,n—2. From the local estimate

U lwp+2ane-1<g<es1y) < COHSt<||XH||W;2(A) + ||XU||L2(A)> ,
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where x belongs to C§°(¢ — 2, +2) and equals 1 in (¢ —1,¢+1), it follows that
U belongs to W3, N W3 (AN {t > R}). By U(9,,dp) we denote the operator
of the boundary value problem

U0, 9,)U =F in TT={(t,0): 0<0 <21}, U=(3/0n)U =0 on III

continuously mapping W32 N W2(I) into W5 2(I1). Let 3 satisfy n + v +
1 < 8 < n+wv+3/2. The operator pencil U(ik,dp) : W5+? N W2(0,2r) —
W32(0,27) has p = 2n+[2v]+2 eigenvalues of the form k = i¢/2, ¢ € N, in the
strip {k : 0 < Im k < }. The eigenvalues have multiplicity 2 and multiplicity
of each eigenvector equals 1. Therefore the solution U admits the representation

(cf. 5], [8])

p
U=Y clUs+ W.
k=1

Here Uy, are linearly independent, each Uy satisfies the equation LUy = 0 in the
domain A N {¢ > R}, vanishes on A N {t > R} and U, ¢ W3'5*(AN{t > R}),
in addition, W € W34*(An{t > R}).

Making the inverse change of variable we obtain

F(r,0) = zp: crUx(—logr,0) + O(r”)

k=1

and this equality can be differentiated n times. By the method of complex stress
functions the displacement vector vf) corresponding to F'is given by

W) = 5 R () = 0 ~ 0] + wa),

where w(z) = a +icz + O(|z|"™) with real a and this equality can be differ-
entiated n — 1 times,

@*(Z)IiRW (log “%0 )( 22 >k/2

20 — %

i
I

and

0= 35 s 125 (220)""

k=1 0— % zZ0 — R

Here m is the largest integer not exceeding 2(n + v) + 1. As in Theorem 3, we
can prove that

/T’u,(f)ds = 0.
S

Hence the displacement vector v = v, +v) +-v(?) is a solution of the problem
N~ with the boundary data h and admits the required representation. [
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Corollary 4.1. Let h have representations
n—1

he(z) =3 WP 1 0(a"), x e Sy,
k=0

forv > —1,v #1L/2, € Z. Then the functions ¢, and 1, in (18) have the

form o .
Zﬁk( =0 > , Un(z Z’Vk( =20 >+y.

Z — 20 zZ— 20

2.3. Properties of solutions of the problem D~.

Proposition 1. Let Q2 have an outward peak and let a vector-valued function
g satisfy on Sy the conditions

g

dsk
Then the problem D~ with the boundary data g has a solution u bounded at
infinity and subject to

[ lal|Vu(@)]ds, < +o0, u(z) = O(|]") (19)
S

(2) = O(|z]""%), k=0,1,2.

if —1<y< <0, and to
[ 1Vu(@lds, < 00, u(z) = O(l2[") (20)
S

if 0 <~ <min{f,1/2}.

Proof. As in Theorem 2, we can construct a solution u satisfying either (19) or
(20) and such that u belongs to W'*(|z| > R) and is square summable in a
neighborhood of infinity for sufficiently large R. We check now that « is bounded
at infinity. By the first Kolosov formula Re{¢'(z)} is a linear combination
of the components of Vu. It follows that Re ¢'(z) is square summable in a
neighborhood of infinity. So, ¢(z) has the decomposition

0
p(z) =icz+ Y bz’ ceR.

k=—o00

From the equality

u(z) = (21) 7 (r5(2) — 2¢'(2) — (%))
it follows that ¢(z) is also square summable in a neighborhood of infinity. There-
fore 1(z) can be presented in the form

0
Z dkz_k
k=—0oc0

Finally we have
u(z) = i(2p) "Nk + 1)ez + O(1).
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Since the function p~'u~ is square summable in a neighborhood of infinity,
¢ = 0. Consequently, u is bounded at infinity. O

Proposition 2. Let Q) have an inward peak and let g on S+ satisfy the con-
ditions
g
sk
Then the problem D~ with the boundary data g has a solution u bounded at
infinity and satisfying

(z) = O(|=]°7%), k=0,1,2.

[ lu(@)lds, < o0, [ lal|Vu(g)lds, < +oc. 21)

Proof. Let uY) be an extension of g onto Q¢ equal to zero outside a certain disk
and satisfying A*u™ = O(|z|?~3) as z — 0. We look for a function u® such
that

A = AW in Q¢ u® =0 on S\{O}. (22)
After the change of variables z = 1/¢ (¢ = £ + in) the equation in (22) takes
the form

AU + L(0¢,0,)U = F in A, (23)
where U(&,1) = u@(£/|¢|%,1/]¢|?), A is the image of Q and L(0, ,) is the sec-

ond order differential operator with coefficients admitting the estimate O(¢=7~Y).
Since F' € Ly(A), problem (23) has a unique solution in the space WZ(A). Hence
u = uV) + u® satisfies conditions (21). O

3. INTEGRAL EQUATION ON THE CONTOUR WITH AN INWARD PEAK

3.1. Integral equation for the problem D*. We shall use the following
lemma.

Lemma 1. Let Q have an inward peak and let o = max(|&(0)], [_(0)]).
Then, for any o = (0(1) ol ) from N,

(Wo®) ()= (o =0 +

2 )\+2,u

(Wo®) (2)=7 ; (o9 —0(_2)) A o

with the upper sign if
ze€{(z,y): ke(x) <y <ax, z€(0,0)},
and with the lower sign if
z € {(x,y) L —ar? <y <k (), 1 € (0,5)} :

For the proof see [9]. Now we state a uniqueness theorem.
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Theorem 5. Let ) have an inward peak. The boundary integral equation
27l g —Wo + 1Ay + oAy + c3 A3 =0 (24)
has only the trivial solution in the Cartesian 9 x R3.

Proof. Let a pair (o,c) with ¢ € 9, ¢ € R?, be a solution of equation (24).
Consider the displacement vector

WO'(Z) + Cl.Al(Z) + Cg.AQ(Z) + Cg.Ag(Z), z € Q, (25)

with zero boundary value on S\{O}. We show that this vector-valued function
is equal to zero in Q.

We use the change of the variable ¢t = log1/r and denote by Wi(z), Wa(z2)
the components of (25). Then U(t,#) with the components

Wi(e ™, 0)cost + Wy(e™,0)sind, —Wi(e ", 0)sind + Wy(e™,0)cos
is a solution of the problem
L(0y,0)U = (A*+ K)U=01in A, U=0 on JA,

where r, § are polar coordinates of (x,y) and A is the image of Q. Here by K
we denote the first order differential operator with constant coefficients

K ( A2, —(\+ 3;06/80)
— (A +3w)0/00 — '

Since the potential Wo(z) grows not faster than a power function as z —
0, there exists § < 0 such that U € Lo(A). By the local estimate (11) we
obtain that U belongs to VV22 g N Wgﬁ(A) The eigenvalues of the operator
pencil D(ik,dy) : W2 N W(0,21) — Ly(0,27) are the numbers if/2, where ¢
is a nonvanishing integer. According to [5], [8], the operator L is invertible if
B#il)2, £ =+1,£2,.... Since U € ker L, from its asymptotic representation
of U (cf. [5]) it follows that either U(t,0) = O(e~*/?) or U(t, ) grows faster than
et/(?+€) (2 > 0) as t — +oo. In the first case the energy integral of (W, Ws) is
finite and therefore it is equal to zero in 2. Now we shall show that the second
case is impossible.

Let x be a C*°-function equal to zero outside of a small neighborhood of the
origin and y = 1 near the origin. The components of yo will be denoted by
oW 2. Since the boundary values of Wo are bounded on S\{O}, by Lemma
1 we have

2m(A +2p)

1
e R NN
3 (0 =) @ 27\ + 201)
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These equalities imply that the functions (asrl e )) and (af) — o )> are p-

summable for any p > 1 in a neighborhood of the origin. Therefore Wo(z) is
also p-summable for any p > 1 along any ray

{(z,y) :x=at, y=p0t, t >0}

near the origin with a < 0. Since A; = O(1), j = 1,2,3, our goal is achieved.
Hence we have

WO'(Z) + ClAl(Z) + CQ.AQ(Z) + 03./43(2) =0 in Q.

Let u~ be a solution of the problem D~ with the boundary data o. We notice
that
VTu —Wu~ =u (c0) in Q.

Here by V7(z) we denote the simple-layer potential with a density 7 and with
the kernel

D(2,0) — T(2,0), g€ S\{O}.
Since
3
Wu ™ = — Z CkAk ,
k=1

by substituting Wu™ into the previous equality, we find

VTu™ + 23: A =u"(00) in €.
k=1
The limit relations for the simple-layer potential imply
T (VTu_ + éckflk + ;u_> =0 on S\{O}.
Let w, be the solution of the problem
Nw, =0 in Q°, Tw, =TA; on S\{O}

constructed in Theorem 3. Since the boundary function T'4; does not satisfy
the conditions of Corollary 3.2, it follows that the solution w, does not belong
to 9. Then we have

VTu (2) = —u (z) — kz_: crwy, (2) + ug(z) in QF (26)

where ug is the displacement vector satisfying Tuy = 0 on S\{O}. We
substitute (26) into the identity

Wu™ —VTu  =u" —u (c0) in Q°
and obtain

Wo(z) =uo(z) — kz_: crwy, —u (00), z € Q°. (27)
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From the jump formula for W it follows

o(p) = —uo(z) + > ckwy, +u (00) — kz_: Ay

k=1

Since the density o belongs to 9, according to (27) the function wy, defined
by wo(¢) = uo(¢™1), and Vwy grow not faster than a power function in the
image A of Q°. Therefore wy € W5 5(A) with a small negative 3. Since Vug(z) =
O(|z|7) as z — oo and T'ug = 0 on S\{O}, it follows from Betti’s formula that

Tugds =0 for O0<z<9.
{r—(2)<y<ri(a)}
We represent the displacement vector ug via the Airy function U in the domain
Qs =Q°N{|z| < d}. Since
ou  oU

%—l—za—y:—i / Tugds + const,

(02)"
where by (0z)" we denote the arc of S connecting 0 and z, and since (OU/dx) +
i(0U/0y) is defined up to a constant term, we assume that
ou  oU
—+i—=0 Sy.
o7 +1 oy on O4

Therefore U is equal to the constants ¢y on S1. We use the Kelvin transform

W(CQ) = [CPU(L/C), ¢ € As,

where As is the image 25 under the mapping ¢ = 1/2z. The expressions W (()
and V*W((), k = 1,2, grow not faster than a power function. Therefore,
W belongs to VV22 5(As) with 3 < 0, W is biharmonic in As and satisfies the
conditions

W(C) = cx|C|?’,  (OW/dn) = c+(0[¢|*/dn) on dA; N {|¢| >0}

From the local estimate
HW||W23(Am{£—1<Re4<€+1})
< const | [XW 72 0, + IX@W/0m) 520 + KXW hzaag |- (28)

where a cut-off C* function x equals 1 on (¢ — 1,/ + 1) and vanishes outside
(0 —2,0+2), it follows that W belongs to W3 5(As).

Since V2wj is represented as a linear combination of derivatives up to the
third order of W with coefficients growing not faster than a power function, we
have wy € W3 5(As).

Let N (0, 0,) denote the operator of the boundary value problem

Au=fin T={(&n): €€ R,—[(0)/2 <n<—r"(0)/2},
Tu=h on{(&n):n=—rL(0)/2},
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continuously mapping W5 4(IT) into Ly 3(IT) X W;/;(@H). It is well known that
the eigenvalues of the operator pencil N (ik,d,): W3(—~r'.(0)/2, =" (0)/2) —
Lo(—r(0)/2,—£"(0)/2) x R? are found from the equation

k20® = (sinh k o),

where a = (/@"J’r (0) — k" (O)) /2. One can check that the dimension of the space

Ker N(0, D,)) equals two. The vector-valued function ul? (n) = (0, 1) is the basis

D) =

(1,0) has multiplicity 2. The generalized eigenvectors corresponding to u§0)7 ugo)

are

element of multiplicity 4. The second linear independent eigenvector u

N
un) = (=i =5 i (@x+a),0).

@ 1 A, 1 A

— (0 -= _ - _
(3) B _£3A+4,u 3_3' 3N+4p
) = ( o e ra) T

A+
— 2 m aLG_T), 0),

u () = (o, - n) |

A+ 2u

The operator pencil N (ik, 9,) has no other eigenvalues on R.
Therefore ug(z) is represented near the origin in the form

uo(z) = Z_: dpZ1(2) + ui(2)

(cf. [8]). Here Zj are linearly independent solutions of the equation A*u = 0 in
a vicinity of the pick in 2¢ satisfying the boundary condition 7T'u = 0 near O on
S. The last term u; and its gradient exponentially vanish as z — 0. Three of the
vector-valued functions 7, 1 < k < 6, say Z1, Zs, Z3, form rigid displacements.
The others are represented in the form

Zy(2) =271+ 0(1), Zs(2) =iz 3 + O(z™?),
Zs(z) =iz~ + O(x7?).

Since the functions wy ,w, , w3, Z4, Z5, Zg have different orders of singularities
and since o € M, we have

01262263:d4:d5:d620.
In particular,

up(2) = diZ1(2) + doZo(2) + d3Z3(2) + u1(2).
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Hence it follows that uy and its gradient Vuy are bounded as z — 0. On the
other hand, according to (25) we have

up(z) — up(00) = O(|2| ™),  Vue(z) = O(]z]7?) as z — oc.

By the classical uniqueness theorem (cf. [16], Ch.I, Sect.20) it follows that
up(z) = up(00), z € Q°. Thus

o(p) = —up(p) + u” (c0) = const on S\{O}.

Since the nonzero constant does not satisfy the homogeneous equation (24), it
follows that 0 = 0. O

Consider the equation
270 — Wo — 1Ay — oAy — c3As = —g (29)

on S with respect to a density o and a vector (cp,cg,c3). The functions
A1, Ay, A3 have been defined in the Introduction.

Theorem 6. Let 2 have an inward peak and let g belong to the class M,
v > 3. Then equation (29) has a unique solution {0, cy,co,c3} in M x R3, and
the density o can be represented in the form

o(z) = (a(log r)* 4 Blogx + 7) Y2+ 0(@™F) on Sy,
with small positive €.
Proof. Let Up, i, m =1,...,4, and k = 1, 2, denote the solutions of the problem
Auw=0in QNB,, u=0 on B.NS\{O}

corresponding to the eigenvalues k = il/2, ¢ € Z, ¢ # 0, of the operator pencil
introduced in Theorem 2. Here B, = {|z| < r} with small positive r. We
normalize the functions U, in the following way:

Un(z) = QL [2/§Im 22— =121m z] -

L
-1 —a_ —eT
n (/{ )(Oz+ (04 ) 2/<;Im(23/210gz) —3z1/210g21m o —
STK L
o — Doy ——
—221/21m z] —1 (”"2>O‘+23/2 +0(2"(log 2)%),
I

1 R
Ura(2) = o [2/4; Im 2'/% + 2=1/2Im z] —

(5t D(ow—a)
8TRLU

2k Tm (2**1og 2) + 321/21og 2 Im 2z +

" (K + Doy

G PO log ),

49212 z}
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(k= Diay —a)

-1
Un(z) =1 Hlﬁ Im z+i pE 2 Im (2% log z) —
_ _ (k= 1Day — 37..2
—4zlog zIm z — 2z Im z] —i —— 224+ 0O(z" log” 2),
i
1 —a 1
U (2) = _hT Im z — (ay —a)(w+1) 2 Im (2% log 2) +
W ATk
o 1 .
+4zlogz Im z + 2z Im z] + (r+Lax 22 + O(2*(log 2)?),
i

Usi(z) = ;M [2%; Im %2 — 321/2Im z} + 0(2°?1og 2),

1 _
Uss(2) = “ [2/{ Im %% 4+ 321/2Im z] + 0(2*?1og 2),

Un(z) = /Zi [HIIH z* —2zIm z] +O0(2°log 2),

1
Ugp(2) = . {nlm 22 +2zIm z} + O(2*log 2),

where ax = £/L(0)/2. According to Theorem 2, the solution of the problem D*
with the boundary data g admits the representation

ut(z) =Y z_: At Upnie(2) + W (2)

m=1 k

(cf. [5], [8]), where coefficients d,, ; are defined uniquely and
W(z) = O(|z]*"), e>0.

We set
cp =dy1, ¢ = (Qdig +d31)/(Q* + 1), c3= do.

Then the displacement vector

3
ut(z) — Z crAg(2)
k=1
is the sum of a linear combination of the functions

Ura(2) — QUs1(2), Un (2), Us2(2), Un(2), Usz(2)

and the function Wj(z) admitting the estimate O(]z|*™¢). According to Theo-
rem 3 (see also Corollaries 3.1 and 3.2), the problem N~ with the boundary
data

3
T <u+ — Z Ck.Ak>
k=1

has a solution whose trace on S\{O} is in the class 9.
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Now, when the vector ¢ = (¢, ¢9,¢3) is chosen, by UT and U~ we denote
solutions of the problems Dt and D~ with the data

3
g — ZCkAk on S\{O}
k=1

Then TU™T admits the estimate O (afl/Q) on S\{O}. According to Proposition
2 the displacement vector U~ (z) is bounded at infinity and

/\TU*(p)\ymdsp < +00.
S

Hence (cf. [7], Ch.5, Sect. 1) we obtain

g(p) — zi:ck.Ak(p) =V (TUJr — TU*> (p) + U(0), pe€ S\{O}.

Let V'~ be a solution of the problem N :
V>=01in Q° TV =TU" on S\{O}, V(<) =0.

Applying Betti’s formula to w =V~ — U~ 4+ U~ (c0) in Q¢ and using the jump
relation for Ww we obtain

w(p) — 2Ww(p) = — 2V (TU+ _ TU*) _

= —QQ(p) +2 Z ckAk(p) + QU_(OO)a pE S\{O}

k=1

Hence the function

o(p) = w(p) —U (00) =V~ (p) —g(p) + > cxAc(p), p € S\{O}

k=1

with chosen ¢q, ¢, 3 is a solution of equation (29) in the class 9. According to
Theorems 2 and 3 o has the required asymptotics and according to Theorem 5
the obtained solution (o, ¢) is unique. [

3.2. Integral equation for the problem N~. We say that a function v(2),
z € §, belongs to the space Wy outside the peak if for any Cg°-function x such
that O ¢ supp k one has kv € W} (Q).

Lemma 2. Let Q) have an outward peak. If a vector-valued functionv(z), z €
Q, belongs to W21 outside the peak, satisfies AN*v = 0 in a vicinity of the peak,
and v(z) and Vv(z) grow not faster than a power function, then there exists
B < 0 such that v(z) and Vv(z) admit the estimate O(exp(ﬁ Re %)) as z — 0.
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Proof. The function w defined by w(¢) = (kv)(¢™!) satisfies (A* + L)w = 0 in
A={¢:¢"'€Q}andw = 0on dA. Here s belongs to C5°(R?) and is equal to 1
in a neighborhood of the peak and L is a second order differential operator with
coefficients vanishing as ¢ — oo. For small negative 3 we have w € W; 5(A).
Hence and by the local estimate (9) it follows that w € W5 530 W3 5(A).

The operator D(0, d,) of the boundary value problem

Nu=f in II= {(5,77) c—k1(0)/2<n < —K’L(O)/Q}, u=0 on OII

continuously maps W5 ﬂng 5(I) into Ly s(IT). The eigenvalues of the operator
pencil

D(ik,d,) : W3 N W;(—H’J’F(O)/Q, —k"(0)/2) — La(—£/(0)/2, —£"(0)/2) .
are nonzero solutions of the equation
o?k? = k (sinh k o)

where a = (+'[(0) — £”(0))/2 and kK = (A +3p) /(A + p). We assume that there
are no eigenvalues in the strip {k : § < Im k < —(}. Therefore w belongs to
W3 _sN W5 _5(A) (cf. [5], [8]). The Sobolev embedding theorem implies that w

and Vw admit the estimate O(exp(@ﬁ)) as & —oo. [
Theorem 7. Let Q have an inward peak. Then the homogeneous integral
equation
2 Y+ TVr=0 (30)

has only the trivial solution in the class .

Proof. Let 7 € 9 satisfy (30). Integrating this equation over S we obtain

/TdS:O.

S

Hence the potential v(z) = V7(z) is a solution of the problem N with the
boundary data 7, that is

Tv(p) = 7(p), p€ S\{0O}.

By the Betti integral representation for v we obtain Wov = 0 in 2. Therefore
the density v of this double-layer potential is a solution of the homogeneous
integral equation of the problem D™

(1=2W)wv(p) =0, pe S\{O}.

Since the restriction of v to S\{O} belongs to M, it follows by Theorem 5
that
v(p) =0 for p e S\{O}.
Since v(z) and Vu(z) vanish at infinity and grow not faster than a power func-
tion as z — 0, Lemma 2 implies that v(z) = O(exp(ﬁ Re é)) with negative (.
According to the classical uniqueness theorem we have v = 0 in Q¢ (cf. [16]).
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We make the change of the variable ¢ = log 1/r and denote by v (2), v (2)
the components of the displacement vector v(z), z € 2. Then the vector-valued
function U(t,0) = v(e™*,0)e ", where r, 6 are the polar coordinates of (x,y), is
a solution of the equation (A*+ K)U = 0 in the image A of Q satisfying U = 0
at OA. Here K is the first order differential operator

K ( “A+2u,  —(\+ 3;06/80)
— \(A+3p)0/00 — '

The vector-valued function v belongs to Wzlﬁ(A) with negative 3. From the

local estimate (11) it follows that v is an element of W3 4(A). Consider the

operator D(0;, 0g) : W5z N W;B(H) — Ly 5(II) of the boundary value problem
(A + KW =F in I={(t,0): 0<f<2r,tcR}, U=0 on JIL,

and introduce the operator pencil D(ik,dy) : k € C, continuously mapping

W2NWL(0,2r) into Ly(0,27) and considered in Theorem 2. Then the displace-
ment vector v(z) is represented as a linear combination of linearly independent
nonzero solutions of the homogeneous problem D (cf. [8]). Since the displace-
ment vector v(z), z € €, admits the estimate O(|z|?), 3 > —1, one has

v(2) = di(i(2) + d2Ga(2),

where (; and (, are solutions of the homogeneous problem D' admitting the
estimate O(|z|71/2).
From the limit relations for V7 it follows

T(p) = leCl(p) + dngg, pE S\{O}

Since the stresses T'(x, k = 1,2, do not belong to M and are of different order
and since 7 € M, the coefficients d; and dy are zero. [

Theorem 8. Let €2 have an inward peak and let h belong to N, v > 3, and

satisfy
/ hds = 0.
S

277+ TVr =h

Then the integral equation

has a unique solution in the class M. The solution T can be represented as
7(2) = azz” 2 + O(1).

Proof. Let v~ denote a solution of the problem N~ with the boundary data h
on S, vanishing at infinity. According to Theorem 3, v~ has the representation
v (2) = (@® + aWlogz)z" 2+ O(z" 1) on S.

By Theorem 2 the displacement vector u™, equal to v~ on S\{O}, is given by

1

w(2) = 5 [mo(2) — ) ~ U]
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where ¢(z) and ¥(z) admit the representations
p(z) = 22+ 0(2),  9(2) =22 +O(2).

Therefore we have

Tu'(z) = azz "+ O(1) on S\{O}.
Hence

v- =V (Tu't —h) on S\{O}.
Let us show that the same equality is valid in 2¢. We put
v(z) =v (2) = V(Tu® = h)(2), z€Q°.

As in Theorem 2, we can prove that Vuv(z) admits the estimate O(|z|72) at
infinity. Hence and by Lemma 2 it follows that v belongs to W'*(Q2¢) with
p(z) = (1 +|z])% Since the problem D~ is uniquely solvable in W1?(Q¢) (cf.
[4]), v vanishes in 2°. So the density

T=Tu" —h

satisfies the integral equation of the problem N . According to Theorem 7 the
solution in the class 91 is unique. O

4. INTEGRAL EQUATIONS ON THE CONTOUR WITH AN OUTWARD PEAK

4.1. Integral equation for the problem DT.

Theorem 9. Let 2 have an outward peak. The homogeneous integral equa-
tion (1) has a two-dimensional space of solutions in .

Proof. By Theorem 4 the homogeneous problem N~ in the class of functions
admitting the estimate O(|z|ﬁ), (3 > —1, has a nonzero solution vanishing at
infinity and satisfying

C(z) =cz 2+ 0(1).
Furthermore, the function ¢ span a two-dimensional real linear space. From the
integral representation

((z) = (WQ)(2) = (VTQ)(2), =€,
by the jump formula for W ¢ we get

¢(p) —2(W¢)(p) = —2(VT()(p) = 0, p e S\{O}.
Thus, ((p) is a solution of the homogeneous integral equation
(1-2W)o =0 (31)

for the problem D+.
Now, let 0 € 9 be a non-trivial solution of equation (31). The potential
Wo and VWo in Q) have a power growth as z — 0. According to Lemma 2,

Wao(z) = O(exp(ﬁ Re %)) with negative 8 and therefore Wo € W2(RQ). Since
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the homogeneous problem D has only the trivial solution in W3 (), we obtain
that Wo vanishes in 2.

Let u~ denote the solution of the problem D~ with the boundary function o.
We have

VIu~ —Wu  =u (c0) in Q.
Here, by V7(z) we denote the simple-layer potential with the kernel
I'(z,q) = T'(2,0), ¢ € S\{O}.

Since Wu~ vanishes in Q, we have VT'u™(2) = u (00), z € Q. The limit
relations for the simple-layer potential imply

T(VTu + ;u_)(p) —0, pe S\{O}.

So one has

VTu (z) = —u" (2) +up(z) in Q°, (32)
where ug is a displacement vector satisfying the boundary condition

Tuog(p) =0 on S\{O}.

From the integral representation of u~ and (32) it follows

Wu(2) = up(2) —u (00), z € Q°.
Since the potential Wu~ vanishes at infinity, we have

up(00) = u™ (00).

The jump formula for Wu™ implies

o(p) = u" (p) = uo(p) — uo(c0), pe S\{O}.

Since o belongs to the class M, from (32) it follows that ug and its gradient Vi
grow not faster than a power function as z — 0. For any function p € C§°(R?),
satisfying O ¢ supp p, we have that puy belongs to Wy (£2°).

From the estimate Vug(z) = O(|z|72) (2 — oo) and Betti’s formula we obtain

Tup(z)ds =0, 0<r<9.
{zeQe, |z|=r}

We assume that the Airy function U generated by the displacement vector wuy
in the domain 5 = Q° N {|z| < 0} satisfies

ou  oU
—+4+i—=0 Sy.
o7 +1 oy on O4
In particular, U is constant on S, and S_.
We make the change of the variable ¢t = log(1/r), r = |z|. Let A be the image
of Qs under the mapping (r,0) — (¢,0), where r, 6 are polar coordinates of



608 V. G. MAZ'YA AND A. A. SOLOVIEV

(z,y). By 'y, I'_ we denote the images of Sy and S_. Then W(¢,0), equal to
U(e™,0), is a solution of the equation

o .\, o

Z 49 =
<8t * ) M
and satisfies W = ¢y, dW/0n =0 on T'y. Moreover, the function W belongs
to W3 (A) with negative . From the local estimate (28) it follows that W
belongs to W23,7(A)' Taking into account the relation between ug and U in €
we conclude that Wo(t,0) = (puo)(e~",0)-e* belongs to W3 5(A) with negative
B

0* 0 ,
[8t2+6921 W(t,@) =0 in A

.Let D(0y, J) denote the operator of the boundary value problem
(A"+ K)U=F in I={(t,0):0<0<2r,tecR}, TU = f on OII,
continuously mapping W3 5(II) into Lo g(IT) x WQ{/;(@H). Here K has the form
K < —\+2u —(A + 3;0(6/80)) |
(A +3p)(9/00) —p

The eigenvalues of the operator pencil D(ik,dy) : WZ(0,27) — Ly(0,27) x R?
are numbers of the form k& = il/2, ¢ € Z, and they have multiplicity two.
Therefore Wy admits the representation

p
Wo=> aVi+V
k=1

(cf. [8], Theorem 6.2), where p is the largest integer not exceeding 23, Vj, are
linear independent vector-valued functions satisfying the equation (A*+ K)U =
0in Ag = AN {t > R} and the boundary condition TU = 0 on OA N {t > R}.
Moreover, we have Vi, ¢ W3, (Ag) and Vo € W3, (Ag) for v € (=1/2,0). Making
the inverse change of the variable r = e~ we obtain

uo(2) = (21) 7 (kps(2) — 291(2) — ¥u(2)) + O(|2] ),

where ¢ > —1/2, and

14 (k—p—1)/2
(2) = R (1 Z2 ) ( Z2 )
0(2) kZ::l o \los— ) :
P (k—p—1)/2
() = X R (log ) (2 .
Yu(2) kZ::l ¥ ngo—z o — 2

Here Rg“) and prk) are polynomials of degree [(k —1)/2], and zj is a fixed point
in Q. Since o € M, we have ug(z) = O(|z|*1/2). Thus, o is the restriction to
S\{O} of a solution of the homogeneous problem N~. [J



BOUNDARY INTEGRAL EQUATIONS OF PLANE ELASTICITY 609

Theorem 10. Let €2 have an oultward peak and let g belong to M, v > 0.
Then equation (1) is solvable in the class M and the homogeneous equation has
a two dimensional space of solutions. Among solutions of (1) there exists only
one with the representation

o(z) = ez’ 1+ O(1)
if v #1/2, and
o(x) = Bea " *logx 4+ O(1)
ifv=1/2.

Proof. Let Vo be a simple-layer potential with the kernel I'(z,q). Let u™, u~
be solutions of the problems D+ and D~. Theorem 1 implies that

Tut(2) =+Bz" 2+ 0@ 1), z=a+iycQ.

According to Theorem 2, Tw™ is integrable on S and the displacement vector
u~(2) is bounded at infinity. Then

g(p) = V(Tu+ — Tu_)(p) +u”(00), pe S\{O}.

Here the integral is understood in the sense of the principal value.
Let v~ denote the solution of the problem N~ with the boundary data Tu*.
According to Theorem 4, we have

v (2) = O™t for v#1/2,

v (2) = O(z7%logx) for v=1/2, ze€ S\{O}.
Using the integral representation for w = v~ —u~ +u~ (00) in ¢ and the jump
formula for Ww we obtain that

w—2Ww = —2V(Tu+ - Tu_) = —2¢g+ 2u (oc0) on S\{O}.

Thus the displacement vector 0 = w —u~(00) = v~ — g is a solution of equation
(1).

By Theorem 9 the restrictions of solutions of the homogeneous problem N ™
to S\{O} (and only such functions) satisfy the homogeneous integral equation
of the problem D*. The space of such solutions in 91 is two-dimensional. We
choose two linear independent solutions (z and (; such that

k+1

Cr(z) =F Y24+ 0(1),

k+1
—
I
Therefore solutions of equation (1) in 9t have the form
og=v" —g—(Rec)(g+ (Imc)(;.

The complex constant ¢ can be chosen so that ¢ has the required asymp-
totics. [

C(z)=F V24 0(), z=a+1iy e S\{O}.
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4.2. Integral equation for the problem N .
Theorem 11. Let €2 have an outward peak. Then the homogeneous equation
2 Y+ TV r+tTo1 +t:T0, =0 (33)
has only the trivial solution in the Cartesian product M x R2.

Proof. Let 7 be a solution of (33). We define the displacement vector v(z) as
follows:

v(z) = V1 (2) + t101(2) + taoa(2), z € Q°.
By integrating (33) over the boundary S we find

/T(p)dsp =0.

5
Therefore the potential V7(z) takes the form

2) = [{T(z ) = T(=,0)} r(a)ds,

Hence we have v(z) = O(|z]7!), Vu(z) = O(|z|72), as |z] — oco. Therefore v(z)
is a solution of the problem N~ with zero boundary data and

Vu(z) = O(|2)%), B> -1, as z—0.
The classical uniqueness theorem implies that

v(z) = const, z € Q°.
Since v(z) vanishes at infinity, it follows that
V7(2) = —ti01(2) — ta0a(2), z € Q"

We extend the functions g(2), z € S, k = 1,2, onto Q as solutions of the
homogeneous Lamé system. Let o (2) and o3 (z) denote these extensions. The
vector-valued function

00(2) = V71(2) + ti0f (2) + ta05 (2), 2z € S\{O}

is bounded in €2, vanishes on S\{O} and its gradient Vg, grows slower
than a power function. According to Lemma 2, po(z) admits the estimate

O(exp(ﬂ Re %)) with negative 3 as z — 0. We have

Ztk@k + 00(2).

The jump formula for the simple-layer potential entails
2 2
= —> tTof(2) + > tiTor(z) + Too(z), z€S.
1 1
We have Tox(2) = O(|z|7Y?), k = 0,1, and To{ (2), Toj (2) have order —3/2.

Since the components of these functions have different singularity, ¢; and t,
vanish. Thus, V7(z) = 0 in Q°. By Lemma 2 applied to V7 in Q, and by the



BOUNDARY INTEGRAL EQUATIONS OF PLANE ELASTICITY 611

classical uniqueness theorem we can conclude that V7(z) = 0, z € . So the
density 7 given by

7(2)=T(V71) (2) = T(V7T)"(2), z€ S\{O},
vanishes on S. [J

Let (g and (; be solutions of the homogeneous problem N~ introduced in
Theorem 10.

Theorem 12. Let ) have an outward peak, let h belong to N, v > 0, and
satisfy
/ hds = 0.
5

Then the integral equation (6) has a unique solution in the direct product M x R?
and this solution can be represented as follows:

o(z) =Bea”" + Oz for 0 <v <1/2,

o(z) = (’Vﬂ: logz + 5i)$_1/2 +O(logz)  for v=1/2,

o(z) =y ? 4+ B2 + O(log x) for 1/2 <v <1,
where z = x + 1y € S\{O}.

Proof. We consider only one of the statements of the theorem in detail. Let
v~ denote a solution of the problem N~ with the boundary data h such that
v~ (00) = 0.

We assume that 0 < v < 1/2. From Theorem 4 it follows that v~ has the
form

_ 1 -
v (2) = % {mp(z) —zp'(z) — w(z)} + 0(2*?log 2),
where
229 \1/2 2z P
Y(z) = 6o + 01,0 ( 0 ) + 020 0 4 Bo ( 0 ) ,
Z— 20 Z— 20 Z— 20
220 \1/2 2z 279 \ 1TV
Y(2) = €00 + €10 ( s > + €20 4 Yo < 0 ) , 29 € Q.
zZ— 2 zZ— 2 zZ— 2

Thus v~ admits the representation
ve(2) = ¢ £ 1at? + ey + dex'™ + 022 logxz) on S,

where

1= (14 rK)00/21, c2= (14 K)da0/2p.
We apply Betti’s formula to v~ and first to (g and then to {; in . = Q\{|z| <
e}. Taking the limit as ¢ — 0 we obtain

1 1
Re clzﬂ/hCRds, Im clzg/hg}ds.
S S
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We set

t =

_n 1/
/thds tQ_HK%Shgds.

Then the problem N~ with the boundary data h —t,T 01 — t2T 05 has a solution
on St of the form

1—}—/1 o

v(2) = co + ez + dex'™ + O(z*? log z).

The solution of the problem D' with the given displacement cyz on S admits
the estimate O(z) and this estimate can be differentiated at least once. Hence
and by Theorem 1 it follows that the solution u™ of the the problem

AuT=01in Q, u"=v" on S,
admits the representation
1

2 [F9(2) = 20(2) = U] + Oz log ).

ut(2) =
differentiable at least once. Here
0(2) = Boz” + Biz"?, ¥(z) = 702" + M2
Therefore the stress Tu™ has the following representation on S.:
Tut(z) = Bea” '+ Oz ?), z=a+1iy.
On S, we have
=V(Tu® = h+tTo, +1:T0r) . (34)

The simple-layer potential VTu™ is bounded in a neighborhood of the origin and
its gradient admits the estimate O(|z|*~!). Hence and by a classical uniqueness
theorem we obtain that (34) remains valid in Q°. Consequently, the density

T = Tu+ —h+ tngl + tQTQQ

satisfies the integral equation of the problem N~ and has the required asymp-
totics. Theorem 11 implies that the constructed solution of equation (6) is
unique.

The cases ¥ =1/2 and 1/2 < v < 1 can be studied in a similar way. [

Applying Theorems 11 and 12, we obtain the following result.

Theorem 13. Let Q0 have an outward peak. Furthermore, let h belong to
M,, v >0, and satisfy

/ hds, / hipds =0 and / h¢pds = 0.
S S S

Then equation (2) is uniquely solvable in 9.
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