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ON APPEL-TYPE QUADRATURE RULES

C. BELINGERI AND B. GERMANO

Abstract. The Radon technique is applied in order to recover a quadrature
rule based on Appel polynomials and the so called Appel numbers. The
relevant formula generalizes both the Euler–MacLaurin quadrature rule and
a similar rule using Euler (instead of Bernoulli) numbers and even (instead
of odd) derivatives of the given function at the endpoints of the considered
interval. In the general case, the remainder term is expressed in terms of
Appel numbers, and all derivatives appear. A numerical example is also
included.
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1. Introduction

In the recent papers (see [3], [4], [9]) a generalization of the classical Euler–
MacLaurin quadrature rule has been introduced.

The new formulas are based on the Euler or, more generally, the so-called
Appel numbers instead of the Bernoulli ones. By using a combination of the
even derivatives computed at the endpoints of the considered interval the Euler-
type quadrature rule presented in [3], [9] makes a connection of the trapezoidal
rule with coefficients related to the Euler numbers.

Furthermore, in [4], an Appel-type quadrature rule considering the Appel
numbers and containing all derivatives in the connection term has been intro-
duced.

As it is well known, in [1] a general theory of quadrature rules can be found
which is based on the method going back to Radon, see [2], reducing any quadra-
ture rule known in the literature to evaluate the integral of g(x)u(x), with weight
function g(x), to the construction of a suitable differential operator E, and of
particular solutions of the adjoint equation E∗(ϕ) = g.

It is proved in [1] how the above-mentioned operators can be chosen in order
to recover the Gaussian quadrature rules and the Euler–MacLaurin formula too.

In this paper we extend the Radon technique to the quadrature rule consid-
ered in [4].
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2. Elementary Quadrature Rule in a Finite Interval

In [1], Chapter 2, an elementary quadrature formula which is valid for real
valued functions defined in a finite interval is constructed; the method can be
synthetized as follows.

A quadrature formula of the type

b∫

a

g(x)u(x)dx =
n−1∑

h=0

m∑

i=1

Ahiu
(h)(xi) + R(u) (2.1)

is constructed, where g(x) ∈ L[a, b], u(x) ∈ ACn−1[a, b],

a = x0 < x1 < . . . < xm < xm+1 = b

(g(x) is a weight, u(x) is an argument function, x1, . . . , xm are nodes) under
the condition that for a fixed order n the linear differential operator E is

E =
n∑

k=0

ak(x)
dn−k

dxn−k
. (2.2)

The following statement holds true:

E(u) = 0 ⇒ R(u) = 0 . (2.3)

Let

Er(u) =
r∑

k=0

ak(x)
dr−k

dxr−k
u, r = 0, 1, . . . , n− 1,

be the reduced operators associated with the operator E, and

E∗(v) =
n∑

k=0

(−1)n−k dn−k

dxn−k
[ak(x)v(x)] (a0(x) = 1) (2.4)

the adjoint operator of E.
It is well known that, introducing the adjoint E∗

r of the reduced operator Er,
one must assume

Ahi = [E∗
n−h−1(ϕi(x)− ϕi−1(x)]x=xi

, (2.5)

where ϕ1(x), . . . , ϕm−1(x) are arbitrary solutions of the differential equations

E∗(ϕ) = g(x), (2.6)

while ϕ0(x) and ϕm(x) are integrals of the same equations (2.6) satisfying the
initial conditions

ϕ
(h)
0 (a) = 0, ϕ(h)

m (b) = 0, h = 0, 1, . . . , n− 1 . (2.7)

Therefore

R(u) =

b∫

a

ϕ(x)E(u)dx =
m∑

i=0

xi+1∫

xi

ϕi(x)E(u)dx, (2.8)

where ϕ(x) = ϕi(x) with x ∈ (xi, xi+1), i = 0, 1, . . . m.
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It is well known that the estimation of R(u) can be simplified if the function
ϕ(x) is continuous and does not change the sign in [a, b].

3. Euler–MacLaurin Formula Using Bernoulli Polynomials

In [1], Chapter 4, the Euler–MacLaurin formula is constructed, where the co-
efficients Ahi are Bernoulli numbers. A synthesis of the method is the following.

Let us assume

a = 0, b = 1, g(x) = 1, x1 = 0, x2 = 1,

m = 2, n = 2ν + 2, E =
d2ν+2

dx2ν+2
, ν = 0, 1, . . . ,

ϕ1(x) =
B2ν+2(x)−B2ν+2

(2ν + 2)!
,

where B2ν+2(x) and B2ν+2 are respectively Bernoulli polynomials and Bernoulli
numbers.

The coefficients Ahi are given by

Ah1 =





0 (h even)
Bh+1

(h + 1)!
(h odd)

, Ah2 =





0 (h even)
−Bh+1

(h + 1)!
(h odd)

(h = 1, . . . , 2ν),

A01 = A02 =
1

2
if h = 0 ,

A2ν+1,1 = A2ν+1,2 = 0 if h = 2ν + 1 .

Then (2.1) becomes

1∫

0

u(x)dx =
1

2
[u(0) + u(1)] +

ν∑

k=1

B2k

(2k)!
[u(2k−1)(0)− u(2k−1)(1)] + R(u) ;

under the hypothesis u(2ν+2)(x) ∈ C[0, 1], equation (2.8) becomes

R(u) =

1∫

0

B2ν+2(x)−B2ν+2

(2ν + 2)!
u(2ν+2)(x)dx = − B2ν+2

(2ν + 2)!
u(2ν+2)(ξ) ,

where 0 < ξ < 1.

4. Appel Polynomials and Appel Numbers: Definition and
Properties

The Appel polynomials [10] are defined by considering the following generat-
ing function:

GR(x, t) = A(t)ext =
∞∑

n=0

Rn(x)

n!
tn , (4.1)
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where

A(t) =
∞∑

k=0

Rk

k!
tk (A(0) 6= 0) (4.2)

is analytic function at t = 0, and Rk := Rk(0), R0 = A(0) 6= 0.
The numbers Rk will be called the Appel numbers associated with A(t).
It easy to see that:

– if A(t) =
t

et − 1
, then Rn(t) = Bn(t);

– if A(t) =
2

et + 1
, then Rn(t) = En(t);

– if A(t) = α1 . . . αmtm[(eα1t− 1) . . . (eαmt−1)]−1, then Rn(t) are Bernoulli
polynomials of order m [12];

– if A(t) = 2m[(eα1t +1) . . . (eαmt +1)]−1, then Rn(t) are Euler polynomials
of order m [11].

It is suitable to introduce the coefficients αk of the expansion:

A′(t)
A(t)

=
∞∑

n=0

αn
tn

n!
. (4.3)

The coefficients αk are related to the Appel numbers Rk by the relation

Rk+1 =
k∑

h=0

(
k

h

)
Rhαk−h . (4.4)

The main property of Appel polynomials is expressed by the following theorem
(see [4]).

Theorem 1. The only polynomials Pn(x) satisfying the condition

P ′
n(x) = nPn−1(x), n = 0, 1, 2 . . . , (4.5)

are the Appel polynomials.

A recursive computation of Appel polynomials can be obtained by using the
formula

Rn+1(x) = (x + α0)Rn(x) +
n−1∑

k=0

(
n

k

)
αn−kRk(x) , (4.6)

n = 1, 2, . . . , with R0(x) = R0 = 1.
As a consequence of (4.5), for the integral in [0, 1] of the Appel polynomials,

we can write

1∫

0

Rn(x)dx =
Rn+1(1)−Rn+1(0)

n + 1
. (4.7)
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5. Appel-Type Quadrature Formula

In this section, starting from the Appel polynomials, we construct a quadra-
ture rule generalizing the well known Euler–MacLaurin quadrature formula,
using Appel (instead Bernoulli) numbers in the reminder term, and all (instead
only odd) order derivatives of the given function evaluated at the endpoints of
the considered interval.

The Euler–MacLaurin quadrature rule can be derived as a special case, owing
to the properties of Bernoulli numbers.

We can prove now our main result.

Theorem 2. Let u(x) ∈ ACν+1[0, 1], then the quadrature rule

1∫

0

u(x)dx = [(1 + α0)u(1)− α0u(0)]

+
ν∑

k=1

(−1)k

(k + 1)!
[Rk+1(1)u(k)(1)−Rk+1(0)u(k)(0)] + R(u)

holds true, where the remainder R(u) is expressed by

R(u) =

1∫

0

Rν+2(x)

(ν + 2)!
u(ν+2)(x)dx .

Proof. Let us assume

a = 0, b = 1, g(x) = 1, m = 2, x1 = 0, x2 = 1, n = ν + 2 ,

E =
dν+2

dxν+2
, ν = 0, 1, 2, . . . .

The differential equation E∗(ϕ) = g(x) can be written as ϕ(ν+2)(x) = 1.
It is sufficient to fix arbitrarily the integral ϕ1(x), for instance, we may assume

ϕ1(x) =
Rν+2(x)

(ν + 2)!
, (5.1)

where Rν+2(x) denotes the Appel polynomials of index ν + 2.
By using the hypothesis u(x) ∈ ACν+2[0, 1], equations (2.1), (2.8) become

respectively

1∫

0

u(x)dx =
ν+2∑

h=0

[Ah1u
(h)(0) + Ah2u

(h)(1)] + R(u), (5.2)

R(u) =

1∫

0

Rν+2(x)

(ν + 2)!
u(ν+2)(x)dx . (5.3)

Now we have only to compute the coefficients Ah1, Ah2 using (2.5).



410 C. BELINGERI AND B. GERMANO

We find

Ah1 = [E∗
ν−1−h(ϕ1)]x=0 = (−1)ν+1−hϕ

(ν+1−h)
1 (0), h = 0, 1, . . . , ν ,

so that

Ah1 = (−1)h+1Rh+1(0)

(h + 1)!
,

Ah2 = [E∗
ν+1−h(−ϕ1)]x=1 = −(−1)ν+1−hϕ

(ν+1−h)
1 (1), h = 0, 1, . . . , ν,

so that

Ah2 = (−1)h Rh+1(1)

(h + 1)!

and therefore, recalling (4.6),

A01 = −α0, A02 = 1 + α0 .

Hence, recalling the hypothesis u(ν+2)(x) ∈ C[0, 1], equations (5.2) and (5.3)
become respectively

1∫

0

u(x)dx=[(1 + α0)u(1)− α0u(0)] +
ν∑

k=1

(−1)k

(k + 1)!
[Rk+1(1)u(k)(1)

−Rk+1(0)u(k)(0)] + R(u) , (5.4)

R(u)=

1∫

0

Rν+2(x)

(ν + 2)!
u(ν+2)(x)dx = u(ν+2)(ξ)

1∫

0

Rν+2(x)

(ν + 2)!
dx

=u(ν+2)(ξ)
Rν+3(1)−Rν+3(0)

(ν + 3)!
, 0 < ξ < 1, ν = 0, 1, 2 . . . .

6. A Numerical Example

Note that the Appel quadrature rule depends on a choice of the function
A(t) so that infinitely many formulas can be deduced. In the following we will

assume A(t) = ee
− t

N −1, where N ≥ 1 is an integer. In this case we find

αk =
(−1)k+1

Nk+1

so that Rk+1 are expressed by

Rk+1 = − 1

N

k∑

h=0

(
k

h

)
(−1)k−h

Nk−h
Rh .
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The first Appel polynomials and the corresponding Appel numbers are given
by

R0(x) = 1,

R1(x) = x− 1

N
,

R2(x) = x2 − 2

N
x +

2

N2
,

R3(x) = x3 − 3

N
x2 +

6

N2
x− 5

N3
,

R4(x) = x4 − 4

N
x3 +

12

N2
x2 − 20

N3
x +

15

N4
,

R5(x) = x5 − 5

N
x4 +

20

N2
x3 − 50

N3
x2 +

75

N4
x− 52

N5
,

R6(x) = x6 − 6

N
x5 +

30

N2
x4 − 100

N3
x3 +

225

N4
x2 − 312

N5
x +

203

N6
,

R7(x) = x7 − 7

N
x6 +

42

N2
x5 − 175

N3
x4 +

525

N4
x3 − 1092

N5
x2 +

1391

N6
x− 877

N7
.

Let us apply the quadrature formula (5.4) with ν = 6, assuming the above
choice for A(t) and N = 161098, in order to integrate the function

u(x) =
sin x

x
.

Then we can write

I =

1∫

0

sin x

x
dx = u(1) +

6∑

k=1

(−1)k

(k + 1)!
[Rk+1(1)u(k)(1)−Rk+1(0)u(k)(0)] + R(u),

and consequently, by using the computer algebra program Derive V.4.07, we
find

I = 0.946083070365

with an error term less than 10−11, while the computation of the same integral,
using the Taylor expansion with seven terms, gives a worse result, namely we
found the approximation 0.946083070354 with an error less than 10−10.

It is worth noting that the choice of the integer N depends on the accuracy
we want to obtain: increasing its value we can obtain better results.

Remark. It is worth supposing that an interesting open problem is connected
with the possibility to choice in a suitable way the function A(t) in order to
have the smallest possible error depending on the class of functions we have to
integrate.
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