W

Gen. Math. Notes, Vol. 18, No. 2, October, 20139@p103
ISSN 2219-7184; Copyright © ICSRS Publication, 2013
WWW.I-CSrs.org

Available free online at http://www.geman.in

On Fractional Calculus Operatorsof a Class
of Meromor phic Multivalent Functions

Waggas Galib Atshan®, Laila Ali Alzopee? and Mohammad M ostafa
Alcheikh?

! Department of Mathematics
College of Computer Science and Mathematics
University of Al-Qadisiya, Diwaniya, Iraq
E-mail: waggashnd@gmail.com; waggas_hnd@yahoo.com

Z3Department of Mathematics
College of Science, Damascus University
Damascus, Syria
2E-mail: lailaalzopee@gmail.com
3 E-mail: mohammadalcheikh@mail2world.com

(Received: 15-7-13 / Accepted: 24-8-13)

Abstract

In the present paper, a class of meromorphic malint functions is defined
by using fractional differ-integral operators. Céefents estimates, radii of
starlikeness and convexity are obtained. Also disto and closure theorems for
the clas9; (4, 1, v,n,v, a, f) are also established.
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1 I ntroduction:

Let » denote the class of meromorphic functions of tmenfo

f(@)=zP+Y¥5panz",p €N, 1)
which are analytic and p-valent in the puncture digk
Ur={z€e(C:0<|z| < 1}.

A function f e} » is said to be in the clag$,(a) of meromorphic p-valently
starlike function of ordes if:

—Re{%}>a ,(zeU",0<a<p,p€EN). (2)

A function f € ) » is said to be in the claﬁg(a) of meromorphic p-valently
convex function of ordew if:

—Re{1+%}>a,(ZEU*,OSa<p,pEN). 3)

In this paper, we discuss and study a new clagseobmorphic p-valently convex
functions by making use of the fractional diffetagral operator contained in:

Definition 1:
r(u+v+n—-A)r _ Auv,
e 2 TP F ()] (0 A< ),
W/Lﬂﬁv'nf(z) _ F(M"‘ﬂ)p(v"‘n) (4)
0,z ) Tt =Dr®m)  _p-n+1,-ARvN[uep _
Tarmrom 2 Iy, [ZHPf(2)] (o< A<0)
Where](if‘”’"is the generalized fractional derivative operatbomler a defined
by
Auw, 1 d _ Z o -
]O‘Z”vnf(z) = F(l—A)E{Zl “l Tz —1) AR (u—A1-v;1—-2;1—

If(Ddt} ®)
(0 <A<1Lun€R,r€R and r > (max{0, u} — 7])),

wheref is an analytic function in a simply—connected oegiof the z-plane

containing the origin and the multiplicity @& — t)=* is removed by requiring
log(z — t) to be real whefx — t) > 0, provided further that

f@=0(z") (-0, (6)
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andlo_j’“'”'" is the generalized fractional integral operatoomfer- 4 (—o < 1 <
0) defined by

7~
r@a

I (@) = [ =L (A w1 -2) fde (7)

(A > 0,u,m €R, 7 € RT and r > (max{0, u} — n)),

wheref is constrained and the multiplicity 6f — t)*~* is removed as above and
ris given by the order estimate (6).

It follows from (5) and (7) that

LEVLE(7) = JREU F(2), 8)

and
TR (2) = 132V (2), 9)

where 61;“’ and 1’1’“’ are the familiar Owa-Saigo-Srivastava generdlize
fractional derivative and integral operators (®eg,, [4] and [8] see also [7]).

Also

JoP @ =Dif(2), (0 <A<1) (10)
and

Iy " f(2) = D7 f (), (A>0) (11)

where D} and D;* are the familiar Owa-Srivastava fractional detiixe and
integral of ordei, respectively (cf. Owa [3]; see also Srivastava @wa [6]).

Furthermore, in terms of Gamma function, we have

apvn k. Te+mMIk+n—p+v) Jn-u-1

0z X T Thk+n-wlk+n—A+v) (12)
(0 <A<1,umn € R,ve Rtand k > (max {0,u} — n)),
and

vy _LUeAmIk+n—p+v) 4, (13)

oz 7 T T(k+n—-wrk+n+1+v)
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(A>0,u,m € R,v€ R and k > (max {0, u} — n)).
Now using (1), (12) and (13) in (4), we find that

Wo " f(2) = 277 + Sy [ anz™, (14)
Provided that-co < A< 1, u+v+n>Au>-nn>0p€N,f €Xpand

I—,/l,u,v,n — (/1 + 77)n+p (U + 77)n+p
" (.u +v+ n-— A)n+p(n)n+p

(15)

It may be worth noting that, by choosipg= 1,n =1 and p=1, the operator
W’““”’f(z) reduces to the well-known Ruscheweyh derivativg!f(z) for
meromorphic univalent functions [5].

In this paper, we shall study a subclass of (linedbielow.

Definition 2: The functiorf’ € X,is in the clas, (4, u, v, 1,7, a, B) if it satisfies
the condition

zWor """ (2))
Wy (2)

2(W, " f(2))
Wil (2)

<p, (16)

+ 2a—-vy)

for some a(a>0), B(O<KB<1),y(O<y<1),peEN,—-0o<A<1, pu+
v+n>Au>-nv>-nandn > 0.

For u=A=0, p=1,; the classX, (4, u,v,n,y,a,B) reduces to the class studied
recently by Darus [1].

Definition 3: Let X denote the subclass @, defined as
f(z)=z7P+ Z a,z"; (a, =0;p €N). a7
n=p

Then we define a new subclas§ (4, u, v,1,v, a, B) by

LyAuwvny,af)=25 0 X,ALuv,ny ap).
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2 Coefficient Estimates:

Theorem 1. Assume thaf € X, and
Siep 2+ @) [ an] < (p—v) + B(p +v — 20), (18)

wherel;*"Mis defined by (15) and the conditions mentioned\5)
hold. Thenf € X,(A, v, 10,7, a,p).

Proof: Let us assume that inequality (18) is true. Furthugapose that

o) = |z (Wo?;‘"""f(z))' + YW (2)

VWP (2).

— B|z(W T f (@) + (2a -

Now using (14), we find that

—pz7P + Z nL a2 + (2a — y)z 7P +
—B n=p

> @a - L,z

n=p

= (‘y — p)Z_p + Z (n + ,}/)rnﬂ-,ﬂ:v,n anZTl

n=p

- B|QRa—-y—p)z7? + Z(n + 2a — y)I’nA’”’v’"anZ"

n=p
<-@-nr*
+ ) DL gy = B +y - 20077
n=p
+ Z(n + 2a — )/)Fn/l’“’v’"lanlr"
n=p

=Yp 2+ L ay|r™ — (0 —y) + Blp +y — 2a)r7. (19)
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Since the above inequality holds for all r, 0 <t.d etting r—1 in (19) we easily
getthatQ(f) < 0, hencef € Z,(A, i, v,n, v, o, B).

Theorem 2: Letf € X5 .Thenf € X; (A, u,v,n,v,a,pB) if and only if

Z 200+ L a, < (0 —y) + Bp +v — 2a) , (20)
n=p

where X" is defined by (15) and all the parameters are tcained as in
Theorem 1.

Proof: In view of Theorem 1, it is sufficient to prove ttanly if” part.

Let us assume thgte X (4, u,v,1,y,a,B). Then

2Wo @) |
Wo " f (@)
2(Wy " f(2))
Wy f (2)

+ (2a—vy)

v —p) + Zip(n + VL2, 2P
Qa—y—p)+X5-p(n+ 2a — y)I’nA’“’v’"anZ"J’P

<B.

Since Re(z) < |z| for all z, it follows that

© Auv,
Re ()/ - p) + Zn:p(n + V)Fn I“’TIanZn+p <
p+y-2a) - Y5 ,(n+2a— y)Fn’l'”’v’"anz”’fp

Now letting r = 1~ , through real values, we easily obtain the ddgiesult (20).
3  Distortion Theorems:

A distortion property for functions in the clas§ (4, u,v,n,v,a, B) is contained
in

Theorem 3: Letf € X5 (4, u,v,1,y,a,B) .Then
1 (@-m+BE+y-2a) 2P < |WAEP £
|z|? (»+7v) - o

< 1 +(p—V)+ﬁ(p+V—2a)
|z|P @»+7v)

||

)
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where all the parameters are constrained in ah@oem 1.

Proof: Sincef € X5 (4, u,v,n,v,a,f) . In view of Theorem 2, we have

o]

- -2
ZanF“"" < @-v)+BM@+y a)_ 21
2(p+a)
n=p
Now
0 1 0
AU, rt Auv,
|W0’Zﬂ1777f(z)|_| |p Z anlzln—w-}_lzlpzan[‘n Mvn.

= n:p

Now making use of (21), we obtain

o, (p Y)+B(p+y—2a)
i) < g+ g e

Also

A u v 1 ALuvn 1 ALuvm
f@)] 2 25 = By anly |2l 2 25— |27 Ty anl .

Again making use of (21), we get

pP-v)+B{@+y-—2a)
2(ptv)

1
Awvn | > _ p
Wot " f(2)] = FE |z|

This completes the proof of Theorem 3.

4  Radii of Starlikeness and Convexity for the Class
Iy (Auvny ap):

Theorem 4: Let f € Z; (4, u,v,n,y,2,8) .Then f is meromorphically p-valent
starlike of orde® (0 < ¥ < p)in|z| <r,, where

4]
1

(P -+ aL P 2
-ty —2a0)| (22)

= inf,

where all the parameters are constrained as inréhe.

Proof: For (0 < ¥ < p), we require to show that
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2f (2)
f(2)

That is

+pl<p-—-W¥. (23)

Zﬁ=p(n +p)anz™*
| 1+ X3, a2t

|—'pz‘p + Yr=pnanz™ + pz P + ¥3_, pa,z"
z7P + Ypo, anZ"

n=p(n +p)anlz

=TT S anla

o+ 2 v
Z( P )znlzl’l“’ <1.

n=p

|n+p

<p—-Y¥,

or equivalently

It is enough letting

|z|v*P < p-¥)2n+ a)Fn)L,u,v,n)
T m+2p—-P)p-y)+Bp+y-2a)

Therefore,

1
G ‘z”)(Z(n +a) rn"'ﬂ'v'n) P
m+2p—p—-y)+L(p+vy—2a)

|z| < (24)

Setting |z| = (L u,v,n,v,a,B,¥) in (24), we get the radius of starlikeness,
which completes the proof of Theorem 4.

Noting the fact thaf is convex if and only itf'is starlike [2], we have

Theorem 5: Let f € 2; (A, u,v,1,v,a,B) .Then f is meromorphically p-valently
convex of order¥? (0 < ¥ < p)in |z| < r, where

1
. { p(p — )2 + L") ntp
r, = inf, .

"t + 20— )P -1+ B -7 — 23) (25)

Proof: Let f € 25 (4,1, v,1,7,a,B) . Then by Theorem 2

2(n+a)1“'1‘”7" a,
(p Y+Bam+y-— 2a)
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For(0 < ¥ < p), we show that

|Zf, (Z)+(1+p)‘Sp—’P.

f(2)
That is

p(p+ 1Dz @ 4 3% n(n—Da,z"t—pp+ Dz @ + 32 n(p + Dayz™?
_pz—(p+1) + Zor(l)zp nanzn—l

_ | BrpnAmanzt | Sipn@Apaad™r
—pZ_(P+1) + Z%sz nanZn_l - p— Zor(ljzp nan|Z|n+p ,
or equivalently
— n(n +2p -V
Z ( P )anlzl’”p <1.
—~ pl-¥)
n=p
It is enough to consider
e < pp—¥)(2n + @ IH")
VA S .
n(n+2p—=¥)((p—v) + B +vy - 2a))
Therefore,
_1_
p(p— ‘P)(Z(n + a)l"n/l’“’v’") e
|z| < (26)

nn+2p—P)((p—y)+Bp+vy-2a)

Setting |z| = r,(4, 1, v,1n,y,a,B) in (26), we get the radius of convexity, which
completes the proof of Theorem 5.

5 Closure Theorems:

Let the functiong, (2), (k = 1,2, ..., s), be defined by
fi(2)=2zP+ Z An 2" ,(Z EU any = 0). (27)
n=p

We shall prove the following closure theorems.
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Theorem 6: Let the functionf,(2), (k = 1,2, ...,s), defined by (27) be in the
classZ; (4, u, v,1,v,a,B). Then the functiorF € Z; (4,4, v,1,v, @, B), where

F(z) = Yh=1brfi(2); (b = 0and Y5-, b, = 1). (28)
Proof: From (28), we can write

F(z)=z"P+ Z(Z bran)z™ . (29)

n=p k=1

Sincef, € Xy (A u,v,n,y,a,B)(k = 1,2,...,5s), therefore

0 S S 0
z 2(n + a)H*o" (Z bkan,,C) PAES z by, Z 2(n+ )Ly,
n=p k=1 1 n=p

k=

<D (-1 +BE+y—2aR) =@ -1+ +y - 20)
k=1

Hence by Theorem 2, we have € X5 (4, u,v,n,v, a, ).
This completes the proof of Theorem 6.

Theorem 7: The class Z; (4, u,v,n,y,a,B8) is closed under convex linear
combination.

Proof: Let the functions f,(k=12) given by (28) be in the
class¥y; (A, u,v,n,v,a,B). Then it is enough to show that the function

9(z) =0f1(2) + (1 -0)f2(2),(0 <0 < 1), (30)
is also in the classZy (4, i, v, 1,7, a, ) .
Since, for(0 <o < 1), 3}

g(z)=z"P+ Z [can, + (1 —0)ay,,]z",

n=p
we observe that

z 2(n+ LM oan, + (1 — 0)an,)

n=p
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=0 Z 2(n+ oc)FnA’”’v’"an,l +(1-0) Z 2(n+ a)l"n/l’“’v’"an,z
n=p n=p

<s@-v)+B+y- 2.
Hence, by Theorem 2, we havg € X; (A, u,v,n,v,a,p) .
Theorem 8: Let f,_1(z) = z7P,

PN H By —2a)
2(n + )"

fr(2) =2z , (31)

where all parameters are constrained as in Thetirem
Then f € Z; (A, u,v,n,v,a,pB) if and only iff can be expressed in the form

0

&) = 0psfpa (@D + ) oufa(@), (32)

n=p

where o,_; 20,0, 20and op_1 + X5-p0, = 1.

Proof: Let
@) = 0prfpa @D+ ) 0ufa(@)
n=p
L G- +Bp+y —20)
=z P+ T nZ
= 2(n+ o)l
Then

0

Y (=P +B@+y —20)20 + DL
2(n+ a)l"n/l,u,v,n((p — )+ B +y—2a)) n

n=p

o0
=Zc7n=1—ap_1sl.
n=p

Hence by Theorem 2, we havef € 25 (4, u,v,n,v,a,B).

Conversely, Letf € Xy (4w v,n,v,a,B) .
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Since
p-v)+Bp+y—2a)
n < T , for n=>p.
2n+ )l
We may take
A”M’v’n
2(n+ )l
O ( K for n>p

= a, ,
-+ +y—2a) "
and g,_1 = 1—Y7_,0,.Then

0

F2) = Opsfyr @+ ) a2

n=p

This completes the proof of Theorem 8.
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