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Abstract
We characterize the categories which are projective covers of

regular protomodular categories. Our result gives in particular
a characterization of the categories with weak finite limits with
the property that their exact completions are semi-abelian cat-
egories. As an application, we obtain a categorical proof of the
recent characterization of semi-abelian varieties.

Introduction

The theory of protomodular categories provides a simple and general context
in which the basic theorems needed in homological algebra of groups, rings, Lie
algebras and other non-abelian structures can be proved [2] [3] [4] [5] [6] [7] [9]
[20].

An interesting aspect of the theory comes from the fact that there is a natural
intrinsic notion of normal monomorphism [4]. Since any internal reflexive relation
in a protomodular category is an equivalence relation, protomodular categories also
have all the nice properties of Maltsev categories [12], so that there is in particular
a good theory of centrality of equivalence relations [7] [8] [22] [25].

In many respects protomodular and, more specifically, semi-abelian categories are
in the same relationship with the varieties of groups, rings and other non-abelian
varieties, as abelian categories are with the varieties of abelian groups and modules
over a ring. Abelian and semi-abelian categories are related by the nice “equation”

(Semi− abelian) + (Semi− abelian)op = Abelian

asserting that a category C is abelian if and only if both C and its dual category Cop

are semi-abelian [20]. Semi-abelian categories appear then as a natural non-additive
generalization of abelian categories. On the one hand, they are general enough to
include also many important algebraic examples such as any variety of Ω-groups
[19] and Heyting algebras; on the other hand, their axioms allow one to distinguish
their exactness properties from the properties of the category of monoids, or from
those of the category of sets.

In the present article we study protomodular and semi-abelian categories in rela-
tionship with the interesting construction of the free exact completion of a category
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with weak finite limits [14]. A motivation to do this also comes from the impor-
tance, in homological algebra, of abelian categories with enough projectives, so that
it seems reasonable to expect further developments in the non-additive setting of
semi-abelian categories with enough projectives (for instance by extending the the-
ory developed in [16] and [17] for varieties of Ω-groups). Now, a classical result by
Freyd [15] asserts that a category is equivalent to a projective cover of an abelian
category if and only if it is preadditive and it has weak finite products and weak ker-
nels; a first natural question then arises to determine which are the categories which
occur as projective covers of exact protomodular or of semi-abelian categories. There
are some technical difficulties in order to answer this question, essentially due to
the fact that the protomodularity property is defined in terms of a pullback functor,
and we can not expect to define such a functor in the projective cover P of a semi-
abelian category, since P only has weak finite limits in general. However, it turns
out that it is possible to solve this problem, and this is our main result, by using an
equivalent formulation of the protomodularity property, which is probably also the
most effective tool when dealing with protomodularity. We then characterize the
categories C with the property that their exact completion Cex is protomodular or
semi-abelian. Our characterization of projective covers of exact protomodular cate-
gories applies at the same time to the free algebras of any protomodular variety, as
well as to the projective objects in the dual category of any elementary topos, this
latter being always an exact protomodular category with enough projectives. In the
last section we show how this categorical characterization provides an alternative
proof of the recent characterization of the varieties of universal algebras that are
semi-abelian [10].

The results in the present paper follow the same line of research developed in
various recent papers, where necessary and sufficient conditions on a category C with
(weak) finite limits have been determined in order that Cex is abelian [11], extensive
[18], (locally) cartesian closed [13] [23], a topos [21], or a Maltsev category [24].

Acknowledgements: the author would like to thank Aurelio Carboni, Enrico Vi-
tale and the anonymous referee for some very useful suggestions.

1. Preliminaries

In this section we briefly recall some elementary categorical notions and two
known results needed in the following.

A category with finite limits is regular if any kernel pair has a coequalizer and
regular epimorphisms are stable under pullback. A regular category is Barr-exact
[1] if any equivalence relation is a kernel pair. A functor F :A → B between regular
or exact categories is exact if it preserves finite limits and regular epimorphisms.

By dropping the assumption of the uniqueness of the factorization in the defini-
tion of a limit, one obtains the definition of a weak limit. For brevity, we shall call
weakly lex a category with weak finite limits. If A is a weakly lex category and B
is a finitely complete category, a functor F :A → B is left covering if, for any finite
diagram D in A and for each weak limit W of D, the comparison arrow from F (W )
to the limit of F (D) is a strong epimorphism. Let us then recall that an object P



Homology, Homotopy and Applications, vol. 4(1), 2002 177

in a category is (regular) projective if, for any arrow f : P → X and for any regular
epimorphism g: Y → X there exists an arrow h: P → Y such that g ◦ h = f .

Following the terminology in [14] we say that a full subcategory C of A is a
projective cover of A if two conditions are satisfied: 1) any object of C is regular
projective in A; 2) for any object X in A there exists a C-cover of X, that is an
object C in C and a regular epimorphism C → X.

When A admits a projective cover, one says that A has enough projectives, that
is any object in A is the codomain of a regular epimorphism whose domain is a
projective object.

An important result in [14] asserts that exact categories with enough projectives
are the exact completions of their full subcategories of projective objects. Let us
then briefly recall the construction of the free exact completion Cex of a weakly lex
category C (see [14] for more details). An object in Cex is a pseudo-equivalence in
C, which will be represented by a diagram

X1

d
/ /

c
//

X0.o o

A pseudo-equivalence relation as above can be thought as an equivalence relation
except that one does not require that the pair of arrows d and c are jointly monic.
A pre-arrow in Cex is a pair of arrows (f0, f1) in C

X1

d

��

c

� �

f1
// Y1

δ

��

γ

��

X0

O O

f0

// Y0

O O

with δ ◦f1 = f0 ◦d and γ ◦f1 = f0 ◦c. An arrow in Cex is an equivalence class [f0, f1]
of pre-arrows, where two parallel pre-arrows (f0, f1) and (g0, g1) are identified if
there exists an arrow h:X0 → Y1 such that δ ◦h = f0 and γ ◦h = g0. The identities
and the composition are the obvious ones.

The main facts concerning the free exact completion of a weakly lex category we
shall need later on are recalled in the following

1.1. Theorem. [14] Let C be a weakly lex category. Then there exists an exact
category Cex and a fully faithful functor Γ: C → Cex with the following properties:

1. Γ(C) is a projective cover of Cex

2. for any exact category B, the composition −◦Γ with the functor Γ determines
an equivalence of categories between the category of exact functors from Cex to
B and the category of left covering functors from C to B:

Ex[Cex,B] ' Lco[C,B].

The second subject we shall be interested in is the notion of protomodular cat-
egory. When C is a finitely complete category, we denote by Pt(C) the category
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whose objects are the split epimorphisms with a given splitting and morphisms the
commutative squares between these data. Let π: Pt(C) → C be the functor sending
a split epi to its codomain. The existence of pullbacks implies that the functor π is a
fibration, which is called the fibration of pointed objects. We denote by PtB(C) the
fibre of this fibration over a fixed object B; if f : E → B is an arrow in C, then we
denote by f∗ : PtB(C) → PtE(C) the associated change-of-base functor with respect
to the fibration π. A protomodular category C is a left exact category with the prop-
erty that every change-of-base functor with respect to the fibration π is conservative
(i.e. it reflects isomorphisms) [2]. Any protomodular category is a Maltsev category
[3], this meaning that any internal reflexive relation is an equivalence relation (for
the notion of a Maltsev category see for instance [12], and references therein).

If C has a zero object, the protomodularity property is equivalent to the validity
of the split short five lemma. A semi-abelian category is an exact protomodular
category with a zero object and finite coproducts [20].

There are many interesting examples of semi-abelian categories: among these,
let us recall the varieties of groups, rings, associative algebras, Lie algebras, crossed
modules (more generally, any variety of Ω-groups [19]), and Heyting algebras. Any
abelian category is semi-abelian, as well as the dual category of the category of
pointed sets. If C is a category with finite limits then the category Grp(C) of internal
groups in C is protomodular, as are the fibres of the fibration Grpd(C) → C sending
a groupoid in C to its object of objects. The dual category of any elementary topos
is exact protomodular [3].

As mentioned by Bourn [5], the protomodularity property can be equivalently
stated as follows:

1.2. Lemma. Let C be a category with pullbacks. Then the following conditions are
equivalent:

1. C is protomodular
2. in any pullback

P

g

��

f
/ / A

g

� �

C
f

// B

i

OO

along an epimorphism g:A → B split by an arrow i:B → A (g ◦ i = 1B), the
pair of arrows f and i is jointly strongly epimorphic.

Proof: Let C be a protomodular category and let us assume that h:E → A is
a monomorphism with the property that the pullbacks h1 and h2 along f and i
respectively are isomorphisms. Then the fact that h2 is an iso implies that h is an
arrow in PtB(C). The fact that h1 is an iso precisely means that f∗(h) is an iso in
PtC(C), and then h itself is an iso by protomodularity.

Conversely, if C satisfies property 2, it is not difficult to prove that any change-
of-base functor with respect to the fibration π is conservative on monomorphisms.
Since any change-of-base functor preserves finite limits, and then in particular kernel
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pairs, this is sufficient to conclude that it reflects isomorphisms. Indeed, if h: E → A
is an arrow in PtB(C) such that f∗(h) is an iso, then the diagonal ∆: E → E ×

A
E

is a mono such that f∗(∆) is an iso. Accordingly, ∆ itself is an iso, and then h is a
mono. Finally, the fact that f∗ is conservative on monomorphisms implies that h is
an iso.

1.3. Remark. If C has binary coproducts, the conditions in Lemma 1.2 are easily
seen to be equivalent also to the following property: in any pullback as above the
induced arrow (f, i): P + B → A is a strong epimorphism.

2. Projective covers of protomodular categories

We are now going to present a characterization of the weakly lex categories C
whose exact completion Cex is protomodular. When C has finite coproducts and a
zero object, this condition can be expressed in terms of weak kernels.

We begin with the following definition:

2.1. Definition. A weakly lex category C is weak protomodular if any weak pullback
P in C

P

g

��

f
/ / A

g

��

C
f

// B

i

OO

along a split epimorphism g:A → B (with g ◦ i = 1B ) has the following property:
if f and i both factorize through an arrow h: E → A in C

E

h

ÿ ÿ

P

g

� �

f
//

33

A

g

��

C
f

// B

i

OO

KK

then h is a split epimorphism.

2.2. Remark. If C is finitely complete and weak protomodular, then C is proto-
modular. Indeed, let h be a monomorphism with the property that the pullbacks
h1 and h2 along f and i respectively are isomorphisms. This means that f and i
both factorize through h, so that h is a split epi and then an iso.

On the other hand, there seems to be no reason for a protomodular category
to be weak protomodular, in general. The property of weak protomodularity should
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be thought as a simple way of guaranteeing protomodularity when only weak finite
limits exist.

2.3. Proposition. Let C be a projective cover of a regular category A.
Then A is protomodular if and only if C is weak protomodular.

Proof: Let A be a regular protomodular category. Consider a weak split pullback
(i.e. a weak pullback along a split epimorphism) in C:

P

g

��

f

%%

α

""

C ×
B

A

g1

� �

f1

/ / A

g

��

C
f

// B.

i

OO

This weak pullback can be obtained by taking the actual pullback (C ×
B

A, g1, f1) of

f along g in A, and by then covering it with a regular epimorphism α: P → C ×
B

A,

where P is in C. By Lemma 1.2 we know that the arrows f1 and i are jointly strongly
epimorphic, thus f = f1◦α and i are jointly strongly epimorphic since α is a regular
epi.

Now, let f and i both factorize through an arrow h: E → A in C, so that there
are two arrows l:P → E and m:B → E such that h ◦ l = f and h ◦m = i

E

h
~

~

~

ÿÿ~

~

~

P

g
��

f
//

l
33

A

g

��

C
f

// B

i

OO m

KK

Then the fact that the pair of arrows f and i is jointly strongly epimorphic
implies that h is a strong epi in A and then a regular epi, because A is regular.
Since the arrow h is a regular epi in A between projective objects, it splits, proving
that C is weak protomodular.

Conversely, let us assume that C is a weak protomodular category. We first remark
that in any weak split pullback in C

P

g

� �

f
// A

g

��

C
f

// B

i

OO

the pair of arrows f and i are jointly strongly epimorphic in A. Indeed, if h:E → A
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is a monomorphism in A such that the actual pullbacks h1 and h2 of h along f and
i are isomorphisms, then the arrows f and i both factorize through h. Consequently
h is a split epi and then an iso, as desired.

In order to complete the proof, let us consider an actual split pullback in A

C ×
B

A

g1

��

f1
/ / A

g

��

C
f

// B

i

OO

and we are going to prove that f1 and i are jointly strongly epimorphic in A. It is
not difficult to show that the split epimorphism g in A can be “covered” by a split
epimorphism g̃ in C so that in the diagram

Ã

g̃

��

a
/ / A

g

� �

B̃ b
//

ĩ

O O

B

i

OO

a ◦ ĩ = i ◦ b, b ◦ g̃ = g ◦ a and a, b are regular epimorphisms. Moreover, if c: C̃ → C
is a projective cover of C, then there is an arrow f̃ : C̃ → B̃ with b ◦ f̃ = f ◦ c. Let
us then form a weak pullback P̃ of f̃ along g̃

P̃

g̃1

��

f̃1
/ / Ã

g̃

��

C̃
f̃

// B̃

ĩ

O O

and we know that the pair of arrows f̃1 and ĩ in this weak pullback is jointly strongly
epimorphic in A. There is a factorization d: P̃ → C ×

B
A
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P̃
f̃1

/ /

g̃1

��

d

��

Ã

g̃

��

a

� �

?

?

?

?

?

?

?

?

?

?

?

?

C ×
B

A f1
//

g1

��

A

g

��

C̃
f̃

//

c

� �

?

?

?

?

?

?

?

?

?

?

?

?

B̃

ĩ

O O

b

� �

?

?

?

?

?

?

?

?

?

?

?

?

C
f

// B

i

O O

with f1 ◦d = a◦ f̃1 and g1 ◦d = c◦ g̃1. Now, f̃1 and ĩ are jointly strongly epimorphic,
so that the pair of arrows (a◦ f̃1, a◦ ĩ) = (f1 ◦d, i◦ b) is jointly strongly epimorphic,
and finally f1 and i are jointly strongly epimorphic, proving that A is protomodular,
as desired.

In the presence of binary coproducts, the weak protomodularity property is also
equivalent to the following one:

2.4. Proposition. Let C be a weakly lex category with binary coproducts. Then C
is weak protomodular if and only if in any weak split pullback

P

(1)g

� �

f
// A

g

��

C
f

// B

i

OO

the canonical arrow (f, i): P + B → A is a split epimorphism.

Proof: Clearly any weak protomodular category with finite coproducts satisfies
the property here above. On the other hand, assume that this latter property holds
in C, and let the square (1) be a weak split pullback such that there exists an arrow
h: E → A with the property that the arrows f and i both factorize through h. If
l: P → E and m: B → E are two arrows such that h ◦ l = f and h ◦m = i, then the
universal property of the coproduct P + B gives a unique arrow (l, m): P + B → E
with the property that h ◦ (l,m) = (f, i). By assumption the arrow (f, i) is a split
epi, and consequently the arrow h is a split epi as well.

When C has binary coproducts and a zero object the property of weak proto-
modularity can be expressed in terms of weak (split) kernels:
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2.5. Proposition. Let C be a weakly lex category with binary coproducts and a zero
object. Then the following conditions are equivalent:

1. C is weak protomodular

2. in any weak split kernel in C

K

��

k
/ / A

g

��

0 / / B

i

O O

the canonical arrow (k, i): K + B → A is a split epimorphism

Proof: Only the implication 2 ⇒ 1 needs to be proved. Given any weak split
pullback

P

g

� �

f
// A

g

��

C
f

// B

i

OO

a weak kernel of g is given by the outer rectangle

K
k

/ /

� �

P

g

��

f
// A

g

��

0 // C
f

/ / B,

i

OO

where the left hand square is a weak kernel of g. Now by assumption the induced
arrow (f ◦ k, i):K + B → A is a split epi. Since (f, i) ◦ (k + 1B) = (f ◦ k, i), this
implies that (f, i) is a split epi.

2

3. Semi-abelian exact completions

The aim of this section is to study the exact categories with enough projectives
which are semi-abelian.

Let us first introduce a new definition:

3.1. Definition. A category is weak semi-abelian if it is weak protomodular, it has
finite coproducts and a zero object.

By Remark 2.2, if C is finitely complete and weak semi-abelian, then C is semi-
abelian. It is also clear that a weakly lex category with finite coproducts and a
zero object is weak semi-abelian exactly when the weak (split) kernels satisfy the
condition 2 in Proposition 2.5.
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3.2. Proposition. Let C be a weakly lex category. The following conditions are
equivalent:

1. the Cauchy completion Ccc of C is weak semi-abelian

2. Cex is semi-abelian

Proof: 1 ⇒ 2 Since (Ccc)ex ' Cex, we just need to prove that (Ccc)ex is semi-
abelian. By Proposition 2.3 we know that (Ccc)ex is protomodular, so in particular
(Ccc)ex is exact Maltsev, and this will imply that (Ccc)ex has finite coproducts. In-
deed, if (R, X) and (S, Y ) are two pseudo-equivalence relations, then their coproduct
is given by the central part of the diagram

R

d

��

c

��

iR
/ / R + S

d+δ

��

c+γ

��

S

δ

��

γ

��

iS
oo

X

O O

iX

// X + Y

OO

Y,
iY

o o

OO

which is a reflexive graph in an exact Maltsev category, ans so a pseudo-equivalence
relation (the same argument holds for any finite coproduct). Moreover, the functor
Γ: Ccc → (Ccc)ex preserves the zero object, and (Ccc)ex is semi-abelian.

2 ⇒ 1 If Cex is semi-abelian, then Ccc is weak protomodular, being a projective
cover of (Ccc)ex ' Cex. Ccc has finite coproducts, since a coproduct of two regular
projective objects is regular projective. It is also clear that Ccc has a zero object,
since (Ccc)ex has a zero object 0, and 0 is regular projective.

The following useful property of exact Maltsev categories will be needed:

3.3. Lemma. Let A and B be exact Maltsev categories with finite coproducts, and let
F :A → B be an exact functor that preserves finite coproducts. Then the categories
A and B have finite colimits and the functor F preserves them.

Proof: Given two arrows f and g

G
f

//

g
//

A

in a category A with finite coproducts, it is easy to check that an arrow p is the
coequalizer of f and g precisely when it is the coequalizer of the arrows (f, 1A, g)
and (g, 1A, f)

G + A + G
(f,1A,g)

//

(g,1A,f)
//

A.oo

This fact will be useful to construct the coequalizer of f and g in any exact Maltsev
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category A. Indeed, let I be the regular image factorization of this reflexive graph

G + A + G
(f,1A,g)

//

(g,1A,f)
//

q

##

# #

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

A
p

/ /oo

� �

B

I.

d

OO

c

O O

I determines a reflexive relation on A in an exact Maltsev category, hence an equiv-
alence relation on A. Accordingly, the quotient p: A → B of this (effective) equiva-
lence relation exists, and p also is the coequalizer of (f, 1A, g) and (g, 1A, f), since
q is an epimorphism. An exact functor preserving finite coproducts preserves each
part of this construction and so preserves the coequalizer p.

Since the definition of semi-abelian category is given only in terms of finite limits
and finite colimits, it is reasonable to give the following

3.4. Definition. Let A and B be two semi-abelian categories. A functor F :A → B
is called semi-abelian if it preserves finite limits and finite colimits.

Let us denote by SA[A,B] the category of semi-abelian functors from A to B, and
by FCLCo[C,D] the category of finite coproduct preserving left covering functors
from a weakly lex category C with coproducts to a semi-abelian category D.

In the context of semi-abelian categories Theorem 1.1 gives the following result
(see also [15] and [24]), which can be interpreted as the fact that Cex is the “semi-
abelian completion of C”:

3.5. Corollary. Let C be a weak semi-abelian category. Then, for any semi-abelian
category B, the functor (Γ ◦ −): SA[Cex,B] → FCLCo[C,B] gives an equivalence of
categories.

Proof: As shown in the proof of Proposition 3.2, if C is weak semi-abelian, then
Cex is semi-abelian. By Lemma 33 in [14], the functor Γ: C → Cex preserves finite
coproducts. By using the description of coproducts in the semi-abelian category Cex

given in Proposition 3.2, one can then show that a left covering functor F : C → B
preserves finite coproducts precisely when its exact extension F : Cex → B preserves
finite coproducts. By Lemma 3.3 and by Theorem 1.1 the proof is complete.

4. Semi-abelian varieties

Any finitary variety of universal algebras is the exact completion of its (Kleisli)
subcategory of free algebras [14]. In this last section we consider the special situation
when Cex is a semi-abelian variety of universal algebras and C is its subcategory of
free algebras.

Varieties of universal algebras which are semi-abelian were characterized in [10].
A slightly different proof of this fact can be deduced from the general categorical
results of the previous section.
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4.1. Corollary. Let A be a variety of universal algebras and C its full subcategory
of free algebras. Then the following conditions are equivalent:

1. A is semi-abelian

2. Ccc is weak semi-abelian

3. C is weak semi-abelian

4. A has a unique constant 0, n binary terms α1(x, y), . . . , αn(x, y) and a
(n + 1)-ary term β such that

β(α1(x, y), . . . , αn(x, y), y) = x, and αi(x, x) = 0 for i = 1, . . . , n

Proof: Conditions 1 and 2 are equivalent by Proposition 3.2, while 3 is also
equivalent since C and A both have coproducts.

We are now going to prove that 3 and 4 are equivalent. It is clear that C has a
zero object exactly when the theory has a unique constant, that we shall denote by
0.

Let us first assume that C is a weak semi-abelian category. Let F (x, y) and F (y)
be the free algebras on two and one generators, respectively, and let us consider the
actual (split) kernel in A

K

��

k
/ / F (x, y)

g

� �

0 // F (y)

i

OO

where g: F (x, y) → F (y) is determined by g(x) = y = g(y) and i: F (y) → F (x, y) is
determined by i(y) = y. Let j: K ∨ F (y) → F (x, y) be the union of k: K → F (x, y)
and i: F (y) → F (x, y) as subobjects of F (x, y):

K
l

//

k
# #

G

G

G

G

G

G

G

G

G

G

G

K ∨ F (y)

j

��

F (y)

i
z zu

u

u

u

u

u

u

u

u

u

u

m
o o

F (x, y)

Let p: K → K be a regular epi, with K in C, so that the square

K

� �

k◦p
// F (x, y)

g

� �

0 // F (y)

i

OO

is a weak kernel. Then the fact that C is weak protomodular and that k ◦ p and i
both factorize through j implies that j is a split epi, and then an iso. The element
x therefore belongs to K ∨ F (y), and this proves the existence of k1, k2, . . . , kn in
K and an (n + 1)-ary term β such that β(k1, . . . , kn, y) = x. But K is a subalgebra
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of F (x, y) and then there exist n binary terms αi(x, y) = ki for i = 1, . . . , n, so that
β(α1(x, y), . . . , αn(x, y), y) = x. By definition of K, αi(x, x) = g(αi(x, y)) = 0 for
i = 1, . . . , n.

Conversely, let us assume that the terms satisfying the conditions in 4 exist in
the variety A. Let the exterior of the diagram

K

g

� �

k◦p

##

p

  

K

��

k
// A

g

��

0
f

/ / B.

i

OO

be a weak split kernel of the split epi g obtained by “covering” the actual kernel K
of g with a regular epi p: K → K, with K in C. It is clear that the induced arrow
p + 1B :K + B → K + B is a regular epi in A. Accordingly, it suffices to prove that
(k, i):K + B → A is a regular epi in A, so that the arrow (k ◦ p, i): K + B → A will
be a regular epi in A, and then it will be split, because it lies in C.

For any a in A we have

g(αi(a, i ◦ g(a)) = αi(g(a), g ◦ i ◦ g(a)) = αi(g(a), g(a)) = 0,

so that αi(a, i ◦ g(a)) = k(xi), for some xi in K. Now

(k, i) ◦ β(iK(x1), . . . , iK(xn), iB ◦ g(a))

= β(k(x1), . . . , k(xn), i ◦ g(a))

= β(α1(a, i ◦ g(a)), . . . , αn(a, i ◦ g(a)), i ◦ g(a))

= a,

and the arrow (k, i) is then surjective.

2
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Laboratoire de Mathématiques Pures et Appliquées
50 Rue F. Buisson BP 699
62228 Calais
France


