
Homology, Homotopy and Applications, vol.3(2), 2001, pp. vii–xv

PROBLEM SESSION

GUNNAR CARLSSON

These problems were submitted by the participants in the workshop on equivari-
ant homotopy theory held at Stanford University during the period August 23-27,
2000. They reflect the wide range of mathematics which is included within equiv-
ariant homotopy theory. We hope they will be useful for researchers in the field, as
well as for graduate students entering the subject.

1. Landweber cohomology
Mike Hopkins and Haynes Miller

Long ago Pierre Cartier asked whether one could speak of “cohomology with
coefficients in a formal group”. To be more precise we make a definition.

Definition. A periodic ring spectrum is a homotopy commutative and associative
ring spectrum whose homotopy ring vanishes in odd dimensions and contains a unit
in degree 2.

For such a theory E, the Atiyah-Hirzebruch spectral sequence collapses for any
spectrum with evenly graded cohomology. It follows that E0(CP∞) is a power series
ring over E0 on one generator, and the H-space structure on CP∞ determines a
formal group GE over E0, and an isomorphism from the E0-module ωG of invariant
differentials to E−2.

Cartier was asking whether there was a construction of a periodic ring spectrum
E from a formal group G/R, together with isomorphisms E0 ∼= R, GE ≡ G. One
scenario might be to produce a symmetric monoidal category of “representations”
of the formal group, and consider the associated spectrum. Any such construction
should provide a functor from formal groups to spectra and not just to the homotopy
category of spectra.

We still know virtually nothing about this question. Peter Landweber gave a con-
dition on a formal group G/R which guarantees that a corresponding spectrum may
be constructed algebraically out of MU in the homotopy category. The connection
between MU and formal groups of course goes back to Quillen’s observation that
MU∗ is the Lazard ring, supporting the universal formal group law.

To recall Landweber’s condition, pick a coordinate t for the formal group so the
endomorphism a 7→ na of G is represented by a power series [n](t) ∈ R[ [t] ]. Write
Ip,n(G/R) for the ideal in R of coefficients in [p](t) through that of tp

n−1. It is easy
to check that these ideals are independent of choice of coordinate, and that for each
n > 0 there is an element vn ∈ R such that

Ip,n(G/R) = Ip,n−1(G/R) + vnR.

The formal group G/R is regular if for each prime p the sequence v0, v1, . . . is a reg-
ular sequence. This condition is clearly independent of choice of vn’s. Landweber’s
theorem, augmented by a recent theorem of Hovey and Strickland, is
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Theorem There is a fully faithful functor E from the category of regular formal
groups to the category of periodic ring spectra, together with a natural isomorphism

GEG/R/E0
G/R

∼= G/R.

Recall that one may “pull back” a formal group G/R along a ring homomorphism
f : R → S to a formal group fG/S. Formal groups over arbitrary rings form a
category FG in which a morphism from G/R to H/S is a ring homomorphism
R → S together with an isomorphism fG → H of formal groups over S.

Here is an updated form of Cartier’s question.

Conjecture. The functor E lifts to a functor to the category of E∞ ring spectra
whose underlying ring spectra are periodic.

We have no reason to expect a negative answer beyond the failure of current
technique. We do have several examples of functors π : C → FG for which the
composite Eπ does lift.

Definition. A formal group G/R is a universal deformation if

(1) R is a complete local ring with maximal ideal m and perfect residue field K
of characteristic p,

(2) G reduces to a formal group G0 of finite height n over K, and

(3) G/R is regular and Ip,n(G) = m.

Let π be the inclusion of the universal deformations into all formal groups.

Theorem. (Hopkins-Miller, Hopkins-Goerss) The composite Eπ lifts to a
functor to the category of periodic E∞ ring spectra. Moreover, given universal de-
formations G/R and H/S, the functor establishes a homotopy equivalence from
Hom(G/R, H/S) to the subspace of E∞ morphisms from EG/R to EH/S which
induce local morphisms in π0.

The work of Hopkins and Miller on elliptic spectra gives an analogous lift from
a suitable stack of elliptic curves.

2. Localization and completion theorems for MUG.

John Greenlees and Peter May

If G is a compact Lie group, tom Dieck has defined equivariant homotopical
complex cobordism MU∗

G(·): the representing spectrum is constructed using Thom
spaces and it can be regarded as a stabilization of geometrical bordism which allows
transversality. There are a number of basic questions about this theory and its
relation to non-equivariant complex bordism.

Let I = ker(MU∗
G → MU∗) denote the augmentation ideal. Given any MU∗

G-
module M , for any finitely generated ideal I ′ we may form the local cohomology
H∗

I′(M) in the sense of Grothendieck and the local homology HI′
∗ (M) and there is

a comparison map associated to a containment I ′ ⊆ I ′′ of ideals.
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The following problems were all answered affirmatively when the identity com-
ponent Ge is a torus [J. P. C. Greenlees and J. P. May, Localization and completion
theorems for MU -spectra, Annals of Math. 146 (1997), 509-544.]

Problem. Is the local cohomology H∗
I′(M) constant for all sufficiently large finitely

generated ideals I ′?

Below we assume the answer is yes, and use H∗
I and HI

∗ to denote the stable
value.

Problem. Is there a local cohomology theorem and a local completion theorem for
equivariant bordism?

This would give spectral sequences

(i) starting with local cohomology and terminating with the MU homology of BGad

and
(ii) starting with local homology and terminating with the MU cohomology of BG

(Here BGad denotes the Thom complex of the vector bundle over BG determined
by the adjoint representation of G.)

Problem. Is HI
0 (MU∗

G) = (MU∗
G)∧I and is HI

i (MU∗
G) = 0 for i > 0?

3. Equivariant formal group laws

John Greenlees

If G is a compact Lie group, a complex orientation on a G-equivariant cohomology
theory E∗

G(·) is a ring map MU → E of G-spectra. If G is abelian it is known how
to express this in terms of an element y(ε) ∈ E∗

G(BU(1) ) as usual, where ε denotes
the one dimensional trivial representation of G. A G-equivariant formal group law
is an algebraic construct designed to capture the formal properties of the system
of topological rings E∗

G(BU(n) ) for n > 0, where BU(n) is the classifying G-space
for n-dimensional equivariant complex bundles, together with their universal Euler
class yn(nε). The definition includes the structure coming from direct sum, tensor
product and exterior powers. If G is abelian, the entire structure is determined
by R = E∗

G(BU(1) ) and y(ε) = y1(ε), and may be formulated as follows, see [M.
M. Cole, J. P. C. Greenlees, I. Kriz, Equivariant formal group laws, Proc. LMS
81(2000), 355-386]

If A is a finite abelian group, an A-equivariant formal group law over a commu-
tative ring k is a complete topological Hopf k-algeb ra R with a homomorphism
θ : R → kA∗ of Hopf k-algebras whose kernel defines the topology together with
an element y(ε) ∈ R which is (i) regular and (ii) generates the kernel of the εth
component, θε of θ.

Problem. Does every complex oriented cohomology theory give an equivariant for-
mal group law, and for which G is there a universal G-Lazard ring?

Problem. For which G is MU∗
G in even degrees, and when is it the G-Lazard ring?

For further details, see the article in these proceedings by J. P. C. Greenlees.
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4. The equivariant Conner-Floyd-Sullivan
isomorphisms

John Greenlees, Ib Madsen

The classical Conner-Floyd-Sullivan isomorphisms relate unitary and symplectic
bordism to K-theory, namely:

ΩU
∗ (X)⊗ΩU

∗
K∗ = K∗(X)

ΩSp
∗ (X)⊗ΩSp

∗
KO∗ = KO∗(X),

where the action of ΩU
∗ = ΩU

∗ (pt) on K∗ = K∗(pt) is via the K-theory Thom class
of MU , and similarly for the symplectic case.

[P. E. Conner, E. E. Floyd, The relation of cobordism to K-theories, LNM vol. 28
(1966), Springer]. There is a similar theorem for spin bordism.

ΩSpin∗(X)⊗ΩSpin
∗

KO∗ = KO∗(X).

[M. Hopkins, M. Hovey, Spin cobordism determines real K-theory, Math, Z. 210,
181-196 (1992)]

In the equivariant setting where a finite group or more generally a compact Lie
group G acts, one lacks tranversality in general, and there is a difference between
the geometrically defined theories and the homotopy theoretically defined ones.
The latter are denoted MUG

∗ (X), MSpinG
∗ (X), etc. The G-version of the unitary

Conner-Floyd-Sullivan isomorphism holds in the form

MUG
∗ (X)⊗MUG

∗
KG
∗ = KG

∗ (X).

[S. Costenoble, The equivariant Conner-Floyd isomorphism for general compact Lie
groups, Trans. Amer. Math. Soc. 304, 1987,no.2, 801-818]

[C. Okonek, Der Conner-Floyd isomorphisms f ur abelsches gruppen, Math. Z. 179
(1982) 210-212]

Problem. Is

MSpinG
∗ (X)⊗MSpinG

∗
KOG

∗ = KOG
∗ (X),

and is there a similar formula involving MSpG
∗ (−)?

One may ask the similar questions for the equivariant geometric bordism theo-
ries, see e.g. [I. Madsen, Geometric equivariant bordism and K-theory, Topology 25
(1986), 217-227].
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5. Ring structures on spectra associated with
complex bordism

J. Peter May

Let E be one of the spectra usually denoted BP, BP 〈n〉, E(n), cf. [D. C. Ravenel,
Complex cobordism and stable homotopy groups of spheres, Academic Press, New
York, 1986].

Problem. Are the spectra above E∞ ring spectra?

Problem. Calculate the space A∞(E, E) of A∞-endomorphisms. Is it homotopi-
cally discrete?

6. Equivariant surfaces and cobordism.

Ib Madsen, Mel Rothenberg

Let G be a finite group, and let ΩG
2 denote the geometric cobordism classes of

oriented G-surfaces. There are partial calculations of ΩG
2 , e.g. for cyclic groups. The

G-signature theorem of Atiyah and Bott gives strong relations on the local fixed
point data.

Problem. Determine ΩG
2 and relate the structure to the G-signature theorem.

7. Equivariant infinite loop space theory.

J. Peter May

Let Cn be the little cubes operad in Rn with Cn(k) the space of k little cubes in
Rn. Define for a pointed space X

CnX =
∞
∐

k=0

Cn(k)×Σk Xk/ ≈

[J. P. May, The geometry of iterated loop spaces, LNM, Vol. 271 (1972)], and recall
the “approximation theorem”:

CnX ' ΩnSnX (X connected)

Problem. Let G be compact Lie, X a pointed G-space, and V a representation of
G. Develop an approximation theorem for ΩV SV X.

There are two “recognition principles” for infinite loop spaces, namely Γ-spaces
and C∞-algebras [G. Segal,Categories and cohomology theories, Topology 13, 293-
312 (1974)] and [op cit].

For |G| < ∞, there is a ΓG-version of the recognition principle, [K. Shimakawa,
Infinite loop G-spaces associated to monoidal G-graded categories, Publ. RIMS 25
(1989), 239-262]. A G-operad version for |G| < ∞ exists, but was never published.
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Problem. Develop a G recognition theorem for dimG > 0.

Problem. Develop a recognition principle for module spectra over a given E∞ ring
spectrum R and for E∞ R-algebras.

8. Group completions and spectra

Ralph Cohen

Let Cn be the little cubes operad, E a spectrum and let CnE be the half smash
product

CnE = Cn(k)+ ∧Σk E∧k.

The spectrum E is a Cn-algebra if there is a map CnE → E with obvious extra
associative conditions.

Problem. Suppose the spectrum E is a Cn-algebra. Define the notion of “group
completion” E+ and calculate its homotopy.

9. The stable mapping class group.

Ib Madsen

Let Σg,1 be a genus g surface with one boundary circle, and Diff(Σg,1) the
group of oriented diffeomorphisms that keep the boundary fixed. The components
of Diff(Σg,1) are contractible, so

Diff(Σg,1)
∼→ π0Diff(Σg,1) = Γg,1

is an equivalence. Adding a torus with two discs removed gives inclusions Γg,1 ⊂
Γg+1,1 with limit Γ∞,1. The plus construction BΓ+

∞,1 is an infinite loop space. [U.
Tillmann, On the homotopy of the stable mapping class group, Invent. Math 130
(1997), 257-275].

Let L⊥s be the s-dimensional complex vector bundle over CP s, complementary
to the canonical line bundle, and Th(L⊥s ) its Thom space. Define an infinite loop
space

Ω∞CP∞−1 = hocolimΩ2s+2Th(L⊥s ).

Conjecture. Z×BΓ+
∞,1 ' Ω∞CP∞−1.

A recent paper [I. Madsen, U. Tillmann, The stable mapping class group and
Q(CP∞), Inventiones Math., (to appear)] gives supporting evidence for the con-
jecture. It constructs an infinite loop map from Z × BΓ+

∞,1 to Ω∞(CP∞−1), shows
that it is 2-connected and shows that all but one of the “Adams components” of
(Ω∞CP∞−1)

∧
p sits also in (Z×BΓ+

∞,1)
∧
p , where p is odd.
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10. A topological Rees algebra.

Gunnar Carlsson

For a k[x]-algebra A, equipped with a family of ideals In ⊂ A with

In · Im ⊆ In+m

one can form the Rees subalgebra of the localization A
[ 1

x

]

, where Rees(A, I•) =
∑

k>0 In/xn ⊆ A
[ 1

x

]

.

Problem. Is there an analogue of the Rees algebra in the category of ring spectra?

The “group ring” ku[G] and the fixed set kuG of the G equivariant ku, with
“powers” of the augmentation ideal as the ideals In should yield interesting exam-
ples.

11. Atiyah-Segal completion theorem for
profinite groups.

Gunnar Carlsson

Let G = lim←Gk be a profinite group. Define its complex K-theory to be

K∗(BG) = lim
←−
n

lim
−→
k

K∗(BG(n)
k ),

where (n) indicates the n-skeleton. There is a spectral sequence

E∗,∗
2 = H∗

cont(G,K∗) ⇒ K∗(BG).

On the representation side, let R̃G be the representation ring Green functor, [A.
Dress, Induction and structure theorems for orthogonal representations of finite
groups, Annals of Math 102 (1975) 291-325],

˜RG(G/H) = R(H) , |G : H| < ∞,

where R(H) is the usual complex representation ring. The augmentation R(H) → Z
defines an augmentation ε : ˜RG → ˜Z into the constant Green functor, ˜Z(G/H) = Z.

Define the “derived Mackey functor completion” as the total space of the cosim-
plicial Mackey functor:

˜Z•G : ˜Z →→ ˜Z�
eRG

˜Z →→ , ˜Z�
eRG

˜Z�
eRG

˜Z . . .

Here the boxes denote derived versions of the box product of modules over Green
functors, first defined by G. Lewis. [see S. Bouc, Green Functors and G-sets, LNM
1671, 1997]. We now define the derived completion to be

( ˜RG)∧ε = Tot(˜Z•G).

This is a Mackey functor, and it can be evaluated at the one point G-space.
Define

˜R(G)∧ε = ( ˜RG)∧ε (G/G).
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This is a simplicial abelian group which is not in general homotopy discrete.

Conjecture.

(i) K0(BG) =
⊕

k>0
π2k ˜R(G)∧ε ,

(ii) K1(BG) =
⊕

k>0
π2k+1 ˜R(G)∧ε .

12. Equivariant cohomology
Gaunce Lewis

For a G-space X (G finite), and an abelian valued Mackey functor M , we let
HG
∗ (X; M) and H∗

G(X,M) be the Bredon homology and cohomology groups, [G.
E. Bredon, Equivariant cohomology theories, LNM 34 (1967)] and [ L.G. Lewis, J.
P. May, J.E. McClure,Ordinary RO[G]-graded cohomology, Bull. AMS (1981), 128-
130]. We consider both H∗

G(−; M) and HG
∗ (−; M) to be RO(G)-graded. Let ˜AG be

the Burnside ring Green functor,
˜AG(G/H) = A(H),

where A(G) is the isomorphism classes of virtual finite G-sets, the Burnside ring.
For a finite dimensional G-representation V, Grn(V ) denotes the Grassmann

manifold of n-dimensional subspaces of V with its induced action of G.

Problem. Is HG
∗ (Grn(V ); ˜AG) finitely generated over HG

∗ (X, ˜AG)?

13. Equivariant Moore spaces

John Greenlees

Let L be a Mackey functor, and suppose ML is a Moore space for it in the sense
that

H∗
K(ML, ˜AG) = L(G/K),

where ˜AG is the Burnside ring Mackey functor.

Problem. Is L necessarily of finite cohomological dimension over ˜AG?

14. Continuity of (topological) Hochschild
homology

Lars Hesselholt

Let S be a commutative ring and J an ideal in S. Let HH∗(S) and THH∗(S) be
the Hochschild and topological Hochschild homology groups of S (with coefficient
in S). There are maps

fs
∗ : S/Js ⊗S HH∗(S) → HH∗(S/Js),

gs
∗ : S/Js ⊗S THH∗(S) → THH∗(S/Js)
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that defines a pro-system for varying s.

Problem. Are f•∗ and g•∗ pro-isomorphisms?

It follows from the isomorphism HH1(S) ∼= Ω1
S/Z that the map f•1 is a pro-

isomorphism.
Let TRn(S; p) = THH(S)Cpn−1 be the fixed set under the cyclic group action

on THH(S) that exists by Connes’ theory of cyclic sets, [L. Hesselholt, I. Madsen,
On the K-theory of finite algebras over Witt vectors of perfect fields, Topology 36
(1997), 29-101], and let TRn

∗ (S; p) = π∗ TRn(S; p). The components are the ring of
Witt vectors of length n in S, TRn

0 (S; p) ∼= Wn(S). Then, more generally, there are
maps

gn,s
∗ : Wn(S/Js)⊗Wn(S) TRn

∗ (S; p) → TRn
∗ (S/Js; p).

If the map g•∗ = g1,•
∗ is a pro-isomorphism then the same holds for the maps gn,•

∗ ,
for all n > 1.

15. Calculations in connective K-theory
Ib Madsen

At the conference Bob Bruner talked about some calculations of connective K-
theory of finite groups. For permutation groups it is sometimes better to take them
all under one and use Quillen’s result that

ΩB

( ∞
∐

n=0

BΣn

)

= Q(S0).

The mod p homology H∗(Q(S0); Z/p) was calculated by Kudo and Araki for p = 2
and Dyer-Lashof for odd p. The mod p periodic K-homology was calculated by
L. Hodgkin, and more systematically by McClure in [R. R. Bruner, J. P. May, J.
E. McClure, M. Steinberger, H∞ ring spectra and their applications, LNM 1176,
Springer (1980)].

Problem. Calculate mod p connective K-homology of Q(S0) or more generally of
Q(X).

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2001/n2a0/v3n2a0.(dvi,ps,pdf)
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