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THE REARRANGEMENT INEQUALITY FOR THE ERGODIC
MAXIMAL FUNCTION

L. EPHREMIDZE

Abstract. The equivalence of the decreasing rearrangement of the ergodic
maximal function and the maximal function of the decreasing rearrangement
is proved. Exact constants are obtained in the corresponding inequalities.
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Let (X, S, µ) be a σ-finite measure space and T : X → X be a measure-
preserving ergodic transformation. For a measurable function f the ergodic
maximal function is defined as

Mf(x) = sup
N

1

N

N−1∑

k=0

|f(T kx)|, x ∈ X.

The decreasing rearrangement of f is the function f ∗ defined on [0,∞) by

f ∗(t) = inf
{
λ : µ(|f | > λ) ≤ t

}
(1)

and its maximal function is denoted by f ∗∗:

f ∗∗(t) =
1

t

t∫

0

f ∗(τ)dτ, t > 0.

The equivalence of (Mf)∗ and f ∗∗, i.e., the validity of inequalities

cf ∗∗(t) ≤ (Mf)∗(t) ≤ Cf ∗∗(t)

with constants c and C independent of f and t (these inequalities sometimes
are called rearrangement inequalities) was proved by several authors when M
stands for Hardy–Littlewood maximal operator (see [8], [5] for the one-dimen-
sional case and [1] for higher dimensions). This fact is very useful in the proofs
of many theorems on the related topics (see [2]).

In the present paper, we prove analogous inequalities for the ergodic maximal
operator (see (2) below). The constants 1

2
and 1 in these inequalities are exact

and the corresponding examples are constructed.
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Theorem. Let f ∈ L(X). Then

1

2
f ∗∗(t) ≤ (Mf)∗(t) ≤ f ∗∗(t) (2)

when 0 < t < µ(X).

Remark. If µ(X) < ∞ and t ≥ µ(X), then (Mf)∗(t) = 0. Thus the second
inequality in (2) is valid for each t > 0, while the first inequality fails to hold
whenever t ≥ µ(X) unless f is identically zero.

In the proof of the theorem we can take function f nonnegative since all
functions considered depend only on the modulus of f . We shall also assume
that the measure space (X, S, µ) is nonatomic. The case when the space has
atoms can easily be reduced to the nonatomic case by “putting” suitable mea-
surable sets into the atoms, keeping the values of f inside the atoms unchanged
and defining T correspondingly. This process does not change the distribution
functions λ 7−→ µ(f > λ) and λ 7−→ µ(Mf > λ), λ > 0. Consequently f ∗(t)
and (Mf)∗(t) keep the same values for each t > 0.

The following notation will be used: f+ = max(f, 0), f− = max(−f, 0).
Sn(f)(x) =

∑n
k=0 f(T kx) and An(f)(x) = 1

n+1
Sn(f)(x). 1E stands for the

characteristic function of E. {f > 0} or (f > 0) means {x ∈ X : f(x) > 0}.
Since a weak-type estimate for the ergodic maximal operator has a simple

form

µ(Mf > λ) ≤ 1

λ

∫

(Mf>λ)

f dµ, (3)

where f ∈ L(X), λ > 0 (see, e.g., [7]), the second inequality in (2) can be
proved easily and it is given below for the sake of completeness.

Proof of the inequality (Mf)∗(t) ≤ f ∗∗(t), t > 0. Since 1
µ(E)

∫
E f dµ ≤

1
t

∫ t
0 f ∗(τ)dτ for each measurable E with µ(E) = t and f ∗∗(t) is a decreasing

function (see, e.g., [2]), we have

f ∗∗(t) ≥ sup
µ(E)≥t

1

µ(E)

∫

E

f dµ. (4)

Consider the nontrivial case when (Mf)∗(t) > 0. It follows from definition
(1) that

0 < λ < (Mf)∗(t) =⇒ µ(Mf > λ) > t. (5)

Because of (3) we have

λ ≤ 1

µ(Mf > λ)

∫

(Mf>λ)

f dµ, λ > 0. (6)
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It follows from (5) and (4) that

sup
0<λ<(Mf)∗(t)

1

µ(Mf > λ)

∫

(Mf>λ)

f dµ ≤ f ∗∗(t).

Consequently, if we let λ in (6) tend to (Mf)∗(t) from the left, we get the second
inequality in (2).

For the proof of the first inequality in (2) we need

Lemma. Let g : X → N0 = {0, 1, 2, . . . } and g ∈ L(X). Then

µ(Mg ≥ 1) = min
( ∫

X

g dµ, µ(X)
)
.

Proof. That µ(Mg ≥ 1) = µ(X) whenever
∫
X g dµ ≥ µ(X) follows from the

Individual Ergodic Theorem:

lim
n→∞An(g)(x) =

1

µ(X)

∫

X

g dµ (7)

for a.a. x ∈ X (see, e.g., [7]). Thus it is sufficient to consider the case where

∫

X

g dµ < µ(X). (8)

We shall use the filling scheme method (see [6], [7] or [3]) truncating the
function g at level 1. Let

g0 = g and gn+1 = 1(gn≥1) + (gn − 1)+ ◦ T. (9)

Observe that gn takes only nonnegative integer values and

gn = 1(gn≥1) + (gn − 1)+, n = 0, 1, . . . . (10)

If we consider another sequence

h0 = g − 1 and hn+1 = −h−n + h+
n ◦ T,

then, as it can easily be checked by induction,

hn = gn − 1, n = 0, 1, . . . . (11)

That

lim
n→∞

∫

X

h+
n dµ = lim

n→∞

∫

X

(gn − 1)+ dµ = 0 (12)
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is proved in [3] (see (19) therein). At the same time, since T is measure-
preserving and (10) holds, we obtain

∫

X

gn+1d µ =
∫

X

1{gn≥1} dµ +
∫

X

(gn − 1)+ ◦ T dµ =

=
∫

X

1{gn≥1} dµ +
∫

X

(gn − 1)+ dµ =
∫

X

gn dµ,

n = 0, 1, . . . . Thus, for each n ≥ 0, we have
∫

X

gn dµ =
∫

X

g dµ. (13)

We also use the equality of sets
{
x : max

0≤m≤n
Sm(h0)(x) ≥ 0

}
= (hn ≥ 0), (14)

n = 0, 1, . . . , which is proved in [4] (see Lemma 2; see also Lemma 1.1 in [3],
where the basic idea of the proof is given). Since

lim
n→∞

1

n + 1

n∑

k=0

g(T kx) = lim
n→∞An(g)(x) < 1

for a.a. x (see (7), (8)), we have

(Mg ≥ 1) =
{
x : An(g)(x) ≥ 1 for some n ≥ 0

}

=
∞⋃

n=0

{
x : max

0≤m≤n
Am(g)(x) ≥ 1

}
=

∞⋃

n=0

{
x : max

0≤m≤n
Sm(h0)(x) ≥ 0

}

=
∞⋃

n=0

(hn ≥ 0) =
∞⋃

n=0

(gn ≥ 1)

(the first equality holds if we neglect the sets of measure 0 and all other equalities
are exact; (see (11), (14)). Thus

µ(Mg ≥ 1) = lim
n→∞µ(gn ≥ 1) (15)

(that (gn ≥ 1) = (hn ≥ 0), n = 0, 1, . . . , is an increasing sequence of sets follows
from definition (9) and also from (14)).

It follows from (13) and (10) that
∫

X

g dµ =
∫

X

gn dµ =
∫

X

(1{gn≥1} + (gn − 1)+) dµ = µ(gn ≥ 1) +
∫

X

(gn − 1)+ dµ.

Hence, taking into account (15) and (12), we get

µ(Mg ≥ 1) =
∫

X

g dµ.
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Proof of the inequality 1
2
f ∗∗(t) ≤ (Mf)∗(t), 0 < t < µ(X). Fix t ∈ (0, µ(X))

and assume f ∗∗(t) = λ0. We shall show that

µ
(
Mf ≥ 1

2
λ0

)
> t. (16)

The first inequality in (2) follows from (16) by virtue of definition (1).
Let E ∈ S be a measurable set with

µ(E) = t (17)

such that

1

µ(E)

∫

E

f dµ =
1

t

t∫

0

f ∗(τ)dτ = λ0. (18)

Since we assume that the space is nonatomic, such E exists (see, e.g., [2], Lemma
2.2.5). Define the function g as follows

g =
∞∑

m=0

λ0

2
m1

({λ0
2

m≤f<
λ0
2

(m+1)}∩E)
.

Observe that g ≤ f , 2
λ0

g takes only nonnegative integer values and f(x)−g(x) <
λ0

2
for each x ∈ E. We have

∫

E

g dµ >
∫

E

f dµ− λ0

2
µ(E) =

λ0

2
µ(E)

(see (18)). Thus ∫

X

2

λ0

g dµ > µ(E)

and because of Lemma we have

µ
(
Mg ≥ λ0

2

)
= µ

(
M

(
2

λ0

g
)
≥ 1

)
= min

(
2

λ0

∫

X

g dµ, µ(X)
)

> min(µ(E), µ(X)) = t

(see (17)). Since Mf ≥ Mg, we have proved (16).

At the end of the paper we shall show that the constants 1
2

and 1 are exact
in the inequalities in (2) and cannot be improved. This is clear for 1 since it
may happen that (Mf)∗(t) and f ∗∗(t) are equal (e.g., for constant functions).
A simple example below shows that the equality

1

2
f ∗∗(t) = (Mf)∗(t)

can hold for t such that f ∗∗(t) does not vanish.

Example. Let T̃ be a (Lebesgue) measure-preserving ergodic transformation
of [0; 1

2
) and define T by the equalities T (x) = x + 1

2
when x ∈ [0; 1

2
) and
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T (x) = T̃ (x − 1
2
) when x ∈ [1

2
; 1). Then T is a measure-preserving ergidic

transformation of [0; 1). If f = 1[ 1
2
;1), then Mf(x) = 1

2
when x ∈ [0; 1

2
) and

Mf(x) = 1 when x ∈ [1
2
; 1). Thus (Mf)∗(1

2
) = 1

2
, while f ∗∗(1

2
) = 1.
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