

Gen. Math. Notes, Vol. 18, No. 2, October, 2013, pp. 92-103 ISSN 2219-7184; Copyright © ICSRS Publication, 2013 www.i-csrs.org
Available free online at http://www.geman.in

On Fractional Calculus Operators of a Class of Meromorphic Multivalent Functions

Waggas Galib Atshan¹, Laila Ali Alzopee² and Mohammad Mostafa Alcheikh³

¹ Department of Mathematics College of Computer Science and Mathematics University of Al-Qadisiya, Diwaniya, Iraq E-mail: waggashnd@gmail.com; waggas_hnd@yahoo.com

^{2,3} Department of Mathematics College of Science, Damascus University Damascus, Syria ² E-mail: lailaalzopee@gmail.com ³ E-mail: mohammadalcheikh@mail2world.com

(Received: 15-7-13 / Accepted: 24-8-13)

Abstract

In the present paper, a class of meromorphic multivalent functions is defined by using fractional differ-integral operators. Coefficients estimates, radii of starlikeness and convexity are obtained. Also distortion and closure theorems for the class $\sum_{p}^{+}(\lambda,\mu,\nu,\eta,\gamma,\alpha,\beta)$ are also established.

Keywords: Meromorphic Functions, Fractional Calculus, Radius of starlikeness.

1 Introduction:

Let \sum_{p} denote the class of meromorphic functions of the form:

$$f(z) = z^{-p} + \sum_{n=p}^{\infty} a_n z^n, p \in N, \tag{1}$$

which are analytic and p-valent in the puncture unit disk

$$U^* = \{ z \in C \colon 0 < |z| < 1 \}.$$

A function $f \in \sum_{p}$ is said to be in the class $\sum_{p}^{*}(\alpha)$ of meromorphic p-valently starlike function of order α if:

$$-Re\left\{\frac{zf(z)}{f(z)}\right\} > \alpha \quad , \ (z \in U^*, 0 \le \alpha$$

A function $f \in \sum_{p}$ is said to be in the class $\sum_{p}^{k}(\alpha)$ of meromorphic p-valently convex function of order α if:

$$-Re\{1 + \frac{zf^{'}(z)}{f(z)}\} > \alpha, (z \in U^*, 0 \le \alpha < p, p \in N).$$
 (3)

In this paper, we discuss and study a new class of meromorphic p-valently convex functions by making use of the fractional differ-integral operator contained in:

Definition 1:

$$W_{0,z}^{\lambda,\mu,\nu,\eta}f(z) = \begin{cases} \frac{\Gamma(\mu+\nu+\eta-\lambda)\Gamma(\eta)}{\Gamma(\mu+\eta)\Gamma(\nu+\eta)} z^{-p+\eta+1} J_{0,z}^{\lambda,\mu,\nu,\eta} [z^{\mu+p}f(z)] & (0 \le \lambda < 1), \\ \frac{\Gamma(\mu+\nu+\eta-\lambda)\Gamma(\eta)}{\Gamma(\mu+\eta)\Gamma(\nu+\eta)} z^{-p-\eta+1} I_{0,z}^{-\lambda,\mu,\nu,\eta} [z^{\mu+p}f(z)] & (-\infty \le \lambda < 0) \end{cases}$$
(4)

where $J_{0,z}^{\lambda,\mu,\nu,\eta}$ is the generalized fractional derivative operator of order α defined by

$$J_{0,z}^{\lambda,\mu,\nu,\eta}f(z) = \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \left\{ z^{\lambda-\mu} \int_{0}^{z} t^{\eta-1} (z-t)^{-\lambda} {}_{2}F_{1}(\mu-\lambda,1-\nu;1-\lambda;1-\frac{t}{2}) f(t) dt \right\}$$

$$\left(0 \le \lambda < 1, \mu, \eta \in R, r \in R^{+} \text{and } r > (\max\{0,\mu\}-\eta) \right),$$
(5)

where f is an analytic function in a simply-connected region of the z-plane containing the origin and the multiplicity of $(z-t)^{-\lambda}$ is removed by requiring $\log(z-t)$ to be real when (z-t)>0, provided further that

$$f(z) = O(|z|^r) (z \to 0),$$
 (6)

and $I_{0,z}^{-\lambda,\mu,\nu,\eta}$ is the generalized fractional integral operator of order $-\lambda$ ($-\infty < \lambda < 0$) defined by

$$I_{0,z}^{\lambda,\mu,\nu,\eta}f(z) = \frac{z^{-(\lambda+\mu)}}{\Gamma(\lambda)} \int_{0}^{z} t^{\eta-1} (z-t)^{\lambda-1} {}_{2}F_{1}\left(\lambda+\mu,-\nu;\lambda;1-\frac{t}{2}\right) f(t) dt \tag{7}$$

$$(\lambda > 0, \mu, \eta \in R, r \in R^+ \text{ and } r > (\max\{0, \mu\} - \eta)),$$

where f is constrained and the multiplicity of $(z-t)^{\lambda-1}$ is removed as above and r is given by the order estimate (6).

It follows from (5) and (7) that

$$J_{0,z}^{\lambda,\mu,\nu,1}f(z) = J_{0,z}^{\lambda,\mu,\nu}f(z),\tag{8}$$

and

$$I_{0,z}^{\lambda,\mu,\nu,1}f(z) = I_{0,z}^{\lambda,\mu,\nu}f(z),\tag{9}$$

where $J_{0,z}^{\lambda,\mu,\nu}$ and $I_{0,z}^{\lambda,\mu,\nu}$ are the familiar Owa-Saigo-Srivastava generalized fractional derivative and integral operators (see, e.g., [4] and [8] see also [7]).

Also

$$J_{0,z}^{\lambda,\lambda,\nu,1}f(z) = D_z^{\lambda}f(z), \qquad (0 \le \lambda < 1)$$
 (10)

and

$$I_{0,z}^{\lambda,-\lambda,\nu,1}f(z) = D_z^{-\lambda}f(z), \qquad (\lambda > 0)$$
(11)

where D_z^{λ} and $D_z^{-\lambda}$ are the familiar Owa-Srivastava fractional derivative and integral of order λ , respectively (cf. Owa [3]; see also Srivastava and Owa [6]).

Furthermore, in terms of Gamma function, we have

$$J_{0,z}^{\lambda,\mu,\nu,\eta}z^{k} = \frac{\Gamma(k+\eta)\Gamma(k+\eta-\mu+\nu)}{\Gamma(k+\eta-\mu)\Gamma(k+\eta-\lambda+\nu)}z^{k+\eta-\mu-1}$$
(12)

$$(0 \le \lambda < 1, \mu, \eta \in R, v \in R^+ \ and \ k > (max\{0, \mu\} - \eta)),$$

and

$$I_{0,z}^{\lambda,\mu,\nu,\eta}z^{k} = \frac{\Gamma(k+\eta)\Gamma(k+\eta-\mu+\nu)}{\Gamma(k+\eta-\mu)\Gamma(k+\eta+\lambda+\nu)}z^{k+\eta-\mu-1}$$
(13)

 $(\lambda > 0, \mu, \eta \in R, v \in R^+ \text{ and } k > (\max\{0, \mu\} - \eta)).$

Now using (1), (12) and (13) in (4), we find that

$$W_{0,z}^{\lambda,\mu,\nu,\eta}f(z) = z^{-p} + \sum_{n=p}^{\infty} \Gamma_n^{\lambda,\mu,\nu,\eta} a_n z^n , \qquad (14)$$

Provided that $-\infty < \lambda < 1, \mu + \nu + \eta > \lambda, \mu > -\eta, \eta > 0, p \in N, f \in \Sigma_P$ and

$$\Gamma_n^{\lambda,\mu,\nu,\eta} = \frac{(\mu + \eta)_{n+p}(\nu + \eta)_{n+p}}{(\mu + \nu + \eta - \lambda)_{n+p}(\eta)_{n+p}} \ . \tag{15}$$

It may be worth noting that, by choosing $\mu = \lambda$, $\eta = 1$ and p=1, the operator $W_{0,z}^{\lambda,\mu,\nu,\eta}f(z)$ reduces to the well-known Ruscheweyh derivative $D^{\lambda}f(z)$ for meromorphic univalent functions [5].

In this paper, we shall study a subclass of (1) define below.

Definition 2: The function $f \in \Sigma_p$ is in the class $\Sigma_p(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$ if it satisfies the condition

$$\left| \frac{\frac{z(W_{0,z}^{\lambda,\mu,\nu,\eta}f(z))}{W_{0,z}^{\lambda,\mu,\nu,\eta}f(z)} + \gamma}{\frac{z(W_{0,z}^{\lambda,\mu,\nu,\eta}f(z))}{W_{0,z}^{\lambda,\mu,\nu,\eta}f(z)} + (2\alpha - \gamma)} \right| < \beta, \tag{16}$$

for some $\alpha(\alpha > 0)$, $\beta(0 < \beta \le 1)$, $\gamma(0 \le \gamma \le 1)$, $p \in N$, $-\infty < \lambda < 1$, $\mu + \nu + \eta > \lambda$, $\mu > -\eta$, $\nu > -\eta$ and $\eta > 0$.

For $\mu = \lambda = 0$, p=1; the class $\Sigma_p(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$ reduces to the class studied recently by Darus [1].

Definition 3: Let Σ_p^+ denote the subclass of Σ_p defined as

$$f(z) = z^{-p} + \sum_{n=p}^{\infty} a_n z^n \; ; \; (a_n \ge 0; p \in N).$$
 (17)

Then we define a new subclass $\Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$ by

$$\varSigma_p^+(\lambda,\mu,v,\eta,\gamma,\alpha,\beta) = \varSigma_p^+ \ \cap \ \varSigma_p(\lambda,\mu,v,\eta,\gamma,\alpha,\beta).$$

2 Coefficient Estimates:

Theorem 1: Assume that $f \in \Sigma_p$ and

$$\sum_{n=p}^{\infty} 2(n+\alpha) \Gamma_n^{\lambda,\mu,\nu,\eta} |a_n| \le (p-\gamma) + \beta(p+\gamma-2\alpha), \tag{18}$$

where $\Gamma_n^{\lambda,\mu,\nu,\eta}$ is defined by (15) and the conditions mentioned with (16)

hold. Then $f \in \Sigma_p(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$.

Proof: Let us assume that inequality (18) is true. Further suppose that

$$\mathbf{\Omega}(f) = \left| \mathbf{z} \left(W_{0,z}^{\lambda,\mu,\nu,\eta} f(z) \right) + \gamma W_{0,z}^{\lambda,\mu,\nu,\eta} f(z) \right| - \beta \left| \mathbf{z} \left(W_{0,z}^{\lambda,\mu,\nu,\eta} f(z) \right) \right| + (2\alpha - \gamma) W_{0,z}^{\lambda,\mu,\nu,\eta} f(z) \right|.$$

Now using (14), we find that

$$\Omega(f) = \left| -pz^{-p} + \sum_{n=p}^{\infty} n\Gamma_n^{\lambda,\mu,\nu,\eta} a_n z^n + \gamma z^{-p} + \sum_{n=p}^{\infty} \gamma \Gamma_n^{\lambda,\mu,\nu,\eta} a_n z^n \right|$$
$$-\beta \left| -pz^{-p} + \sum_{n=p}^{\infty} n\Gamma_n^{\lambda,\mu,\nu,\eta} a_n z^n + (2\alpha - \gamma)z^{-p} + \sum_{n=p}^{\infty} (2\alpha - \gamma)\Gamma_n^{\lambda,\mu,\nu,\eta} a_n z^n \right|$$

$$= \left| (\gamma - p)z^{-p} + \sum_{n=p}^{\infty} (n+\gamma)\Gamma_n^{\lambda,\mu,\nu,\eta} a_n z^n \right|$$
$$-\beta \left| (2\alpha - \gamma - p)z^{-p} + \sum_{n=p}^{\infty} (n+2\alpha - \gamma)\Gamma_n^{\lambda,\mu,\nu,\eta} a_n z^n \right|$$

$$\leq -(p-\gamma)r^{-p} \\ + \sum_{n=p}^{\infty} (n+\gamma)\Gamma_n^{\lambda,\mu,\nu,\eta} |a_n| r^n - \beta(p+\gamma-2\alpha)r^{-p} \\ + \sum_{n=p}^{\infty} (n+2\alpha-\gamma)\Gamma_n^{\lambda,\mu,\nu,\eta} |a_n| r^n$$

$$= \sum_{n=p}^{\infty} 2(n+\alpha) \Gamma_n^{\lambda,\mu,\nu,\eta} |a_n| r^n - (p-\gamma) + \beta(p+\gamma-2\alpha) r^{-p}.$$
 (19)

Since the above inequality holds for all r, 0 < r < 1. Letting $r \to 1$ in (19) we easily get that $\Omega(f) \le 0$, hence $f \in \Sigma_p(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$.

Theorem 2: Let $f \in \Sigma_p^+$. Then $f \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$ if and only if

$$\sum_{n=p}^{\infty} 2(n+\alpha) \Gamma_n^{\lambda,\mu,\nu,\eta} a_n \le (p-\gamma) + \beta(p+\gamma-2\alpha) , \qquad (20)$$

where $\Gamma_n^{\lambda,\mu,\nu,\eta}$ is defined by (15) and all the parameters are constrained as in Theorem 1.

Proof: In view of Theorem 1, it is sufficient to prove the "only if" part.

Let us assume that $f \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$. Then

$$\left| \frac{\frac{z(W_{0,z}^{\lambda,\mu,\nu,\eta}f(z))'}{W_{0,z}^{\lambda,\mu,\nu,\eta}f(z)} + \gamma}{\frac{z(W_{0,z}^{\lambda,\mu,\nu,\eta}f(z))'}{W_{0,z}^{\lambda,\mu,\nu,\eta}f(z)} + (2\alpha - \gamma)} \right|$$

$$= \left| \frac{(\gamma - p) + \sum_{n=p}^{\infty} (n + \gamma)\Gamma_n^{\lambda,\mu,\nu,\eta} a_n z^{n+p}}{(2\alpha - \gamma - p) + \sum_{n=p}^{\infty} (n + 2\alpha - \gamma)\Gamma_n^{\lambda,\mu,\nu,\eta} a_n z^{n+p}} \right| < \beta.$$

Since $Re(z) \le |z|$ for all z, it follows that

$$Re\left\{\frac{(\gamma-p)+\sum_{n=p}^{\infty}(n+\gamma)\Gamma_{n}^{\lambda,\mu,\nu,\eta}a_{n}z^{n+p}}{(p+\gamma-2\alpha)-\sum_{n=p}^{\infty}(n+2\alpha-\gamma)\Gamma_{n}^{\lambda,\mu,\nu,\eta}a_{n}z^{n+p}}\right\}<\beta.$$

Now letting $r \to 1^-$, through real values, we easily obtain the desired result (20).

3 Distortion Theorems:

A distortion property for functions in the class $\Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$ is contained in

Theorem 3: Let $f \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$. Then

$$\frac{1}{|z|^p} - \frac{(p-\gamma) + \beta(p+\gamma - 2\alpha)}{(p+\gamma)} |z|^p \le \left| W_{0,z}^{\lambda,\mu,\nu,\eta} f(z) \right|$$
$$\le \frac{1}{|z|^p} + \frac{(p-\gamma) + \beta(p+\gamma - 2\alpha)}{(p+\gamma)} |z|^p,$$

where all the parameters are constrained in as in Theorem 1.

Proof: Since $f \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$. In view of Theorem 2, we have

$$\sum_{n=n}^{\infty} a_n \, \Gamma_n^{\lambda,\mu,\nu,\eta} \le \frac{(p-\gamma) + \beta(p+\gamma - 2\alpha)}{2(p+\alpha)} \,. \tag{21}$$

Now

$$\left|W_{0,z}^{\lambda,\mu,\nu,\eta}f(z)\right| \leq \frac{1}{|z|^p} + \sum_{n=p}^{\infty} a_n \, \Gamma_n^{\lambda,\mu,\nu,\eta} |z|^n \leq \frac{1}{|z|^p} + |z|^p \sum_{n=p}^{\infty} a_n \, \Gamma_n^{\lambda,\mu,\nu,\eta} \,.$$

Now making use of (21), we obtain

$$\left|W_{0,z}^{\lambda,\mu,\nu,\eta}f(z)\right| \leq \frac{1}{|z|^p} + \frac{(p-\gamma) + \beta(p+\gamma-2\alpha)}{2(p+\gamma)}|z|^p.$$

Also

$$\left|W_{0,z}^{\lambda,\mu,\nu,\eta}f(z)\right| \geq \frac{1}{|z|^p} - \sum_{n=p}^{\infty} a_n \Gamma_n^{\lambda,\mu,\nu,\eta} |z|^n \geq \frac{1}{|z|^p} - |z|^p \sum_{n=p}^{\infty} a_n \Gamma_n^{\lambda,\mu,\nu,\eta}.$$

Again making use of (21), we get

$$\left|W_{0,z}^{\lambda,\mu,\nu,\eta}f(z)\right| \ge \frac{1}{|z|^p} - \frac{(p-\gamma) + \beta(p+\gamma-2\alpha)}{2(p+\gamma)}|z|^p.$$

This completes the proof of Theorem 3.

4 Radii of Starlikeness and Convexity for the Class $\Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$:

Theorem 4: Let $f \in \Sigma_p^+(\lambda, \mu, v, \eta, \gamma, \alpha, \beta)$. Then f is meromorphically p-valent starlike of order Ψ $(0 \le \Psi < p)$ in $|z| < r_1$, where

$$r_{1} = inf_{n} \left\{ \frac{(p - \Psi)(2(n + \alpha))\Gamma_{n}^{\lambda,\mu,\nu,\eta}}{(n + 2p - \Psi)(p - \gamma) + \beta(p + \gamma - 2\alpha)} \right\}^{\frac{1}{n+p}}, \tag{22}$$

where all the parameters are constrained as in Theorem 1.

Proof: For $(0 \le \Psi < p)$, we require to show that

$$\left| \frac{zf'(z)}{f(z)} + p \right|$$

That is

$$\begin{split} \left| \frac{-pz^{-p} + \sum_{n=p}^{\infty} na_n z^n + pz^{-p} + \sum_{n=p}^{\infty} pa_n z^n}{z^{-p} + \sum_{n=p}^{\infty} a_n z^n} \right| &= \left| \frac{\sum_{n=p}^{\infty} (n+p)a_n z^{n+p}}{1 + \sum_{n=p}^{\infty} a_n z^{n+p}} \right| \\ &\leq \frac{\sum_{n=p}^{\infty} (n+p)a_n |z|^{n+p}}{1 - \sum_{n=p}^{\infty} a_n |z|^{n+p}}$$

or equivalently

$$\sum_{n=p}^{\infty} \left(\frac{n+2p-\Psi}{p-\Psi} \right) z_n |z|^{n+p} \le 1.$$

It is enough letting

$$|z|^{n+p} \le \frac{(p-\Psi)(2(n+\alpha)\Gamma_n^{\lambda,\mu,\nu,\eta})}{(n+2p-\Psi)(p-\gamma)+\beta(p+\gamma-2\alpha)}.$$

Therefore,

$$|z| \le \left\{ \frac{(p - \Psi)\left(2(n + \alpha)\Gamma_n^{\lambda,\mu,\nu,\eta}\right)}{(n + 2p - \Psi)(p - \gamma) + \beta(p + \gamma - 2\alpha)} \right\}^{\frac{1}{n+p}}.$$
 (24)

Setting $|z| = r_1(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta, \Psi)$ in (24), we get the radius of starlikeness, which completes the proof of Theorem 4.

Noting the fact that f is convex if and only if zf is starlike [2], we have

Theorem 5: Let $f \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$.Then f is meromorphically p-valently convex of order $\Psi (0 \le \Psi < p)$ in $|z| < r_2$, where

$$r_2 = inf_n \left\{ \frac{p(p-\Psi)(2(n+\alpha)\Gamma_n^{\lambda,\mu,\nu,\eta})}{n(n+2p-\Psi)(p-\gamma) + \beta(p+\gamma-2\alpha)} \right\}^{\frac{1}{n+p}}.$$
 (25)

Proof: Let $f \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$. Then by Theorem 2

$$\sum_{n=p}^{\infty} \frac{2(n+\alpha)\Gamma_n^{\lambda,\mu,\nu,\eta} a_n}{(p-\gamma) + \beta(p+\gamma-2\alpha)} \le 1.$$

For $(0 \le \Psi < p)$, we show that

$$\left|\frac{zf''(z)}{f'(z)} + (1+p)\right| \le p - \Psi.$$

That is

$$\left| \frac{p(p+1)z^{-(p+1)} + \sum_{n=p}^{\infty} n(n-1)a_n z^{n-1} - p(p+1)z^{-(p+1)} + \sum_{n=p}^{\infty} n(p+1)a_n z^{n-1}}{-pz^{-(p+1)} + \sum_{n=p}^{\infty} na_n z^{n-1}} \right|$$

$$= \left| \frac{\sum_{n=p}^{\infty} n(n+p) a_n z^{n-1}}{-p z^{-(p+1)} + \sum_{n=p}^{\infty} n a_n z^{n-1}} \right| \leq \frac{\sum_{n=p}^{\infty} n(n+p) a_n |z|^{n+p}}{p - \sum_{n=p}^{\infty} n a_n |z|^{n+p}}$$

or equivalently

$$\sum_{n=p}^{\infty} \frac{n(n+2p-\Psi)}{p(p-\Psi)} a_n |z|^{n+p} \le 1.$$

It is enough to consider

$$|z|^{n+p} \leq \left\{ \frac{p(p-\Psi)\Big(2(n+\alpha)\Gamma_n^{\lambda,\mu,\nu,\eta}\Big)}{n(n+2p-\Psi)\Big((p-\gamma)+\beta(p+\gamma-2\alpha)\Big)} \right\}.$$

Therefore,

$$|z| \le \left\{ \frac{p(p-\Psi)\left(2(n+\alpha)\Gamma_n^{\lambda,\mu,\nu,\eta}\right)}{n(n+2p-\Psi)\left((p-\gamma)+\beta(p+\gamma-2\alpha)\right)} \right\}^{\frac{1}{n+p}}.$$
 (26)

Setting $|z| = r_2(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$ in (26), we get the radius of convexity, which completes the proof of Theorem 5.

5 Closure Theorems:

Let the functions $f_k(z)$, (k = 1, 2, ..., s), be defined by

$$f_k(z) = z^{-p} + \sum_{n=n}^{\infty} a_{n,k} z^n , (z \in U^*, a_{n,k} \ge 0).$$
 (27)

We shall prove the following closure theorems.

Theorem 6: Let the function $f_k(z)$, (k = 1, 2, ..., s), defined by (27) be in the class $\Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$. Then the function $F \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$, where

$$F(z) = \sum_{k=1}^{s} b_k f_k(z); (b_k \ge 0 \text{ and } \sum_{k=1}^{s} b_k = 1).$$
 (28)

Proof: From (28), we can write

$$F(z) = z^{-p} + \sum_{n=p}^{\infty} (\sum_{k=1}^{s} b_k a_{n,k}) z^n .$$
 (29)

Since $f_k \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)(k = 1, 2, ..., s)$, therefore

$$\sum_{n=p}^{\infty} 2(n+\alpha) \Gamma_n^{\lambda,\mu,\nu,\eta} \left(\sum_{k=1}^{s} b_k a_{n,k} \right) z^n = \sum_{k=1}^{s} b_k \left(\sum_{n=p}^{\infty} 2(n+\alpha) \Gamma_n^{\lambda,\mu,\nu,\eta} a_{n,k} \right)$$

$$\leq \sum_{k=1}^{s} b_{k} ((p-\gamma) + \beta(p+\gamma-2\alpha\beta)) = (p-\gamma) + \beta(p+\gamma-2\alpha).$$

Hence by Theorem 2, we have $F \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$.

This completes the proof of Theorem 6.

Theorem 7: The class $\Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$ is closed under convex linear combination.

Proof: Let the functions $f_k(k=1,2)$ given by (28) be in the class $\Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$. Then it is enough to show that the function

$$g(z) = \sigma f_1(z) + (1 - \sigma)f_2(z), (0 \le \sigma \le 1), \tag{30}$$

is also in the class $\Sigma_p^+(\lambda,\mu,\nu,\eta,\gamma,\alpha,\beta)$.

Since, for $(0 \le \sigma \le 1)$,

$$g(z) = z^{-p} + \sum_{n=n}^{\infty} [\sigma a_{n,1} + (1 - \sigma)a_{n,2}] z^n$$
,

we observe that

$$\sum_{n=n}^{\infty} 2(n+\alpha) \Gamma_n^{\lambda,\mu,\nu,\eta} \left\{ \sigma a_{n,1} + (1-\sigma) a_{n,2} \right\}$$

$$= \sigma \sum_{n=p}^{\infty} 2(n+\alpha) \Gamma_n^{\lambda,\mu,\nu,\eta} a_{n,1} + (1-\sigma) \sum_{n=p}^{\infty} 2(n+\alpha) \Gamma_n^{\lambda,\mu,\nu,\eta} a_{n,2}$$

$$\leq (p-\gamma) + \beta(p+\gamma-2\alpha).$$

Hence, by Theorem 2, we have $g \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$.

Theorem 8: Let $f_{p-1}(z) = z^{-p}$,

$$f_p(z) = z^{-p} + \frac{(p - \gamma) + \beta(p + \gamma - 2\alpha)}{2(n + \alpha)\Gamma_n^{\lambda, \mu, \nu, \eta}} z^n,$$
(31)

where all parameters are constrained as in Theorem 1.

Then $f \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$ if and only if f can be expressed in the form

$$f(z) = \sigma_{p-1} f_{p-1}(z) + \sum_{n=p}^{\infty} \sigma_n f_n(z),$$
(32)

where $\ \sigma_{p-1} \geq 0$, $\sigma_n \geq 0$ and $\sigma_{p-1} + \sum_{n=p}^{\infty} \sigma_n = 1$.

Proof: Let

$$f(z) = \sigma_{p-1} f_{p-1}(z) + \sum_{n=p}^{\infty} \sigma_n f_n(z)$$

$$=z^{-p}+\sum_{n=p}^{\infty}\frac{(p-\gamma)+\beta(p+\gamma-2\alpha)}{2(n+\alpha)\Gamma_n^{\lambda,\mu,\nu,\eta}}\sigma_nz^n.$$

Then

$$\sum_{n=p}^{\infty} \frac{\left((p-\gamma)+\beta(p+\gamma-2\alpha)\right)2(n+\alpha)\Gamma_n^{\lambda,\mu,v,\eta}}{2(n+\alpha)\Gamma_n^{\lambda,\mu,v,\eta}\big((p-\gamma)+\beta(p+\gamma-2\alpha)\big)}\sigma_n$$

$$=\sum_{n=p}^{\infty}\sigma_n=1-\sigma_{p-1}\leq 1.$$

Hence by Theorem 2, we have $f \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$.

Conversely, Let $f \in \Sigma_p^+(\lambda, \mu, \nu, \eta, \gamma, \alpha, \beta)$.

Since

$$a_n \le \frac{(p-\gamma) + \beta(p+\gamma-2\alpha)}{2(n+\alpha)\Gamma_n^{\lambda,\mu,\nu,\eta}}$$
, for $n \ge p$.

We may take

$$\sigma_n = \frac{2(n+\alpha)\Gamma_n^{\lambda,\mu,\nu,\eta}}{(p-\gamma) + \beta(p+\gamma-2\alpha)} a_n , \quad \text{for } n \ge p$$

and $\sigma_{p-1} = 1 - \sum_{n=p}^{\infty} \sigma_n$. Then

$$f(z) = \sigma_{p-1} f_{p-1}(z) + \sum_{n=p}^{\infty} \sigma_n f_n(z).$$

This completes the proof of Theorem 8.

References

- [1] M. Darus, Meromorphic functions with positive coefficients, *Int. J. Math. & Math. Sci.*, 6(2004), 319-324.
- [2] P.L. Duren, *Univalent Functions, Grundlehren der Mathematischen Wissenschaften (Vol. 259)*, Springer-Verlag, New York, (1983).
- [3] S. Owa, On the distortion theorems, *I. Kyung Pook Math. J.*, 18(1978), 53-59.
- [4] S. Owa, M. Saigo and H.M. Srivastava, Some characterization theorems for starlike and convex functions involving a certain fractional integral operator, *J. Math. Anal. Appl.*, 140(1989), 419-426.
- [5] S. Ruscheweyh, New criteria for univalent functions, *Proc. Amer. Math. Soc.*, 49(1975), 109-115.
- [6] H.M. Srivastava and S. Owa (Editors), *Univalent Functions, Fractional Calculus and their Applications*, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, (1989).
- [7] H.M. Srivastava and S. Owa (Editors), *Current Topics in Analytic Function Theory*, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, (1992).
- [8] H.M. Srivastava, M. Saigo and S. Owa, A class of distortion theorems involving certain operators of fractional calculus, *J. Math. Anal. Appl.*, 31(1988), 412-420.