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ORDINARY DIFFERENTIAL EQUATIONS WITH
NONLINEAR BOUNDARY CONDITIONS
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Abstract. The method of lower and upper solutions combined with the
monotone iterative technique is used for ordinary differential equations with
nonlinear boundary conditions. Some existence results are formulated for
such problems.
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1. Introduction

In this paper, we shall consider the following differential problem




x′(t) = f
(
t, x(t)

)
, t ∈ J = [0, T ], T > 0,

x(0) = g(x(T )),
(1)

where f ∈ C(J × R,R), g ∈ C(R,R).
It is well known that the monotone iterative technique is a powerful method

used to approximate solutions of several problems (see, for example [5]). The
purpose of this paper is to show that it can be applied successfully to problems
of type (1). Assuming one-sided Lipschitz condition on f (with respect to the
second variable) combined with the corresponding monotonicity conditions on
g, it is shown that linear iterations converge to a solution of problem (1). Some
comparison results are also formulated.

In many papers, the monotone iterative technique was applied to problem
(1) when g(u) = λu + k. If λ = 0, then (1) reduces to the initial value problem
for differential equations and this case is considered, for example, in [6], [7], [9],
[10]. If λ = 1 and k = 0, then we have a periodic boundary problem considered,
for example, in [8], [10], while if λ = −1 and k = 0, then we have an anti-
periodic boundary problem, see [10], [11], [12]. A general case where λ, k ∈ R
is discussed in [1]. Nonlinear problems, more general than (1), are studied, for
example, in [2], [3], [4].

2. Some General Facts

From Theorem 1.1 proven in [2] follows
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Theorem 1. Let f ∈ C(J ×R,R), g ∈ C(R,R). Moreover, we assume that
there exist functions y0, z0 ∈ C1(J,R) such that

y0(t) ≤ z0(t), y′0(t) ≤ f(t, y0(t)), z′0(t) ≥ f(t, z0(t)), t ∈ J,

y0(0) ≤ g(s) ≤ z0(0) for y0(T ) ≤ s ≤ z0(T ).

Then problem (1) has at least one solution in ∆ = {w ∈ C1(J,R) : y0(t) ≤
w(t) ≤ z0(t), t ∈ J}.

On the basis of Theorem 1 one can easily prove

Theorem 2. Let the conditions of Theorem 1 be satisfied and, moreover,
let the function g be nondecreasing. Then problem (1) has, in the set ∆, the
minimal and the maximal solution.

As for the uniqueness of the solution of problem (1), the following result
holds.

Theorem 3 (Kiguradze). Let the conditions of Theorem 1 be fulfilled and,
moreover,

f(t, v)− f(t, u) ≤ h(t)(v − u) for t ∈ J, y0(t) ≤ u ≤ v ≤ z0(t), (2)

g(v)− g(u) ≤ L(v − u) for y0(T ) ≤ u ≤ v ≤ z0(T ), (3)

where h : J → R is an integrable function and L is a nonnegative constant such
that

L exp
( T∫

0

h(s) ds
)

< 1. (4)

Then problem (1) has, in the set ∆, a unique solution.

Proof. The existence of a solution of (1) follows from Theorem 1. Thus it
remains to prove the uniqueness. Let x, x ∈ ∆ be arbitrary two solutions of (1).
We distinguish two cases.

Case 1. x(t) 6= x(t) for all t ∈ J . Indeed, without the loss of generality, we
can assume that p(t) = x(t)− x(t) > 0 for t ∈ J. Hence

p′(t) = f(t, x(t))− f(t, x(t)) ≤ h(t)p(t), t ∈ J,

p(0) = g(x(T ))− g(x(T )) ≤ Lp(T ),

by assumptions (2) and (3). Therefore,

0 < p(0) ≤ Lp(T ) ≤ L exp
( T∫

0

h(s) ds
)
p(0).

By condition (4), this inequality yields p(0) = 0 and thus p(t) = 0 on J , which
is a contradiction.
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Case 2. There exists t0 ∈ J such that x(t0) = x(t0). If t0 = T or t0 = 0, then

x(0) = g(x(T )) = g(x(T )) = x(0).

This and condition (2) prove that x(t) = x(t) on J , which is a contradiction.
If t0 ∈ (0, T ), then x(t) = x(t) on [t0, T ]. Hence x(T ) = x(T ), so x(0) = x(0)
showing that x(t) = x(t) on J. It is a contradiction. This proves that problem
(1) has, in ∆, a unique solution. It ends the proof.

In the next two sections we are going to construct the solution of problem
(1).

3. Case where g is Nondecreasing

A function u ∈ C1(J,R) is said to be a lower solution of problem (1) if




u′(t) ≤ f(t, u(t)), t ∈ J,

u(0) ≤ g(u(T )),

and an upper solution of (1) if the inequalities are reversed.
Let Ω = {u : y0(t) ≤ u ≤ z0(t), t ∈ J} be a nonempty set.
We introduce the following assumptions for later use.

(H1) f ∈ C(J × R,R), g ∈ C(R,R);
(H2) y0, z0 ∈ C1(J,R) are a lower and an upper solution of (1), respectively,

such that y0(t) ≤ z0(t), t ∈ J ;
(H3) there exists M ≥ 0 such that f(t, u)−f(t, v) ≤ M [v−u] for t ∈ J, y0(t) ≤

u ≤ v ≤ z0(t);
(H4) g is nondecreasing on the interval [y0(T ), z0(T )].

Lemma 1. Let Assumption H1 hold. Assume that u, v ∈ ∆ are a lower
and an upper solution of problem (1), respectively, and u(t) ≤ v(t) on J . Let
Assumptions H3, H4 hold. Let y, z ∈ C1(J,R) and

y′(t) = f̃(t, y(t)) ≡ f(t, u(t))−M [y(t)− u(t)], t ∈ J, y(0) = g(u(T )), (5)

z′(t) = f(t, z(t)) ≡ f(t, v(t))−M [z(t)− v(t)], t ∈ J, z(0) = g(v(T )). (6)

Then

u(t) ≤ y(t) ≤ z(t) ≤ v(t), t ∈ J, (7)

and y, z are a lower and an upper solution of problem (1), respectively.

Proof. It is easy to see that problems (5) and (6) have their unique solutions
y, z ∈ C1(J,R). Put p = u − y, so p(0) ≤ g(u(T )) − g(u(T )) = 0, and

p′(t) ≤ f(t, u(t)) − f̃(t, y(t)) = −Mp(t). It gives p(t) ≤ 0 on J so u(t) ≤ y(t),
t ∈ J . Similarly, we get z(t) ≤ v(t), t ∈ J . Now let q = y − z. Then
q(0) = g(u(T )) − g(v(T )) ≤ 0, by Assumption H4. Moreover, Assumption H3

yields

q′(t) = f(t, u(t))− f(t, v(t))−M
[
q(t)− u(t) + v(t)

]
≤ −Mq(t).



290 TADEUSZ JANKOWSKI

This and the condition for q(0) prove that q(t) ≤ 0 on J, so (7) holds.
Now we need to show that y, z are a lower and an upper solution of (1),

respectively. Indeed, in view of Assumptions H3 and H4, we have

y′(t) = f̃(t, y(t))− f(t, y(t)) + f(t, y(t))

≤ f(t, y(t)) + M [y(t)− u(t)]−M [y(t)− u(t)] = f(t, y(t)),

z′(t) = f(t, z(t))− f(t, z(t)) + f(t, z(t))

≥ f(t, z(t))−M [v(t)− z(t)]−M [z(t)− v(t)] = f(t, z(t))

and
y(0) = g(u(T )) ≤ g(y(T )), z(0) = g(v(t)) ≥ g(z(T )).

This ends the proof.

Note that if Assumptions H1 to H4 are satisfied, then by Lemma 1 the se-
quences yn, zn ∈ C1(J,R) (n = 0, 1, · · · ) are defined uniquely so that for every
natural n we have




y′n+1(t) = f(t, yn(t))−M [yn+1(t)− yn(t)], t ∈ J, yn+1(0) = g(yn(T )),

z′n+1(t) = f(t, zn(t))−M [zn+1(t)− zn(t)], t ∈ J, zn+1(0) = g(zn(T )).

Theorem 4. Assume that Assumptions H1, H2, H3 and H4 hold. Then

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t), (8)

t ∈ J, n = 0, 1, . . . ,

and uniformly on J we have

lim
n→∞ yn(t) = y(t), lim

n→∞ zn(t) = z(t),

where y and z are the minimal and the maximal solution of problem (1) in ∆.

Proof. Using Lemma 1, by mathematical induction we can get (8). Indeed,
the limits of sequences {yn}, {zn} are solutions of problem (1). By Theorem 2,
problem (1) has, in ∆, extremal solutions. To finish the proof, it is enough to
show that y and z are the minimal and the maximal solution of (1). To do it,
we need to show that if w is any solution of (1) such that y0(t) ≤ w(t) ≤ z0(t),
t ∈ J , then y0(t) ≤ y(t) ≤ w(t) ≤ z(t) ≤ z0(t), t ∈ J . Assume that for
some k, yk(t) ≤ w(t) ≤ zk(t), t ∈ J . Put p = yk+1 − w, q = w − zk+1, so
p(0) = g(yk(T ))− g(w(T )) ≤ 0, q(0) = g(w(T ))− g(zk(T )) ≤ 0. Moreover,

p′(t) = f(t, yk(t))−M [yk+1(t)− yk(t)]− f(t, w(t))

≤ M [w(t)− yk(t)]−M [yk+1(t)− yk(t)] = −Mp(t),

q′(t) = f(t, w(t))− f(t, zk(t)) + M [zk+1(t)− zk(t)] ≤ −Mq(t),

by Assumptions H3. It shows p(t) ≤ 0, q(t) ≤ 0 on J , so yk+1(t) ≤ w(t) ≤
zk+1(t) on J . Hence, by the method of mathematical induction, we have that
yn(t) ≤ w(t) ≤ zn(t) for t ∈ J and for all natural n. Taking the limit n → ∞,
we get the assertion of Theorem 4.
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4. Case where g is Nonincreasing

Functions u, v ∈ C1(J,R) are called weakly coupled (w.c.) lower and upper
solutions of problem (1) if





u′(t) ≤ f(t, u(t)), t ∈ J, u(0) ≤ g(v(T )),

v′(t) ≥ f(t, v(t)), t ∈ J, v(0) ≥ g(u(T )).

Let us introduce the following assumptions.

(H5) y0, z0 ∈ C1(J,R) are w.c. lower and upper solutions of problem (1) and
y0(t) ≤ z0(t), t ∈ J ;

(H6) g is nonincreasing on the interval [y0(T ), z0(T )];
(H7) there exist nonnegative constants A, M and an integrable function K :

J → R such that

−M [v − u] ≤ f(t, v)− f(t, u) ≤ K(t)[v − u] for t ∈ J, (9)

y0(t) ≤ u ≤ v ≤ z0(t),

−A[v − u] ≤ g(v)− g(u) ≤ 0 for y0(T ) ≤ u ≤ v ≤ z0(T ), (10)

and

A exp
( T∫

0

K(s) ds
)

< 1. (11)

Lemma 2. Assume that Assumption H1 is satisfied. Let u, v ∈ ∆ be w.c.
lower and upper solutions of (1) and u(t) ≤ v(t), t ∈ J . Let Assumptions H3,
H6 hold. Let y, z ∈ C1(J,R) and





y′(t) = f(t, u(t))−M [y(t)− u(t)], t ∈ J, y(0) = g(v(T )),

z′(t) = f(t, v(t))−M [z(t)− v(t)], t ∈ J, z(0) = g(u(T )).

Then

u(t) ≤ y(t) ≤ z(t) ≤ v(t), t ∈ J, (12)

and y, z are w.c. lower and upper solutions of problem (1).

Proof. Note that y and z are well defined. Put p = u − y, q = z − v. Then
p(0) ≤ g(v(T ))− g(v(T )) = 0, q(0) ≤ g(u(T ))− g(u(T )) = 0, and

p′(t) ≤ f(t, u(t))− f(t, u(t)) + M [y(t)− u(t)] = −Mp(t),

q′(t) ≤ f(t, v(t))−M [z(t)− v(t)]− f(t, v(t)) = −Mq(t), t ∈ J.

It yields p(t) ≤ 0, q(t) ≤ 0, t ∈ J , so u(t) ≤ y(t), z(t) ≤ v(t), t ∈ J . Now let
p = y − z, so p(0) = g(v(T )) − g(u(T )) ≤ 0, by Assumption H6. In view of
Assumption H3, we see that

p′(t) = f(t, u(t))− f(t, v(t))−M [y(t)− u(t)− z(t) + v(t)] ≤ −Mp(t).

Hence p(t) ≤ 0 on J , so (12) holds.
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By Assumptions H3 and H6, we have

y′(t) = f(t, u(t))−M [y(t)− u(t)]− f(t, y(t)) + f(t, y(t))

≤ f(t, y(t)) + M [y(t)− u(t)]−M [y(t)− u(t)] = f(t, y(t)),

z′(t) = f(t, v(t))−M [z(t)− v(t)]− f(t, z(t)) + f(t, z(t)) ≥ f(t, z(t)),

and

y(0) = g(v(T )) ≤ g(z(T )), z(0) = g(u(T )) ≥ g(y(T )).

It proves that y, z are w.c. lower and upper solutions of problem (1).
The proof is complete.

We see that if the assumptions of Lemma 2 are satisfied then the sequences
yn, zn ∈ C1(J,R) (n = 0, 1, · · · ) are defined uniquely so that for every natural
n we have





y′n+1(t) = f(t, yn(t))−M [yn+1(t)− yn(t)], t ∈ J, yn+1(0) = g(zn(T )),

z′n+1(t) = f(t, zn(t))−M [zn+1(t)− zn(t)], t ∈ J, zn+1(0) = g(yn(T )).

Theorem 5. Assume that Assumptions H1, H5, H7 hold. Then problem (1)
has a unique solution x ∈ ∆,

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t), (13)

t ∈ J, n = 0, 1, . . . ,

and uniformly on J we have

lim
n→∞ yn(t) = lim

n→∞ zn(t) = x(t).

Proof. It is easy to verify that all assumptions of Theorem 3 are satisfied, so
problem (1) has a unique solution x ∈ ∆. To finish the proof, it is enough to
show that the sequences yn, zn converge to x. Using Lemma 2, we can prove
(13), by mathematical induction. It follows from the standard argument that
{yn}, {zn} converge uniformly to their respective limit functions. Let y(t) =
lim

n→∞ yn(t), z(t) = lim
n→∞ zn(t). Then





y′(t) = f(t, y(t)), t ∈ J, y(0) = g(z(T )),

z′(t) = f(t, z(t)), t ∈ J, z(0) = g(y(T ))
(14)

and y0(t) ≤ y(t) ≤ z(t) ≤ z0(t), t ∈ J . Put p = z − y, so p(t) ≥ 0 on J . Hence
p(0) = g(y(T ))− g(z(T )) ≤ Ap(T ), by Assumption H6. Moreover,

p′(t) = f(t, z(t))− f(t, y(t)) ≤ K(t)p(t), t ∈ J.

This inequality yields

0 ≤ p(0) ≤ Ap(T ) ≤ Ap(0) exp
( T∫

0

K(s) ds
)
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since

0 ≤ p(t) ≤ p(0) exp
( t∫

0

K(s) ds
)
, t ∈ J.

By condition (11), p(0) = 0, and thus p(t) = 0, t ∈ J . This proves that
y(t) = z(t) on J , so y and z are solutions of problem (1). Since problem (1) has
a unique solution x, we have y = z = x.

It ends the proof.

Remark. The results of this paper remain true if the constant −M is replaced
by an integrable on J function M .
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2. I. Kiguradze and B. Půz̆a, On some boundary value problems for a system of ordi-
nary differential equations. (Russian) Differentsial’nye Uravneniya 12(1976), 2139–2148;
English transl.: Differ. Equations 12(1976), 1493–1500.

3. I. Kiguradze, Boundary value problems for systems of ordinary differential equations.
Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Novejshie Dostizh. 30(1987), 3–103; English
transl.: J. Sov. Math. 43(1988), 2259–2339.

4. I. Kiguradze, On systems of ordinary differential equations and differential inequalities
with multi–point boundary conditions. (Russian) Differentsial’nye Uravneniya 33(1997),
646–652; English transl.: Differ. Equations 33(1997), 649–655.

5. G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone iterative tech-
niques for nonlinear differential equations. Pitman, Boston, 1985.

6. V. Lakshmikantham, Further improvements of generalized quasilinearization method.
Nonlinear Anal. 27(1996), 223–227.

7. V. Lakshmikantham, S. Leela, and S. Sivasundaram, Extensions of the method of
quasilinearization. J. Optim. Theory Appl. 87(1995), 379–401.

8. V. Lakshmikantham, N. Shahzad, and J. J. Nieto, Methods of generalized quasi-
linearization for periodic boundary value problems. Nonlinear Anal. 27(1996), 143–151.

9. V. Lakshmikantham and N. Shahzad, Further generalization of generalized quasilin-
earization method. J. Appl. Math. Stochastic Anal. 7(1994), No. 4, 545–552.

10. V. Lakshmikantham and A. S. Vatsala, Generalized quasilinearization for nonlin-
ear problems. Mathematics and its Applications, 440. Kluwer Academic Publishers, Dor-
drecht, 1998.

11. Y. Yin, Remarks on first order differential equations with anti-periodic boundary condi-
tions. Nonlinear Times Digest 2(1995), No. 1, 83–94.

12. Y. Yin, Monotone iterative technique and quasilinearization for some anti-periodic prob-
lems. Nonlinear World 3(1996), 253–266.



294 TADEUSZ JANKOWSKI

(Received 10.04.2001; revised 11.02.2002)

Author’s address:
Technical University of Gdańsk
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