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COHOMOLOGY OF GROUPS WITH OPERATORS

A. M. CEGARRA, J. M. GARCÍA-CALCINES and J. A. ORTEGA

(communicated by Hvedri Inassaridze)

Abstract
Well-known techniques from homological algebra and alge-

braic topology allow one to construct a cohomology theory for
groups on which the action of a fixed group is given. After a
brief discussion on the modules to be considered as coefficients,
the first section of this paper is devoted to providing some def-
initions for this cohomology theory and then to proving that
they are all equivalent. The second section is mainly dedicated
to summarizing certain properties of this equivariant group
cohomology and to showing several relationships with the or-
dinary group cohomology theory.

1. Introduction

If Γ is a group, then a Γ-group is a group G endowed with a Γ-action by au-
tomorphisms. Because Γ-groups arise in nature of numerous algebraic, geometric
and topological problems, it should be clear that their study, as algebraic objects
in their own right, is a subject of interest. However, so far the authors know, there
is no good source of information about Γ-groups in the literature, and particularly
there is no systematic study on a specific cohomology theory for these algebraic
structures, which is the purpose of this paper. Indeed, we provide here a cohomol-
ogy theory, denoted Hn

Γ
(G,A), which we think enjoys many desirable properties, to

whose study the article is mainly dedicated.
We should remark that this work was originally motivated by the graded cat-

egorical groups classification problem, which was suggested by Fröhlich and Wall
in [11] and that we solve in [6], thanks to the cohomology groups H3

Γ
(G,A). Fur-

thermore, the equivariant group cohomology theory, in the form introduced here, is
appropriate for a systematic treatment of the general equivariant group extensions
problem [26, 6].

The paper is organized in two sections. The first is devoted to discussing funda-
mental aspects concerning the definition of the cohomology groups Hn

Γ
(G,A), at the

heart of which are the abelian groups of equivariant derivations DerΓ(G,A). The
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discussion includes the topological meaning of these cohomology groups and also
an explicit description of Whitehead’s cochain complex C•

Γ
(G, A) [26] that makes

their computation by cocycles possible. In the second section we summarize several
properties of the equivariant cohomology groups that we have found and which we
consider of sufficient interest to be pointed out in the article, such as equivariant
versions of Hochschild-Serre results [16] for the cohomology of group extensions or
those showing relevant interactions with the ordinary Eilenberg-MacLane cohomol-
ogy groups.

2. Cohomology of Γ-groups

Throughout Γ is a (any) fixed group, and ΓG denotes the category of Γ-groups,
that is, the category whose objects are groups G,H, · · · , enriched with a left Γ-action
by automorphisms and whose morphisms are those homomorphisms f : G → H that
are Γ-equivariant, in the sense that f(σx) = σf(x), σ ∈ Γ, x ∈ G. Such a morphism
is usually termed a Γ-homomorphism. The category of abelian Γ-groups, that is, of
Γ-modules, is denoted by ΓAb.

If G is a Γ-group, then ΓG/G is the category whose objects are the Γ-homo-
morphisms with range G and whose morphisms are the usual commutative triangles.
We shall write objects and morphisms in ΓG/G as objects and morphisms in ΓG,
the morphisms to G being understood.

We are going to define the cohomology of Γ-groups; hence we must first determine
what the coefficients are for such a cohomology theory. To do so we recall (see
[3] or [23]) that a general notion of coefficients for the cohomology of algebraic
structures says that abelian group objects in the comma category ΓG/G are the
right coefficients for the cohomology of a Γ-group G. When Γ = 1, the trivial
group, it is well known that any abelian group object in G/G is isomorphic to one

of the form AoG
pr
� G, where A is a G-module and AoG denotes the semidirect

group product and, thus, the category of abelian group objects in G/G is equivalent
to the category GAb of G-modules. For Γ arbitrary, the category of abelian group
objects in ΓG/G can be described in terms of what we call Γ-equivariant G-modules,
which are defined next.

Definition 2.1. Let G be a Γ-group. A Γ-equivariant G-module A is a Γ-module,
also denoted by A, enriched with a G-module structure by a Γ-equivariant action
map G×A → A, which means that both actions of Γ and G on A are compatible in
the following precise sense:

σ(xa) = (σx)(σa), σ ∈ Γ, x ∈ G, a ∈ A. (1)

These Γ-equivariant G-modules are the objects of a category, denoted by

Γ,GAb , (2)

whose hom-sets, denoted by HomΓ,G(A,B), consist of those homomorphisms f :
A → B which are of both Γ and G-modules, that is, such that f(σa) = σf(a),
f(xa) = xf(a) for all σ ∈ Γ, x ∈ G, a ∈ A.
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Theorem 2.2. Let G be a Γ-group. The following four categories are equivalent:

1. The category of abelian group objects in ΓG/G.
2. The category Γ,GAb, of Γ-equivariant G-modules.
3. The category GoΓAb, of (Go Γ)-modules.
4. The category of pairs

(

A,ϕ : G → Aut(A)
)

, in which A is a Γ-module and ϕ is
a Γ-homomorphism, where the group Aut(A) of automorphisms of the abelian
group A is a Γ-group with the diagonal action, that is, with Γ-action

(σf) : a 7→ σf(σ−1
a), σ ∈ Γ, f ∈ Aut(A), a ∈ A.

Proof. It is quite straightforward. Let us only note that for any Γ-equivariant G-
module A, the abelian group object in ΓG/G it defines is given by the projection

A o G
pr
� G, where Γ acts on the semidirect product by σ(a, x) = (σa, σx). Fur-

thermore, the associated (G o Γ)-action on A is given by (x,σ)a = x(σa) and the
corresponding Γ-homomorphism ϕ : G → Aut(A) is just the representation homo-
morphism, ϕ(x)(a) = xa.

Since the category of Γ-equivariant G-modules can be identified as the category
of modules over the semidirect product group, it follows that it is equational. Later
on we will use the following consequences on injective Γ-equivariant G-modules.

Corollary 2.3. Let G be a Γ-group. Then,

i) The category of Γ-equivariant G-modules is an abelian category that has enough
injectives.

ii) If I is an injective Γ-equivariant G-module, then I is both an injective Γ-module
and an injective G-module.

iii) If I is an injective Γ-equivariant G-module, then IG = {a ∈ I | xa = a, x ∈ G}
is an injective Γ-submodule of I.

Proof. ii) For any group H, every injective H-module is an injective U -module for
any subgroup U ⊆ H [15, VI, Corollary 1.4]. Since both G and Γ are subgroups of
Go Γ, the assertion follows from Theorem 2.2.

iii) For any Γ-equivariant G-module A, AG = {a ∈ A | xa = a, x ∈ G} is a Γ-

submodule of A since, for every a ∈ AG, σ ∈ Γ and x ∈ G, x(σa)
(1)
= σ((

σ−1
x)a) = σa,

whence σa ∈ AG. Therefore, we have the functor (−)G : Γ,GAb → ΓAb, which is
right adjoint to the functor carrying each Γ-module B to the Γ-equivariant G-
module defined by itself with the trivial G-action xb = b, x ∈ G. Since this last
functor preserves monomorphisms, (−)G preserves injectives [15, Chap. II, Propo-
sition 10.2].

If p : H → G is a Γ-homomorphism, then on any Γ-equivariant G-module, A,
can be given the Γ-equivariant H-module structure “via” p by defining

ha = p(h)a, a ∈ A, h ∈ H ,

and keeping the same Γ-action on A. We also denote this Γ-equivariant H-module
by A, p being understood.
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Definition 2.4. Let A be a Γ-equivariant G-module. A Γ-derivation (or crossed
Γ-homomorphism) from G into A is a Γ-equivariant derivation from the group G
into the G-module A, that is, a map d : G → A with the properties

i) d(xy) = xd(y) + d(x), x, y ∈ G,
ii) d(σx) = σd(x), σ ∈ Γ, x ∈ G.

The set DerΓ(G,A), of all Γ-derivations d : G → A, can be given an obvious
abelian group structure. Note that if p : H → G is any Γ-homomorphism and
q : A → B is any morphism of Γ-equivariant G-modules, then there is an induced
homomorphism:

p∗q∗ = q∗p∗ : DerΓ(G, A) → DerΓ(H, B), d 7→ q d p .

Thus, DerΓ(−,−) becomes a functor from the cartesian product category of the
comma category of Γ-groups over a given Γ-group G by the category of Γ-equivariant
G-modules into the category of abelian groups. Analogously as for groups (see [15,
VI, Porosition 5.3], for example) we have the following

Proposition 2.5. For any Γ-homomorphism p : H → G and any Γ-equivariant
G-module A, there is a natural isomorphism

DerΓ(H, A) ∼= Hom
ΓG/G

(

H
p→ G, AoG

pr
� G

)

.

The category of Γ-groups is algebraic, indeed it is a variety of universal algebras,
and so one can use various well-known methods to define a cohomology theory
for Γ-groups. Next we consider five definitions of the cohomology of a Γ-group G
with values in a Γ-equivariant G-module A; the first four definitions develop the
subject from the perspective of homological algebra, while the last one shows that
the subject can be considered part of algebraic topology. Our main result here is to
prove that these five definitions are equivalent.

1. Hn
Γ
(G,A) as the derived functor of derivations.

For any Γ-group G, the functor DerΓ(G,−) is a left exact functor from the
category of Γ-equivariant G-modules to the category of abelian groups. By Corollary
2.3, the category of Γ-equivariant G-modules is abelian and has enough injectives,
so one can form the right derived functors of DerΓ(G,−). These are, by definition,
the cohomology groups of G (cf. [2]). More precisely, making a shift in dimension
motivated both by comparison with the usual Eilenberg-MacLane cohomology of
groups (see Theorem 3.5) and by (12), the first definition for the cohomology of a
Γ-group G with coefficients in a Γ-equivariant G-module A is

Hn
Γ
(G, A) = Rn−1DerΓ(G,−)(A), n > 1, (3)

and we take H0
Γ
(G,A) = 0.

2. Hn
Γ
(G,A) by cocycles: the Whitehead complex C•

Γ
(G,A).

Both for theoretical and computational interests, it is appropriate to have an
explicit description of a manageable cochain complex C•

Γ
(G,A) to compute the
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cohomology groups Hn
Γ
(G,A). This is the aim of our second definition for the co-

homology of a Γ-group G with values in a Γ-equivariant G-module A.
First we shall recall that for any group G and any G-module A, the ordinary coho-

mology groups Hn(G,A) can be computed as the cohomology groups of the abelian
group positive-complex C•(G,A), in which each Cp(G,A) consists of all maps
f : Gp → A such that f(x1, · · · , xp) = 0 whenever xi = 1 for some i = 1, · · · , p,
and the coboundary ∂ : Cp−1(G, A) → Cp(G, A) is defined by (∂f)(x1, · · · , xp) =

x1f(x2, · · · , xp) +
p−1
∑

i=1
(−1)if(x1, · · · , xixi+1, · · · , xp) + (−1)pf(x1, · · · , xp−1), (see

[9]).
Suppose now that G is a Γ-group and that A is a Γ-equivariant G-module. Then,

every abelian group Cp(G,A) has a Γ-module structure by the diagonal action

(σf)(x1, · · · , xp) = σf(σ−1
x1, · · · , σ−1

xp), σ ∈ Γ, f ∈ Cp(G,A), x ∈ G , (4)

and the coboundaries ∂ : Cp(G,A) → Cp+1(G,A) become Γ-module homomor-
phisms, as is easily proved thanks to equalities (1): σ(xa) = (σx)(σa). Thus, C•(G,A)
is a cochain complex of Γ-modules, and then one can form a double cochain com-
plex C••

Γ
(G,A) in which Cp,q

Γ
(G, A) = Cq(Γ, Cp+1(G,A)), p, q > 0. We shall de-

fine the complex C•
Γ
(G,A) to be, up to a shift dimension and an obvious isomor-

phism, the total complex of the bicomplex C••
Γ

(G,A), that is, C0
Γ
(G,A) = 0 and

Cn
Γ
(G, A) = Totn−1(C••

Γ
(G,A)) for n > 1.

More precisely, the elements of Cn
Γ
(G,A), related as n-cochains of the Γ-group G

with coefficients in A, are the maps

f :
⋃

p+q=n−1

Gp+1 × Γq −→ A , (5)

which are normalized in the sense that f(x1, · · · , xp+1, σ1, · · · , σq) = 0 whenever
xi = 1 or σj = 1 for some i = 1, · · · , p + 1 or j = 1, · · · , q. The cochain complex
C•

Γ
(G,A) = {Cn

Γ
(G,A), ∂} is then defined by the coboundary

∂ : Cn
Γ
(G, A) → Cn+1

Γ
(G,A) n > 1 , (6)

given by the formula

(∂f)(x, σ) = σ1f(x, σ2, · · · , σq) +
q−1
∑

i=1
(−1)if(x, σ1, · · · , σiσi+1, · · · , σq)+

(−1)qf(σqx1, · · · , σqxp+1, σ1, · · · , σq−1)+

(−1)q
[

(σ1···σq x1)f(x2, · · · , xp+1, σ)+
p
∑

j=1
(−1)jf(x1, · · · , xjxj+1, · · ·xp+1, σ) + (−1)p+1f(x1, · · · , xp, σ)

]

,

where (x, σ) = (x1, · · · , xp+1, σ1, · · · , σq) and p + q = n.
Then, the second definition is

Hn
Γ
(G,A) = Hn(C•

Γ
(G,A)), n > 0. (7)



Homology, Homotopy and Applications, vol. 4(1), 2002 6

3. Hn
Γ (G,A) as a cotriple cohomology.

The cotriple cohomology was developed for any tripleable (=monadic) category
by Beck [3] and Barr and Beck [1], who showed that most of the cohomology theories
in Algebra are particular instances of cotriple cohomology, including the Eilenberg-
MacLane cohomology of groups. The category of Γ-groups is tripleable over Sets
[20], that is, the underlying functor from ΓG to the category of sets induces a triple
T on Sets such that an Eilenberg-Moore‘s T-algebra is just a Γ-group. It is then
natural to specialize cotriple cohomology for Γ-groups, which leads to our third
definition for the cohomology of a Γ-group G with coefficients in a Γ-equivariant
G-module A.

Given a Γ-group G, the resulting cotriple (G, ε, δ) in the comma category ΓG/G

is as follows. For each Γ-group H
ϕ→ G over G, G(H

ϕ→ G) = FH ϕ→ G, where FH
is the free Γ-group on the set H (= free group on the set H × Γ with the Γ-action
such that σ(h, τ) = (h, στ)), and ϕ : FH → G is the Γ-homomorphism such that
ϕ(h, σ) = σϕ(h). The counit δ : G → id sends H → G to the Γ-homomorphism
FH → H such that δ(h, σ) = σh, and the comultiplication ε : G → G2 sends
H → G to the Γ-homomorphism FH → FFH such that ε(h, σ) = ((h, 1), σ),
h ∈ H, σ ∈ Γ. This cotriple produces an augmented simplicial object in the
category of endofunctors in ΓG/G, G•

δ→ id, the so-called (Godement) standard
resolution, which is defined by Gn = Gn+1, with face and degeneracy operators
di = Gn−iδGi : Gn → Gn−1, 0 6 i 6 n, and sj = Gn−j−1εGj :Gn−1 → Gn,
0 6 j 6 n−1. Hence, for any Γ-equivariant G-module A, one obtains an augmented
cosimplicial object in the category of abelian group valuated functors from ΓG/G,
DerΓ(−, A) → DerΓ(G•, A), and then an associated cochain complex (also denoted
by DerΓ(G•, A)), obtained by taking alternating sums of the coface operators

0 → DerΓ(G, A) ∂0

→ DerΓ(G2, A) ∂1

→ DerΓ(G3, A) → · · · . (8)

This complex computes the cotriple cohomology of G with values in A:

Hn
Γ
(G,A) = Hn−1(DerΓ(G•(G), A)), n > 1. (9)

4. Hn
Γ
(G, A) as a cohomology of sheaves.

It was pointed out by Quillen in [23] and by Rinehart in [24] how the
Grothendieck cohomology of sheaves over a site can be used as a general method to
define a cohomology theory of any kind of universal algebras. Our fourth definition
of the cohomology of a Γ-group G with coefficients in a Γ-equivariant G-module A
arises by specializing this method, as follows: the class of epimorphisms in ΓG/G is
stable under composition and pullbacks (note that every epimorphism of Γ-groups
is a surjective map), then we have a Grothendieck topology on ΓG/G [17] if we
take for coverings the families consisting of a single Γ-epimorphism P � H. With
this epimorphism topology on ΓG/G, sheaves are simply left-exact (i.e., preserving
coequalizers) contravariant functors, and therefore DerΓ(−, A) is a sheaf of abelian
groups on ΓG/G. Hence, Grothendieck cohomology groups of ΓG/G with coefficients
in DerΓ(−, A) are defined. These are, up to a dimension shift, the cohomology
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groups of G with values in A, that is,

Hn
Γ
(G, A) = Hn−1(ΓG/G,Der(−, A)), n > 1, (10)

and thus they can be computed from flask resolutions 0 → DerΓ(−, A) → F0 →
F1 → · · · of the sheaf DerΓ(−, A), by

Hn
Γ
(G,A) = Hn−1(0 → F0(G) → F1(G) → · · · ), n > 1. (11)

5. Hn
Γ
(G,A) as a singular cohomology with local coefficients.

It is well known that the cohomology of a group G with coefficients in a G-
module A is the singular cohomology of a classifying space for G, BG , with local
coefficients A (see [25], for example). If G is a Γ-group and A is a Γ-equivariant
G-module, then A is a (G o Γ)-module, according to Theorem 2.2, and so is a
system of local coefficients in the classifying space of the semidirect product group
BGoΓ . The classifying space of the group Γ, BΓ , is canonically a subspace (indeed,
a retract) of BGoΓ with the injection map BΓ ↪→ BGoΓ , induced by the inclusion
homomorphism Γ ↪→ Go Γ, σ 7→ (1, σ). Therefore, the singular cohomology of the
pair (BGoΓ , BΓ) with local coefficients in A is defined, whence our fifth definition
for the cohomology of the Γ-group G:

Hn
Γ
(G,A) = Hn(BGoΓ , BΓ , A), n > 0. (12)

Note that when G acts trivially on A, that is, A is simply a Γ-module, then
the cohomology groups Hn

Γ
(G,A) are the same as the reduced cohomology groups

H̃n
Γ
(BGoΓ , A) defined by Goerss and Jardine in [13, VI, Sect. 4].
The main result of this section is presented below.

Theorem 2.6. The definitions of Hn
Γ
(G, A) given above are equivalent.

Proof. Equivalence of (3) and (12): since both BGoΓ and BΓ have a unique 0-
cell, it follows that H0

Γ
(BGoΓ, BΓ, A) = 0. The proof consists in proving that the

functors Hn(BGoΓ , BΓ ,−), n > 1, form a connected sequence defining a right satel-
lite of DerΓ(G,−). Since any short exact sequence of local coefficients in BGoΓ

provides a corresponding long exact sequence in the relative singular cohomology
groups, {Hn(BGoΓ , BΓ ,−), n > 1} is therefore a connected sequence of func-
tors, and it then suffices to prove that H1(BGoΓ , BΓ , A) ∼= DerΓ(G,A) and that
Hn(BGoΓ , BΓ , A) = 0 for n > 2 whenever A is an injective Γ-equivariant G-module.
For let us note that

Hn(BGoΓ , BΓ , A) = Hn(

C•(Go Γ,Γ, A)
)

, n > 0, (13)

where C•(Go Γ, Γ, A) = Ker
(

C•(Go Γ, A)
res
� C•(Γ, A)

)

.
Hence, H1(BGoΓ, BΓ, A) = Z1

(

C•(Go Γ, Γ, A)
)

is the abelian group consisting
of all maps f : Go Γ → A satisfying

i) f(1, σ) = 0, σ ∈ Γ
ii) x(σf(y, τ))− f(x σy, στ) + f(x, σ) = 0, (x, σ), (y, τ) ∈ Go Γ.

We associate to each f ∈ H1(BGoΓ , BΓ , A) the map d = f |G : G → A, which is
actually a Γ-derivation from G into A: first observe that d determines f by the
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equality f(x, τ) = dx, x ∈ G, τ ∈ Γ. In fact, f(x, τ)
ii)
= xf(1, τ)+f(x, 1)

i)
= f(x, 1) =

dx. Thus, ii) can be written in the form d(x · σy) = x(σdy) + dx, which, taking
σ = 1, gives d(xy) = xdy + dx, so d is a derivation from G into A, and taking x = 1
gives d(σy) = σdy, so d is Γ-equivariant. It follows that f 7→ d = f |G defines an
injective map H1(BGoΓ, BΓ, A) → DerΓ(G, A). Furthermore, for any Γ-derivation
d : G → A, the map f : G o Γ → A defined by f(x, σ) = dx, x ∈ G, σ ∈ Γ, is an
element of H1(BGoΓ , BΓ , A) since

f(x σy, στ) = d(x σy) = xd(σy)+ dx = x(σf(y, τ))+ f(x, σ), (x, σ), (y, τ) ∈ GoΓ,

whence H1(BGoΓ, BΓ, A)
∼=→ DerΓ(G,A) is a bijection, actually a natural isomor-

phism.
Suppose now that A is an injective Γ-equivariant G-module. By Corollary 2.3, A is

an injective Γ-module. Since the ordinary cohomology of groups vanishes whenever
the coefficients are injective modules, both complexes C•(GoΓ, A) and C•(Γ, A) are
exact in dimensions > 1 and therefore the complex Ker

(

C•(Go Γ, A))
res
�C•(Γ, A)

)

is exact in dimensions > 2, whence Hn(BGoΓ , BΓ , A) = 0 for all n > 2.

Equivalence of (7) and (12): consider the bisimplicial set X(G) whose set of p, q-
simplices is Xp,q(G) = Gp × Γq. The vertical face and degeneracy maps are defined
by those of the Eilenberg-MacLane simplicial set K(G, 1), namely

dv
i (x1, · · · , xp, σ1, · · ·σq) =







(x2, · · · , xp, σ1, · · · , σq) if i = 0
(x1, · · · , xixi+1, · · · , xp, σ1, · · · , σq) if 0 < i < p
(x1, · · · , xp−1, σ1, · · · , σq) if i = p,

sv
i (x1, · · · , xp, σ1, · · · , σq) = (x1, · · · , xi, 1, xi+1, · · · , xp, σ1, · · · , σq), 0 6 i 6 p ,

and the horizontal and degeneracy maps by those of the simplicial set K(Γ, 1),
except that dh

q : Gp × Γq → Gp × Γq−1 is defined by

dh
q (x1, · · · , xp, σ1, · · · , σq) = (σqx1, · · · , σqxp, σ1, · · · , σq−1) .

Observe that

diag(X(G)) ∼= K(Go Γ, 1) , (14)

by the simplicial map

(x1, · · · , xp, σ1, · · · , σp) 7→
(

(σ1···σpx1, σ1), (σ2···σpx2, σ2), · · · , (σpxp, σp)) .

From X(G) and the given Γ-equivariant G-module A, we obtain a double cosim-
plicial abelian group C••(X(G), A) in which

Cp,q(X(G), A) = {f : Xp,q(G) → A} ,

the horizontal cofaces dh
i : Cp,q−1(X(G), A) → Cp,q(X(G), A) are defined by

(dh
i f)(x1, · · · , xp, σ1, · · · , σq) =

8

<

:

σ1f(x1, · · · , xp, σ2, · · · , σq) if i = 0
f(x1, · · · , xp, σ1, · · · , σiσi+1, · · · , σq) if 0 < i < q
f(σq x1, · · · , σq xp, σ1, · · · , σq−1) if i = q ,
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and the vertical cofaces dv
j : Cp−1,q(X(G), A) → Cp,q(X(G), A) are defined by

(dv
j f)(x1, · · · , xp, σ1, · · · , σq) =

8

<

:

(σ1···σq x1)f(x2, · · · , xp, σ1, · · · , σq) if j = 0,
f(x1, · · · , xjxj+1, · · · , xp, σ1, · · · , σq) if 0 < j < p,
f(x1, · · · , xp−1, σ1, · · · , σq) if j = p .

We also write C••(X(G), A) for the associated double complex of normalized
cochains, whose differentials are obtained from the face maps by taking alternating
sums, and Tot(C••(X(G), A)) for the associated total complex. Observe that the
isomorphism (14) induces a cochain complex isomorphism diag(C••(X(G), A)) ∼=
C•(GoΓ, A). Then, as a result of Dold and Puppe [8], there is a quasi-isomorphism
of complexes

ΨG : C•(Go Γ, A) → Tot(C••(X(G), A)),

which is natural in G.
Since a straightforward identification shows that the cochain complex C•

Γ
(G,A)

occurs in the following commutative diagram of cochain complexes:

0 // C•(Go Γ, Γ, A) //

��

C•(Go Γ, A) res
//

ΨG

��

C•(Γ, A) //

Ψ1

� �

0

0 // C•Γ(G, A) // Tot(C••(X(G), A)) res
/ / Tot(C••(X(1), A)) // 0

in which 1 denotes the trivial Γ-group (thus C••(X(1), A) is the double cochain
complex which is the complex C•(Γ, A) constant in the vertical direction), and
the rows are exact, we conclude that the morphism induced by restriction of ΨG ,
C•(Go Γ, Γ, A) → C•

Γ
(G,A) is a quasi-isomorphism. Then, by (13), we obtain

Hn(BGoΓ , BΓ , A) ∼= Hn(C•
Γ
(G,A)), n > 0 .

Equivalence of (7) and (10): first, note that for any Γ-group over G, H
ϕ→ G,

Ker
(

C1
Γ
(H,A) ∂1

→ C2
Γ
(H,A)

)

=
{

f : H → A | ϕ(x)f(y)− f(xy) + f(x) = 0,
σf(x)− f(σx) = 0

}

= DerΓ(H, A) .

Then, the proof consists in proving that

0 → DerΓ(−, A) → C1
Γ
(−, A) → C2

Γ
(−, A) → · · · (15)

is a flask resolution of the sheaf DerΓ(−, A) on ΓG/G, that is, that (15) is exact in
the category of abelian sheaves on ΓG/G and that every Cn

Γ
(−, A) is flask.

By [23, Chapter II, 5, Lemma 1.1] or [24, Corollary 2.5], exactness of (15)
means that for any free Γ-group over G, F say, Hn(C•

Γ
(F, A)) = 0 for all n > 2.

Since we know that Hn(C•
Γ
(F,A)) =

(

Rn−1DerΓ(F,−)
)

(A), because the equiva-
lence of definitions (3) and (7) has been proved, it suffices to prove that the func-
tor DerΓ(F,−) is exact, that is, it preserves epimorphisms. For, let q : A � B
be an epimorphism of Γ-equivariant F -modules and let d : F → B be any Γ-
derivation from F into B. According to Proposition 2.5, the Γ-derivation d de-
fines a Γ-homomorphism Ψd :F → B o F, x 7→ (dx, x) and, according to the
equivalence in Theorem 2.2, the epimorphism q defines a Γ-group epimorphism
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Q : Ao F → B o F, (a, x) 7→(q(a), x). Since F is a free Γ-group, hence projective,
there is a Γ-homomorphism Φ : F → A o F such that QΦ = Ψd. Then, the Γ-
derivation associated to Φ, dΦ : F → A, by the isomorphism in Proposition (2.5),
verifies that qdΦ = d. Therefore, q∗ : DerΓ(F, A) → DerΓ(F, B) is surjective.

It remains to prove that, for each n > 1, Cn
Γ
(−, A) is a flask sheaf on ΓG/G,

which, by [23, Chapter II, 5, Proposition 1], is equivalent to proving that, for any

Γ-epimorphism P
p
� Q in ΓG/G, the Czech complex

0 → Cn
Γ
(Q,A)

p∗→ Cn
Γ
(P, A) d1

→ Cn
Γ
(P ×Q P, A) d2

→ Cn
Γ
(P ×Q P ×Q P,A) → · · · (16)

whose coboundary maps are dk =
k+1
∑

i=1
(−1)i+1(pr1, · · · , pri−1, pri+1, · · · , prk+1)∗,

is exact. For, observe that for any Γ-group over G, H → G, the abelian group
Cn

Γ
(H, A) depends only on the pointed underlying set of H. Actually, we can define

Cn
Γ
(X,A) for any pointed set (X, x0) by

Cn
Γ
(X, A) =

⋃

p+q=n−1

{

f : Xp+1 × Γq → A | f(x1, · · · , xp+1, σ1, · · ·σq) = 0

if some xi = x0 or σi = 1
}

,

so that the sheaf Cn
Γ
(−, A) : ΓG/G → Ab factors through the obvious forgetful func-

tor ΓG/G → Set∗, (H → G) 7→ H. Then, given the Γ-epimorphism P
p
� Q, we can

choose a pointed map s : Q → P right inverse for p, and find a contracting homotopy
for the Czech complex (16) defined by the homomorphisms (s p pr1, pr1, · · · , prk)∗,
k > 0. Therefore, (16) is exact.

Equivalence of (9) and (10): it follows from [23, Chapter II, 5, Theorem 5]. Al-
ternatively, a direct proof consists in proving that (8) is a flask resolution of the
sheaf DerΓ(−, A). Indeed, the exactness of (8) follows from the fact that the cotriple
cohomology of a free Γ-group vanishes in the dimension > 1 ([1, Proposition 2.1]
and, for each n > 1, DerΓ(Gn(−), A) is flask, since for any Γ-epimorphism in ΓG/G,

P
p
�Q, the associated Czech complex

0 → DerΓ(Gn(Q), A)
p∗→ DerΓ(Gn(P ), A) d1

→ DerΓ(Gn(P ×Q P ), A) d2

→ · · · ,

whose coboundary maps are dk =
k+1
∑

i=1
(−1)i+1Gn(pr1, · · · , pri−1, pri+1, · · · , prk+1)∗,

has a contracting homotopy given by the homomorphisms
Gn−1F(s p pr1, pr1, · · · , prk)∗, where s : Q → P is any set-section of p.

3. Some properties of the cohomology groups Hn
Γ
(G, A).

The more basic properties of the cohomology are immediate consequences, taking
into account Theorem 3, of its definition. We summarize them in the following five
points:

a) H0
Γ
(G,A) = 0.

b) H1
Γ
(G,A) = DerΓ(G,A).
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c) Hn
Γ
(G, I) = 0 for all n > 2, whenever I is an injective Γ-equivariant G-module.

d) Hn
Γ
(F, A) = 0 for all n > 2, whenever F is a free Γ-group.

e) Any short exact sequence 0 → A → B → C → 0 of Γ-equivariant G-modules
provides a long exact sequence

· · ·Hn
Γ
(G,A) → Hn

Γ
(G,B) → Hn

Γ
(G,C) → Hn+1

Γ
(G,A) → · · ·

There is also an interesting 5-term exact sequence in the cohomology groups induced
by a short exact sequence in the first variable. The paradigm here is the 5-term exact
sequence by Hochschild and Serre [16] for group cohomology.

Suppose that 1→N i→ E
p→ G→1 is a short exact sequence of Γ-groups, thus N

can be identified with a normal Γ-subgroup of E and E/N ∼= G as Γ-groups. Then,
the abelianized group Nab = N/[N, N ] becomes both a Γ-module and a G-module
with actions

σu = σu, σ ∈ Γ, u ∈ N,
xu = eue−1, x ∈ G, u ∈ N, e ∈ p−1(x) .

Furthermore, since σ(eue−1) = σe σu σe−1 and p(σe) = σp(e), it follows that
σ(xu) = (σx)(σu), σ ∈ Γ, x ∈ G, u ∈ N. Hence Nab is a Γ-equivariant G-module.

Theorem 3.1. Let 1→N i→ E
p→ G→1 be a short exact sequence of Γ-groups.

Then, for any Γ-equivariant G-module A, there is a natural exact sequence

0 → H1
Γ
(G,A)

p∗→ H1
Γ
(E, A)

γ→ HomΓ,G(Nab, A) ω→ H2
Γ
(G,A)

p∗→ H2
Γ
(E,A) (17)

in which γ is induced by restricting Γ-derivations E → A to N.

Proof. First we prove that there is a natural exact sequence

0 → DerΓ(G,A)
p∗→ DerΓ(E, A)

γ→ HomΓ,G(Nab, A) (18)

in which the last map is induced by restriction from E to N. Indeed, if d : E → A
is any Γ-derivation, then, for all u ∈ N and e ∈ E, d(ue) = du + de and d(eu) =
de+p(e)du. Hence, the restriction of d to N, say dN : N → A, is a Γ-homomorphism
satisfying dN (eue−1) = p(e)dN (u), and therefore the induced γ(d) = dN : Nab → A,
u 7→ du, is both of Γ-modules and of G-modules. If γ(d) = 0, then x 7→ d(e),
x ∈ G, e ∈ p−1(x), well defines a Γ-derivation from G to A, which is mapped by
p∗ to d; whence the exactness of (18) follows.

Second, we observe that if p : E � G admits a Γ-group section, then the
homomorphism γ in (18) is also a retraction, that is, (18) is a split short exact
sequence of abelian groups. In effect, in such a case, E = N o G is a semidi-
rect product group with Γ-action σ(u, x) = (σu, σx). Then, the composed map
ξ : N oG � N � Nab, (u, x) 7→ u, is a Γ-derivation that defines a homomorphism
ξ∗ : HomΓ,G(Nab, A) → DerΓ(E, A), f 7→ ξf, satisfying γξ∗ = id .

Then, we are ready to complete the proof as follows. For each k > 0, let Nk =
Ker(Gk+1(p)) so that 1→N• → G•(E) → G•(G) → 1 is a short exact sequence of
simplicial Γ-groups. Since every Gk(p), k > 1, is a retraction, we obtain a weakly
split short exact sequence of cochain complexes

0 → DerΓ(G•(G), A)
p∗→ DerΓ(G•(E), A)

p∗→ HomΓ,G•(G)(N
ab
• , A) → 0,
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and the 5-term exact sequence (17) follows from the induced exact sequence in
cohomology, proving previously that H0(HomΓ,G•(G)(N

ab
• , A)) = HomΓ,G(Nab, A).

To do so, let us note that the augmentations δE : G•(E) � E and δG : G•(G) �G
are both homotopy equivalences of Kan simplicial sets [1, Proposition 5.3], and
therefore the N• � N induced on fibers is also a homotopy equivalence (see [23,
Chaper II, 3, Proposition 1]. In particular, N1 ⇒ N0 � N is a right-exact sequence
of Γ-groups, and therefore Nab

1 ⇒ Nab
0 → Nab → 0 is also a right-exact sequence of

abelian groups. Hence,

H0
(

HomΓ,G•(G)(N
ab
• , A)

)

= Ker
(

HomΓ,G(G)(N
ab
0 , A) → Hom

Γ,G2(G)
(Nab

1 , A)
)

= HomΓ,G(coker(Nab
1 → Nab

0 ), A)

= HomΓ,G(Nab, A),

where we have taken into account thatG2(G) ⇒ G(G) � G is a right-exact sequence
of Γ-groups.

We should note that an explicit description, in terms of cocycles, of the homo-
morphism ω in the sequence (17) is as follows: Let s : G → E be a set-section
of p with s(1) = 1. Then, for each ϕ ∈ HomΓ,G(Nab, A), ω(ϕ) ∈ H2

Γ(G,A) is the
cohomology class of the 2-cocycle fϕ : G2 ∪ (G× Γ) → A defined by

fϕ(x, y) = ϕ(s(x)s(y)s(x)−1), x, y ∈ G,
fϕ(x, σ) = ϕ(σs(x)s(σx)−1), x ∈ G, σ ∈ Γ.

Of course, one can prove that fϕ is actually a 2-cocycle whose cohomology class
in H2

Γ
(G,A) is independent of the choice of s, so that ω is a well-defined homomor-

phism, and then to prove directly that (17) is exact, but the proof of all of this in
full is tedious.

In the hypothesis of Theorem 3.1, the elements of the group of homomorphisms
{

ϕ : N → A | ϕ(eue−1) = p(e)ϕ(u)
} ∼= HomG(Nab, A)

were called operator homomorphisms of N in A by MacLane [18]; then, it is natural
to call the elements of its subgroup,

{

ϕ : N → A | ϕ(eue−1) = p(e)ϕ(u), ϕ(σu) = σϕ(u)
} ∼= HomΓ,G(Nab, A),

Γ-equivariant operator homomorphisms (or operator Γ-homomorphisms) of N in A.
Each Γ-derivation of E in A, if restricted to N , yields an operator Γ-homomorphism
N → A. By the group Map

Γ
(N,E;A) of operator Γ-homomorphism classes of N

into A, we understand the group of all operator Γ-homomorphisms ϕ : N → A,
module the subgroup of those operator Γ-homomorphisms induced by Γ-derivations
of E into A. Therefore,

Map
Γ
(N, E; A) ∼= HomΓ,G(Nab, A)/γ(H1

Γ
(G,A)). (19)

The following is an equivariant version of a classic result by MacLane [18, Theorems
A, A’], which was the counterpart to Hopf’s formula for group cohomology.

Theorem 3.2. If R is a normal Γ-subgroup of the free Γ-group F , G ∼= F/R and
A is a Γ-equivariant G-module, then the group Map

Γ
(R, F ;A) depends only on the
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Γ-groups G and A and the operators of G on A and not on the chosen representation
of G by the free Γ-group G. Furthermore, there is a natural isomorphism

Map
Γ
(R, F ; A) ∼= H2

Γ
(G,A). (20)

Proof. Consider the 5-term exact sequence (17) induced by R � F � G. Since

F is a free Γ-group H2
Γ
(F, A) = 0, and therefore Map

Γ
(R,F ;A) ∼= coker(γ)

ω∼=
H2

Γ
(G,A).

Suppose now that

E : A
i

� E
p
� G, (21)

is a short exact sequence of Γ-groups in which A is abelian, that is, A is a Γ-
module. Then Aab = A is a Γ-equivariant G-module with the G-action defined
by the equality i(xa) = e i(a) e−1, x ∈ G, a ∈ A, e ∈ p−1(x). We define a Γ-
group extension of the Γ-group G by the Γ-equivariant G-module A as a short exact
sequence of Γ-groups (21) such that the G-module structure induced on A is the
given G-module structure. We say the extension E is equivalent to E′ if there exists
a Γ-group isomorphism Φ : E ∼= E′ such that Φi = i′ and p′Φ = p. We denote by

EΓ(G,A) (22)

the set of equivalence classes of Γ-group extensions of G by A. Next we prove that
there is a one-to-one correspondence between EΓ(G,A) and the cohomology group
H2

Γ
(G,A). This result does not come as a surprise. The category of Γ-groups is

tripleable over Set; hence, Beck’s theorem [3] shows that H2
Γ
(G,A) classifies the

principal Γ-groups over G under A (or under A o G → G), that is, A-torsors over
G. Then, we could proceed, similarly as for groups (see [3, Example 4]), verifying
that principal Γ-groups over G under A are equivalent to Γ-group extensions of
G by A. This is a roundabout way of proving the classification theorem that we
shall establish directly bellow (see [6] for another proof using a factor set theory for
Γ-group extensions).

Theorem 3.3. Let G be a Γ-group and let A be a Γ-equivariant G-module. Then
there is a natural bijection

H2
Γ
(G,A) ∼= EΓ(G,A). (23)

Proof. Given isomorphism (20), the proof is parallel to the proof in [15, Theorem
10.3] for group cohomology, except for the fact that the constructions needed are

Γ-equivariant. Thus, given a free Γ-group presentation of G, R � F
q
� G, and an

extension (21), choose a map θ : F → G of Γ-groups over G. Then, the restriction of
θ to kernels θ|R : R → A is an operator Γ-homomorphism of R into A, whose class in
Map

Γ
(R, F ; A) is independent of the choice of θ. This defines a map Φ : EΓ(G,A) →

Map
Γ
(R, F ;A). Conversely, given a Γ-equivariant operator homomorphism ϕ : R →

A let Eϕ = (AoF )/U , where AoF is the Γ-group defined by the semidirect product
group of A and F with Γ-action σ(a, x) = (σa, σx), and U = {(ϕ(r), r−1), r ∈ R}.
Observe that U is a normal Γ-subgroup of Eϕ. The sequence A

i
� Eϕ

π
� G,
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i(a) = (a, 1), π((a, x)) = q(x), is easily seen to be a Γ-group extension of G by A,
and it is straightforward to verify that this procedure gives an inverse to Φ.

We should note that the cohomology groups H3
Γ
(G,A) appear in the classification

of Γ-group extensions with a non-abelian kernel (see [26] and [6, Theorem 5.1]).
Further, an interpretation of these cohomology groups H3

Γ
(G,A) is given in [6],

where degree three equivariant cohomology classes are expressed in terms of graded
monoidal categories. Note that there is already a general interpretation of cotriple
cohomology by Duskin [7], which applies to our cohomology groups Hn

Γ
(G,A), n >

1, by Theorem 2.6.
Next we prove that Hn

Γ
(−, A), considered as a functor of the first variable, are

coproduct-preserving, that is, the cohomology of the free product of two Γ-groups
is the direct sum of the cohomologies of each of them.

If G1 and G2 are Γ-groups, let G1 ∗ G2 denote their coproduct. If H is any
Γ-group, G1 ∗G2 is characterized by a natural isomorphism

Hom
ΓG(G1 ∗G2,H) ∼= Hom

ΓG(G1, H)×Hom
ΓG(G2,H). (24)

Then, for any Γ-module A,

Hom
ΓG(G1 ∗G2, Aut(A)) ∼= Hom

ΓG(G1,Aut(A))×Hom
ΓG(G2,Aut(A)),

and, by Theorem 2.2, it follows that A is a Γ-equivariant (G1 ∗ G2)-module if and
only if A is simultaneously a Γ-equivariant G1- and G2-module.

Theorem 3.4. Let G1, G2 be two Γ-groups and let A be a Γ-equivariant (G1 ∗G2)-
module, then the coproduct injections yield isomorphisms

Hn
Γ
(G1 ∗G2, A) ∼= Hn

Γ
(G1, A)⊕Hn

Γ
(G2, A) .

Proof. It is quite similar to that by Barr and Rinehart [2, Theorem 4.1] for the
cohomology of a free product of groups. If G is any Γ-group and U ⊂ G is any
Γ-subgroup of G, then every injective Γ-equivariant G-module is, by restriction, an
injective Γ-equivariant U -module (U o Γ is a subgroup of G o Γ and therefore an
injective (G o Γ)-module is an injective (U o Γ)-module [15, Corollary 1.4], then
use Theorem 2.6). Applying this to the situation under consideration, we see that
there is a simultaneous Γ-equivariant G1-, G2- and (G1 ∗ G2)-injective resolution,
say I•, of A. From (24) and the isomorphism in Proposition 2.5, we obtain

DerΓ(G1 ∗G2, I•) ∼= DerΓ(G1, I•)⊕DerΓ(G2, I•) ,

and passing to cohomology this yields the desired result.

The following properties deal with the relationship between the cohomology of
Γ-groups and the ordinary cohomology groups.

If Γ = 1, the trivial group, then a 1-group is the same as a group, and for each
group G, a 1-equivariant G-module is simply an ordinary G-module.
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Theorem 3.5. Let G be a group and let A be a G-module, then

Hn
1
(G,A) =

{

Der(G, A) if n = 1
Hn(G,A) if n > 2 ,

where H•(G,A) is the ordinary group cohomology.

Proof. It is immediate from the definition and theorem (2.6).

Let us recall from Theorem 2.2 that, for any Γ-group G, a Γ-equivariant G-module
is the same as a (Go Γ)-module. In the following theorem we show a fundamental
relationship between the cohomology groups Hn

Γ
(G,A) with the usual cohomology

groups Hn(G o Γ, A) and Hn(Γ, A), by means of a long exact sequence linking
these groups. We should stress that the projection G o Γ � Γ induces, in general,
no homomorphism Hn(Γ, A) → Hn(Go Γ, A) (see Corollary 3.7 below).

Theorem 3.6. Let G be a Γ-group and let A be a Γ-equivariant G-module. Then
there is a natural long exact sequence

0 → H0(Go Γ, A)→H0(Γ, A) → H1
Γ
(G, A)→H1(Go Γ, A) → · · ·

· · · → Hn
Γ
(G,A)→Hn(Go Γ, A)→Hn(Γ, A)→Hn+1

Γ
(G,A) → · · ·

(25)

Proof. After Theorem 2.6, the above long exact sequence is an immediate conse-
quence of definition (12) for Hn

Γ
(G,A), because the exactness property of cohomol-

ogy with local coefficients. For an algebraic proof, we can proceed as follows. Firstly,
observe the existence of the 4-term truncated exact sequence, that is, of the exact
sequence

0 → AGoΓ r→ AΓ j→ DerΓ(G,A)
p→ Der(Go Γ, A)

Ider(Go Γ, A)
, (26)

where r is the inclusion map, j is the homomorphism mapping each Γ-equivariant
element a ∈ AΓ to the inner Γ-derivation from G into A, ja : x 7→ xa− a, and p is
the homomorphism defined by p(d) = D, where D(x, σ) = x.

Since H1(GoΓ, I) = 0 if I is any injective Γ-equivariant G-module, from (26) it
follows that the sequence of left-exact functors from the category of Γ-equivariant
G-modules to the category of abelian groups

0 → H0(Go Γ, −) → H0(Γ, −) → H1
Γ
(G, −) → 0

is exact on injectives. Then, (25) is the corresponding long exact sequence of derived
functors.

A Γ-equivariant G-module on which G acts trivially is simply a Γ-module that
is considered a (GoΓ)-module via the projection GoΓ � Γ. For these coefficients
we have the following consequence of Theorem 3.6.

Corollary 3.7. Let G be a Γ-group and let A be a Γ-equivariant trivial G-module,
that is, a Γ-module. Then there are natural isomorphisms,

Hn(Go Γ, A) ∼= Hn
Γ
(G,A)⊕Hn(Γ, A) .
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Proof. The hypothesis of A being a trivial G-module implies that the restriction
maps Hn(G o Γ, A) r→ Hn(Γ, A) are retractions, with sections induced by the
projection GoΓ � Γ. Then, the long exact sequence (25) gives split exact sequences

0 / / Hn
Γ
(G,A) // Hn(Go Γ, A) / / Hn(Γ, A)

o o

// 0 .

The following consequence is for ordinary group cohomology.

Corollary 3.8. If F is any free Γ-group, then

Hn(F o Γ, A) ∼= Hn(Γ, A)

for all (F o Γ)-module A and all n > 2.

Proof. In the corresponding long exact sequence (25), Hn
Γ
(F, A) = 0 for all n > 2,

whence the restriction maps Hn(F o Γ, A) → Hn(Γ, A) are isomorphisms.

If G is a Γ-group and A is any Γ-equivariant G-module, the usual group of
derivations from G into A, Der(G, A), is canonically a Γ-module by the diagonal
Γ-action (σd)(x) = σd(σ−1

x), σ ∈ Γ, d ∈ Der(G,A), x ∈ G, so that Der(G,−) is
a functor from the category of Γ-equivariant G-modules into the category of Γ-
modules,

Der(G,−) : Γ,GAb → ΓAb . (27)

Lemma 3.9. Let G be a Γ-group. If I is an injective Γ-equivariant G-module, then
Der(G, I) is an injective Γ-module.

Proof. By Corollary 2.3 ii), I is an injective G-module, then H1(G, I) = 0 and
therefore every derivation of G in I is an inner derivation. Let j : I → Der(G, I) be
the homomorphism that maps every a ∈ I to the inner derivation ja : x 7→ xa− a.
Since I is a Γ-equivariant G-module, j is a Γ-module homomorphism. In fact,

(σja)(x) = σja(σ−1
x) = σ((

σ−1
x)a− a) = x(σa)− σa = jσa .

Hence 0 → IG → I
j→ Der(G, A) → 0 is a short exact sequence of Γ-modules. Since,

again by Corollary 2.3, both I and IG are injective Γ-modules, it follows that the
above exact sequence splits and that Der(G, A) is an injective Γ-module.

We are now ready to prove the following relationship between the cohomology of
groups Γ and G and those of G as a Γ-group.

Theorem 3.10. Let G be a Γ-group and let A be a Γ-equivariant G-module. Then,
there is a natural action of Γ on the cohomology groups Hn(G,A), given by the
homomorphism Γ → Aut(Hn(G,A)), σ 7→ σ−1

∗ σ∗, and a spectral sequence {En}
such that

Ep,q
2 =

{

Hp(Γ, Hq+1(G,A)) if q > 1
Hp(Γ,Der(G, A)) if q = 0 , =⇒ Hp+q+1

Γ
(G,A) , (28)

which converges finitely to the graded group associated with {Hn
Γ
(G,A)}, suitably

filtered.
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Proof. The spectral sequence (28) is deduced from the Grothendieck composite
functor spectral sequence [14], when it is applied to the following commutative
diagram of functors:

Γ-GAb
Der(G,−)

//

DerΓ(G,−)

55ΓAb
(−)Γ

// Ab,

taking into account that Der(G,−) preserves injectives, by Lemma 3.9. Indeed, the
Grothendieck spectral sequence is

Ep,q
2 =

(

Rp(−)Γ
)(

RqDer(G,−)
)

(A) =⇒
(

Rp+qDerΓ(G,−)
)

(A) . (29)

Since, by Corollary 2.3, an injective Γ-equivariant G-module resolution of A is also
an injective G-module resolution of A, then

RqDer(G,−)(A) =
{

Hq+1(G, A) q > 1
Der(G, A) q = 0 ,

whence

Ep,q
2 =

{

Hp(Γ,Hq+1(G,A)) q > 1
Hp(Γ, Der(G, A)) q = 0 .

Furthermore, Rp+qDerΓ(G,−)(A) = Hp+q+1
Γ

(G,A) by definition (3), so that
spectral sequence (29) is identified with (28).

Alternatively, we can obtain the spectral sequence (28) from the double cochain
complex C••

Γ
(G,A) defined before definition (7) of Hn

Γ
(G,A).

Since Theorem 3.6, we have been amassing evidence that the cohomology groups
Hn

Γ
(G,A) are closely related to the ordinary cohomology groups of the semidirect

product group Hn(GoΓ, A). The spectral sequence (28) is another indication of
that fact, because the Lyndon-Hochschild-Serre spectral sequence [16]

Ep,q
2 = Hp(Γ,Hq(G,A)) ⇒ Hp+q(Go Γ, A) .

Any group can be regarded as a trivial Γ-group. If G is a group and A is a G-
module, then A is a Γ-equivariant G-module with the trivial action of Γ on both G
and A; so a natural question is to ask whether there is any relationship between the
cohomology groups Hn(G,A) and Hn

Γ
(G, A). The varietal Baer invariants theory

(cf., e.g. [10],[12],[22],[4]) allows us to provide some answers to this problem. Indeed,
the category of groups, G, is a Birkoff subvariety of the category of Γ-groups, ΓG,
and the corresponding quotient (reflector) functor is

Q : ΓG � Gp, G 7→ G/[Γ; G], (30)

where for any Γ-group G, [Γ; G] is the normal Γ-subgroup of G generated by the
elements of the form σx x−1, x ∈ G, σ ∈ Γ. The Baer invariants Bn(G), n > 0, of
a Γ-group G are defined as Bn(G) = LnQ(G), where LnQ is the (non-abelian) n-th
derived functor of R, so that they can be computed from the cotriple resolution of
G, G• � G, as the (Moore) homotopy groups of the simplicial group QG•(G); that
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is,

Bn(G) = πn

(

G•(G)
[Γ;G•(G)]

)

, n > 0.

Hence, B0(G) = Q(G) = G
[Γ;G] and each Bn(G), n > 1, is a B0(G)-module. The

invariant B1(G) is the most commonly studied one in the literature; there is a
“Hopf” formula to compute it from any free presentation of the Γ-group G [12],
R � F � G, namely

B1(G) =
R ∩ [Γ; F ]
[Γ;R1F ]

,

where [Γ; R1F ] is the normal Γ-subgroup of F generated by the elements of the form
u σx σvv−1x−1u−1x σx−1, u, v ∈ R, x ∈ F , σ ∈ Γ, on which the action of G

[Γ;G] is
induced by conjugation in F.

Observe that if G is a Γ-group, then a Γ-equivariant G-module A on which Γ
acts trivially is the same as a G

[Γ;G] -module. Then, by specialization of Theorem 9
in [4], we have the following theorem:

Theorem 3.11. Let G be a Γ-group and let A be a G
[Γ;G] -module. Then,

H1
Γ
(G, A) ∼= Der

( G
[Γ;G] , A

)

,

and there exists an exact sequence of abelian groups

0 // H2
( G

[Γ;G] , A
)

// H2
Γ
(G,A) // HomG(B1(G), A)

vvn

n

n

n

n

n

n

n

n

n

n

n

n

H3
( G

[Γ;G] , A
)

// H3
Γ
(G,A) .

Moreover, if Bi(G) = 0 for all 1 6 i < n, then

Hi
Γ
(G,A) ∼= Hi

( G
[Γ;G] , A

)

, 2 6 i 6 n ,

and there exists an exact sequence of abelian groups

0 // Hn+1
( G

[Γ;G] , A
)

// Hn+1
Γ

(G,A) // HomG(Bn(G), A)

vvm

m

m

m

m

m

m

m

m

m

m

m

m

m

Hn+2
( G

[Γ;G] , A
)

// Hn+2
Γ

(G, A)

.

The category of Γ-modules is also a Birkoff subvariety of the category of Γ-groups.
In this case, the quotient functor is the abelianization functor

( )ab : ΓGp → ΓAb, G 7→ Gab = G/[G,G],

and the corresponding Baer invariants of a Γ-group G are the homotopy groups
of the simplicial Γ-module G•(G)ab. Since every free Γ-group is also a free group,
it is easy to see that G•(G) is a free simplicial group with π0(G•(G)) = G and
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πi(G•(G)) = 0 for all i > 0 (recall that the augmented simplicial set G•(G) � G
has a canonical contraction and therefore G•(G) is a loop group complex of the
Eilenberg-MacLane complex K(G, 1)). Hence, by ([21], Theorem 26.9), πnG•(G)ab =
Hn+1(G), n > 0, the integral homology of group G at dimension n + 1, with the
induced Γ-module structure by the Γ-action on G.

Then, again by specialization of Theorem 9 in [4], we obtain the following theo-
rem:

Theorem 3.12. Let G be a Γ-group and let A be a Γ-module which we consider as
a Γ-equivariant G-module on which G acts trivially. Then,

H1
Γ
(G,A) = HomΓ(Gab, A),

and there exists an exact sequence of abelian groups

0 // Ext1
Γ
(Gab, A) // H2

Γ
(G,A) / / HomΓ(H2(G), A)

vvm

m

m

m

m

m

m

m

m

m

m

m

m

Ext2
Γ
(Gab, A) / / H3

Γ
(G,A).

Moreover, if Hi(G) = 0 for all 1 6 i < n, then

Hi
Γ
(G,A) ∼= Exti−1

Γ
(Gab, A), 2 6 i 6 n ,

and there exists an exact sequence of abelian groups

0 / / Extn
Γ
(Gab, A) // Hn+1

Γ
(G,A) / / HomΓ(Hn+1(G), A)

uul

l

l

l

l

l

l

l

l

l

l

l

l

l

Extn+1
Γ

(Gab, A) / / Hn+2
Γ

(G,A).

This theorem can also be obtained from the “universal coefficients” spectral
sequence

Extp
Γ
(Hq+1(G), A) ⇒ Hp+q+1

Γ
(G,A),

which, for any Γ-group G and any Γ-module A, considered as a trivial G-module,
can be deduced [24, Theorem 2.26] from the following commutative diagram of
functors:

ΓGp
( )ab

//

DerΓ(−,A)

55

ΓAb
HomΓ(−,A)

/ / Ab .

If, in Theorem 3.12, the Γ-group G is such that Hi(G) = 0 for all i > 2, then it
follows that there are isomorphisms

Hn+1
Γ

(G,A) ∼= Extn
Γ
(Gab, A),

for all n > 0 and every Γ-module A, regarded as a trivial G-module. For instance,
we can take G = Z, the group of integers with the trivial Γ-action. In this case,
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Extn
Γ
(Zab, A) = Extn

Γ
(Z, A) = Hn(Γ, A) for every Γ-module A, so we deduce the

following consequence.

Corollary 3.13. Let Z be the group of integers considered as a trivial Γ-group and
let A be any Γ-module, considered as a Γ-equivariant Z-module on which group Z
acts trivially. Then, there are natural isomorphisms

Hn+1
Γ

(Z, A) ∼= Hn(Γ, A), n > 0. (31)

Isomorphism (31) can be combined with the one in Corollary 3.7, which yields
the following curious conclusion on ordinary group cohomology.

Corollary 3.14. Let A be a Γ-module and consider A as a (Z×Γ)-module via the
projection Z× Γ � Γ. Then, there are natural isomorphisms

Hn(Z× Γ, A) ∼= Hn−1(Γ, A)⊕Hn(Γ, A) (32)

for all n > 0 (H−1(Γ, A) = 0).

Actually, Corollary 3.14 is known when A is a trivial Γ-module: in that case,
the Künneth theorem gives Hn(Z× Γ) = Hn(Γ)⊕Hn−1(Γ) and isomorphism (31)
follows from universal coefficients.

Corollary 3.13 can be generalized to the case in which the Γ-action on Z is not
trivial and A is an arbitrary Z-module as in the proposition below.

Proposition 3.15. Suppose that Z is endowed with a Γ-group structure by a ho-
momorphism ρ : Γ → Aut(Z) = {id,−id}. Then, for any Γ-equivariant Z-module
A, there are isomorphisms

Hn+1
Γ

(Z, A) ∼= Hn(Γ, A?), n > 0, (33)

where A? denotes the Γ-module that is the same abelian group A with action from
Γ by

σ ? a =

{ σa if ρ(σ) = id,

− 1
(σa) if ρ(σ) = −id, σ ∈ Γ, a ∈ A .

Proof. Since Hq+1(Z, A) = 0 for all q > 1, the spectral sequence (28) degenerates,
giving isomorphisms Hn(Γ, Der(Z, A)) ∼= Hn+1

Γ
(Z, A), where Der(Z, A) is a Γ-

module with the diagonal action (σd)(m) = σd(σ−1
m). Now, the map d 7→ d(1) is

easily recognized as being a Γ-module isomorphism Der(Z, A) = A?, whence the
isomorphisms (33) follow.

The above Proposition 3.15 can be used to show some explicit computations of
equivariant cohomology groups. For example, let C2k =< t | t2k = 1 > denote the
cyclic group of order 2k generated by t, and consider the C2k-action on the group of
integers Z such that tm = −m and the action of Z on itself given by nm = (−1)n ·m.
Then, Z is an equivariant module over the C2k-group Z and, by Proposition 3.15,
Hn+1

C2k
(Z,Z) ∼= Hn(C2k,Z), whence, by ([15, VI, Proposition 7.1]), we conclude that

Hn+1
C2k

(Z,Z) =

{

Z2 if n is odd,

0 if n is even.
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We shall conclude by exhibiting another example of computation, in this case
using the complexes C•

Γ
(G,A). For let us consider the cyclic group of order two C2

acting trivially on itself, and the action of C2 on Z by tm = −m. Then Z is an
equivariant module over the C2-group C2 and the cohomology groups Hn

C2
(C2,Z)

are defined.
Observe that, in this case, a normalized n-cochain

f :
⋃

p+q=n−1

Cp+1
2 × Cq

2 −→ Z

is determined by the sequence of n integers (a1, ..., an) ∈ Zn, where

ai = f(

n−i+1
︷ ︸︸ ︷

t, ..., t;

i−1
︷ ︸︸ ︷

t, ..., t), 0 6 i 6 n ,

so that C
n

C2
(C2,Z) ∼= Zn and the coboundary operator of C

•

C2
(C2,Z) can be rewrit-

ten as the maps ∂n : Zn → Zn+1 given by ∂(a1, ..., an) = (b1, ..., bn+1), where

b1 = (−1 + (−1)n+1)a1

bk = (−1 + (−1)k−1)ak−1 +
(

(−1)k + (−1)n+1
)

ak, 2 6 k 6 n
bn+1 = (−1 + (−1)n)an .

(34)

In the case in which n is odd, say n = 2m − 1, then a (2m − 1)-cochain
(a1, ..., a2m−1) is a cocycle if and only if ak−1 = ak, 2 6 k 6 2m−2, and a2m−1 = 0.
Furthermore, such a cocycle is a coboundary if and only if every ai is even. Then,
we conclude that

H2m−1
C2

(C2,Z) ∼= Zm−1
2 . (35)

On the other hand, when n is even, say n = 2m, a 2m-cochain (a1, ..., a2m) is a
cocycle if and only if ai = 0 whenever i is odd and, furthermore, such a cocycle is
a coboundary if and only if every ai is even. Hence,

H2m
C2

(C2,Z) ∼= Zm
2 . (36)
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[11] A. Fröhlich and C.T.C. Wall, Graded monoidal categories, Compos. Math.
28 (1974), 229-285.

[12] J. Furtado-Coelho, Homology and generalized Baer invariants, J. of Algebra
40 (1976), 596-609.

[13] P.G. Goerss and P.G. Jardine, Simplicial homotopy theory, P. M. 174,
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