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ON THE PRODUCT OF SEPARABLE METRIC SPACES

D. KIGHURADZE

Abstract. Some properties of the dimension function dim on the class of
separable metric spaces are studied by means of geometric construction which
can be realized in Euclidean spaces. In particular, we prove that if dim(X ×
Y ) = dim X + dim Y for separable metric spaces X and Y , then there exists
a pair of maps f : X → Rs, g : Y → Rs, s = dim X + dim Y , with stable
intersections.
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1. Introduction

In this paper I try to answer the question which was posed by Chogoshvili
[2]: Is it true that a subset X of n-dimensional Euclidean space Rn is at most
k-dimensional (−1 ≤ k ≤ n) if and only if for every (n − k − 1)-dimensional
plane L ⊂ Rn there exists an ε-translation f : X → Rn with f(X) ∩ L = ∅?

At first Sitnikov proved that this is not true for arbitrary subspaces of Eu-
clidean spaces (see [1]) and then Dranishnikov [3] showed that this is false even
for compact subspaces.

It turns out that the answer is positive for the class of irrational subspaces of
Euclidean spaces (see Section 2), which is an easy consequence of the following

Theorem 1. Let X ⊂ Rn, dim X = dim X = k (k ≤ n), and X be a k-
dimensional irrational compact. Then there exist a k-dimensional plane L ⊂ Rn

and a closed, k-dimensional ball Ck ⊆ L, such that P |(P−1(Ck)∩X) : P−1(Ck) ∩
X → Ck is an essential map, where P : Rn → L is the orthogonal projection of
Rn onto L.

This leads us to the characterization of the dimension of the Cartesian product
of separable metric spaces in terms of essential maps (see Section 2).

Theorem 2. For every pair of separable metric spaces X and Y , where
dim X = n, dim Y = m, we have dim(X×Y ) = n+m if and only if there exist
essential maps f : X → Cn and g : Y → Cm such that f × g : X × Y → Cn+m

is essential too.

In 1991 Dranishnikov, Repovš and Ščepin [4] proved that given compacts
X and Y in Rn such that n = dim X + dim Y , there exists a pair of maps
f : X → Rn, g : Y → Rn with stable intersections if and only if dim(X ×
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Y ) = n. The proof of the “if” part of this theorem was based on my earlier
result, where I considered irrational compact subspaces instead of arbitrary
irrational subspaces as in Theorem 1. The corresponding general assertion
based on Theorem 1 can be formulated as

Corollary. For every pair of separable metric spaces X and Y , where
dim X = n, dim Y = m, and dim(X × Y ) = n + m, there exists a pair of
maps f : X → Rn+m and g : Y → Rn+m with stable intersection.

2. Notions, Definitions and Auxiliary Theorems

We denote by dim and µ dim covering and metric dimension functions, respec-
tively, by C(X,Rn) the space of all continuous maps of X into Rn, equipped
by the standard metric: ρ(f, g) = sup{d(f(x), g(x))|x ∈ X} and denote by
E(X,Rn) the subspace of C(X,Rn), consisting of all embedings of X into Rn.
For X ⊂ Rn, we denote by X the closure of X into Rn and by ∂X the boundary
X in Rn.

A map f : X → Qn of a space X onto the closed n-cube is said to be essential
if there is no map g : X → ∂Qn with the property that g|f−1(∂Qn) = f |f−1(∂Qn).
Next a point x ∈ int Qn is called a stable value of a surjective map f : X → Qn

if there exists ε > 0 such that for every map g : X → Qn such that ρ(f, g) < ε
it follows that x ∈ g(X) ([1]). Clearly, if f : X → Qn is an essential map, then
every point x ∈ int Qn is stable value of f . Conversely, if some point x ∈ Qn

is a stable value of an onto map f : X → Qn, then there exists a small n-ball
Cn ⊂ int Qn such that x ∈ int Cn and f |f−1(Cn) : f−1(Cn) → Cn is essential.

Two maps f : X → Rn and g : Y → Rn have a stable interestion in Rn

if there exists ε > 0 such that for any ε-permutations f ′ and g′ of f and g,
respectively, we have f ′(X) ∩ g′(Y ) = ∅.

For every point x ∈ Rn let r(x) be the number of rational coordinates of
x. For every subset X ⊂ Rn let r(X) = max{r(x) : x ∈ X}. A subset
X ⊂ Rn is said to be irrational if r(X) = dim X. Finally, for every k ≤ n, let
Rn

k = {x ∈ Rn : r(x) ≤ k}.
We shall need the following classical results of dimension theory (see [1]):

Nobeling–Hurewicz theorem. Every bounded map f : X → R2n+1 of a
separable metric n-dimensional space X into R2n+1 can be approximated arbi-
trarily closely by a map g : X → R2n+1 such that the closure of the image of g
is an irrational n-dimensional compact.

Sitnikov theorem. If X ⊂ Rn and dim X = dim X, then µ dim X =
dim X.

Borsuk theorem. If mapping f : X → Qk from normal space X onto k-
dimensional cube is essential, then for every face Qp of Qk (p ≤ k), the mapping
f |f−1(Qp) : f−1(Qp) → Qp is essential too.
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3. Proofs

We shall need two lemmas:

Lemma 1. Given X ⊂ Rn, let P : Rn → Rn, n ≥ m, be a surjective linear
map such that P |X : X → Rm has an unstable value y ∈ P (X). Then for every
ε > 0 there exists a map g : X → Rn such that :

(a) ρ(g, j) < ε, where j : X → Rn is the inclusion;
(b) if x ∈ X and dist(x, P−1(y)) ≥ ε/2, then g(x) = x;
(c) g(X) ∩ P−1(y) = ∅.

Proof. Without loss of generality, we may assume that the point y is the ori-
gin O ∈ Rn and that P is the projection of Rn onto the first m coordi-
nates, i.e., p(x1, . . . , xm, . . . , xn) = (x1, . . . , xm). Since y is by hypothesis an
unstable value of P |X : X → Rm, the map P |X unessentially covers the
closed m-ball Cm ⊂ Rm, centered at y and with radius ε/2. Hence there
exists a map f : X → Rm such that f(X ∩ P−1(Cm)) ⊂ ∂Cm and for every
x ∈ X∩P−1(Rm\Cm), f(x) = P (x). Define now the desired map g : X → Rn by
g(x) = (f1(x), . . . , fm(x), xm+1, . . . , xn) for every x ∈ X, where x = (x1, . . . , xn)
and f(x) = (f1(x), . . . , fm(x)). It is now easy to verify that g satisfies properties
(a), (b), (c).

Lemma 2. Suppose that a compact X ⊂ Rn and a collection L1, . . . , Lk ⊂
Rn of planes satisfy the following conditions:

(1) for every i 6= j, X ∩ Li ∩ Lj = ∅;
(2) for every i, the projection PLi

|X : X → Li has an unstable point at
PLi

(Li).
Then for every ε > 0 there exists a map g : X → Rn such that:
(a) ρ(g, j) < ε, where j; X → Rn is the inclusion;
(b) g(X) ∩ (∪k

i=1Li) = ∅.

Proof. We may assume that ε > 0 is so small that for every i 6= j,

X ∩Nε(Lj) ∩Nε(Lj) = ∅, (1)

where Nε(Lj) ⊂ Rn is the open ε-neighborhood of Li, i ∈ {1, . . . , k}. Apply
Lemma 1 to obtain, for every i ∈ {1, . . . , k}, a map g : X → Rn such that

ρ(gi, incl) < ε, for every x ∈ X, (2)

gi(x) = x, if dist(x, Li) ≥ ε and (3)

gi(X) ∩ Li = ∅ (4)

(here “incl” denotes the inclusion map).
Define g : X → Rn as follows: for every x ∈ X. let g(x) = gi(x), where Li

is the closest plane to x, i.e., dist(x, Li) ≤ dist(x, Lj), j ∈ {1, . . . , k}. The map
g is well defined. Indeed, if for some i 6= j, the planes Li and Lj both have
a minimal distance from x, then by (1) above this distance must be at least
ε. Consequently, by (3), gi(x) = x = gj(x). It is clear, by (1)–(4), that g is
continuous and, as follows from (1)–(4), it satisfies the required conditions.
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Proof of Theorem 1 is given here for completeness although it is similar to the
case when X is compact. Let X ⊂ Rn and X be a k-dimensional irrational
compact and dim X = dim X. By Sitnikov’s theorem we have µ dim X = k.
Then:

(i) for every x ∈ X, r(x) ≤ k;
(ii) there exists δ > 0 such that X has no open δ-covering of order≤ k.
For a retional number λ such that 0 < λ < δ

√
n/2 define Cλ = {x ∈ Rn|,

0 ≤ xi ≤ λ/n, for every i}. We have d = diam Cλ = λ/
√

n < δ/2.
Consider a Lebesgue lattice Ω = {wi}i∈N = in Rn, i.e., the covering of Rn by

copies of the n-cube Cλ such that:
(a) for every i, wi = Cλ + ri, ri ∈ Qn (which is the nth Cartesian power of

the set Q of all rational numbers), i.e., wi is obtained by a parallel translation
of Cλ along some rational vector ri;

(b) for every i 6= j =, wi ∩ wj = ∂wi ∩ wj;
(c) the order of Ω is n + 1.
For every m ≥ 1, define

Sm = {x ∈ Rn|x belongs to at least m different elements of Ω}.
Then

Sm ⊂ ∩∞j=1L
n−m+1
j , (5)

where {Ln−m+1
j }j∈N is a discrete collection of (n−m+1)-dimensional planes in

Rn, each of them being the intersection of some m − 1 hyperplanes {Σn−1
` |` =

1, . . . , m− 1},

Ln−m+1
j = ∩m−1

e=1 Σn−1
` , (6)

where for every ` ∈ {1, . . . , m− 1} and for some t(`) ∈ {1, . . . , n} and q(`) ∈ Q
Σn−1

` =
{
(xi, . . . , xn) ∈ Rn|xt(`) = q(`)

}
.

We now focus our attention on the case m = k+1. Note that for every i ∈ N
and every y ∈ Ln−k

i , r(y) ≥ k, hence for every i 6= j and every z ∈ Ln−k
i ∩Ln−k

j ,
r(z) ≥ k + 1, therefore it follows from (1) that for every i 6= j,

X ∩ Ln−k
i ∩ Ln−k

j = ∅. (7)

Let ε0 = (δ − 2d)/2 which is positive since d < δ/2. It follows from (4) that
ε0 > 0.

Proposition. For every map g : X → Rn such that ρ(g, incl) < ε0 we have
g(X) ∩ Sk+1 6= ∅.

To prove this proposition suppose, on the contrary, that the intersection of
g(X) and Sk+1 is empty. Then g−1(Ω′) will provide an open cover of X of order
≤ k and with mesh µ < 2ε0 + 2d = δ, where Ω′ = {w′

i}i∈N is some family of
open cubs w′

i ⊃ wi which directly contradicts (2). This proves the proposition.
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The proposition implies, in particular, that

X ∩ Sk+1 6= ∅ (8)

and since X is compact, it intersects only finitely many (n − k)-dimensional
planes {Ln−k

j }j∈N , say Ln−k
σ(1), . . . , L

n−k
σ(l) . By discreteness, there is ε1 ∈]0, ε0[ such

that ρ(g, incl) ≤ ε1 Proposition implies, that

g(X) ∩ (∪l
i=lL

n−k
σ(i) ) = ∅. (9)

It follows now from (7), (9) and Lemma 2, that for some i0 ∈ {1, . . . , l}, the
projection PLσ(i0)

|X : X → L⊥σ(i0) has a stable value at the point PLσ(i0)(Lσ(i0)).

Now let L = L⊥σ(i0) and P = PLσ(i0)
. Thus Theorem 1 is proved.

Remark. It is evident from the proof of Theorem 1 that Lσ(i0) and L⊥σ(i0) are

(n− k)- and k-dimensional coordinate planes, respectively.

Proof of Theorem 2. The “if” part of Theorem 2 is clear. Let i : X → R2n+1 and
j : Y → R2m+1 be embeddings of X and Y , respectively, such that dim i(X) =
dim X = n, dim j(Y ) = dim Y = m, and i(X) and j(Y ) are irrational compacts
(we apply the Nőbeling–Hurewicz theorem).

Consider the product of these embeddings i × j : X × Y → R2n+2m+2. It
is easy to see that (i× j)(X × Y ) = i(X) × j(Y ) is an irrational compact.
Hence by Theorem 1 and Remark there exist an (n + m)-dimensional plane
L ⊂ R2n+2m+2 and a closed (n + m)-dimensional cube Qn+m ⊂ L such that
P |P−1(Qn+m)∩(i×j)(X×Y ) : P−1(Qn+m) ∩ (i × j)(X × Y ) → Qn+m is an essential
map.

Assume that all points z from L have p “x”-coordinates and q “y”-coordinates:
z = (xi1 , . . . , xip , yj1 , . . . , tjq), where 1 ≤ j1 < · · · < jq ≤ 2m + 1 and 1 ≤ j1 <
· · · < jq ≤ 2n + 1, such that p + q = n + m.

Let πx : Qn+m → Qp
x and πy : Qn+m → Qq

y be projections of Qn+m an its p
and q-dimensional “X” and “Y ” faces.

The Borsuk theorem implies that the maps

πx ◦ P
∣∣∣
P−1(Qn+m)∩(i×j)(X×Y )

: P−1(Qn+m) ∩ (i× j)(X × Y ) → Qp
xL

p,

πy ◦ P
∣∣∣
P−1(Qn+m)∩(i×j)(X×Y )

: P−1(Qn+m) ∩ (i× j)(X × Y ) → Qq
yL

q

are essential and therefore p = n, q = m, because if we assume the contrary, we
obtain p > n or q > m, which is impossible, so Qp

x ≡ Qn
x and Qq

y ≡ Qm
y .

Let c′ and c′′ be the centers of Qn
x and Qm

y , respectively. Define the maps
f : X → Qn

x and g : Y → Qm
y as follows:

f(x) =





i(x), i(x) ∈ Qn
x,

[c′, j(x)] ∩ ∂Qn
x, i(x) ∈ Qn

x,

g(y) =





j(y), j(y) ∈ Qm
y ,

[c′′, j(y)] ∩ ∂Qm
y , j(y) ∈ Qm

y .
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It is easy to see that f and g are the required maps.

Proof of Corollary. (This proof proceeds according to the author’s one from [4].)
By Theorem 2 there exist such maps f : X → Qn ⊂ Rn and g : Y → Qm ⊂ Rm,
that f × g : X ×Y → Qn×Qm ⊂ Rn+m is essential. Without loss of generality,
we can assume that f(X)∩ f(Y ) = O = c′× c′′ ∈ Qn×Qm, where c′ and c′′ are
centers of Q′′ and Q′′′ and O is the origin of Euclidean space Rn+m.

The maps f and g have a stable intersection.
Indeed, it is clear that the map f × (−g) : X × Y → Qn+m, where (f ×

(−g))(x, y) = (x,−y) = f(x)− g(y) (here we consider f(x) and g(y) as vectors
in the Euclidean space Rn+m), is essential. Hence we obtain that there exists
ε > 0 such that for every map H : X × Y → Qn+m, with ρ(f × (−g)), H) < ε,
we have O ∈ H(X × Y ).

Suppose that f and g have not a stable intersection. Then there exist f ′ :
X → Rn+m and g′ : Y → Rn+m, satisfying the conditions: ρ(f, f ′) < ε/4,
ρ(g, g′) < ε/4 and f ′(X)∩ g′(Y ) = ∅. Define H : X × Y → Rn+m as H(x, y) =
f ′(x) − g′(y). Then O 6∈ H(X × Y ). On the other hand, ρ(f × (−g), H) ≤
ρ(f, f ′) + ρ(g, g′) < ε/2. This is a contradiction.
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