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TOPOLOGY WITH MONOIDAL CONTROL

RENÉ DEPONT CHRISTENSEN and HANS JØRGEN MUNKHOLM

(communicated by Ralph Cohen)

Abstract
This paper defines monoidal control, which is a specializa-

tion of control by entourage as presented in [5]. It is shown that
on metric spaces monoidal control generalizes bounded control,
and describes continuous control. A systematic way of obtain-
ing results from bounded control, in the sense of [1], as results
of monoidal-, and hence continouos-, control, is developed. Es-
pecially this provides versions of the Hurewicz and Whitehead
theorems with monoidal control, thus simultaneously establish-
ing them for continouos control over metric spaces.

1. Introduction

Classically there are two main approaches to topology with control, bounded
and continuous control. The purpose of this paper is to give a description of a new
controlled context termed monoidal control, which involves the most important
examples of bounded control and a version of continuous control as special cases.
The material presented here hooks up on the founding paper [1] by Anderson and
Munkholm on bounded control. We generalize and extend conceptually all of [1],
actually we work through some of the most important notions and leave the rest as
an excercise for the dedicated reader.
Monoidal structures are special cases of coarse structures as described in [5]. We
investigate the categories of controlled spaces over some control space in the spirit
of [1], whereas [5] concentrates on the control spaces carrying the entourage struc-
tures. The monoid approach was first described by Munkholm in a workshop lecture,
which together with [1] and the Ph.D. thesis of Christensen, [4], forms a basis for
this paper. The question of a structured connection between monoidal and bounded
control, naturally arises. In fact we show that monoidal control notions are colim-
its of the corresponding bounded control notions. This is an interesting, and very
general, new connection. This gives a machinery enabling the results of [1] to be
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systematically transferred to the corresponding results with monoidal control, and
hence also with the version of continuous control that is covered. The machinery
and explanations given, should enable the reader to transfer any result from [1] to
monoidal context. As a main application we explicitly give Hurewicz and Whitehead
theorems in the monoidal context.

2. Monoidal Posets Acting on Categories
In our setting a monoid is a poset M, viewed as a category, also denoted M, with

objects the elements and morphisms given by the partial ordering. Furthermore M
is equipped with an associative bifunctor (composition) • : M×M→M, and has a
unit u w.r.t. •, which is also initial with respect to the partial ordering. Let hereafter
M denote a monoid in the above sense, and let • be implicit in any juxtaposition
of monoid elements. By specifying the object u of M, we define a functor u : [0]
→M, where [0] denotes a category with one object and the corresponding identity
morphism. The properties of a monoid are described by the commutativity of the
following diagrams. Note that M×M×M is identified with both (M×M)× M
and M ×(M×M), and that M is identified with both [0]×M and M× [0].

M×M×M

(• × 1M)
��

(1M × •)
// M×M

•
��

M×M •
/ / M

(2.1)

[0]×M u × 1M
//

1M
))

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

M×M

•
��

M× [0]
1M × u

oo

1M
uul

l

l

l

l

l

l

l

l

l

l

l

l

l

l

M

(2.2)

Definition 2.1. M is said to act from the left on a category C, if there is given
a functor α : M× C → C such that the usual (associativity and unit) diagrams of
functors

M×M× C

(• × 1C)
��

1M × α
// M×C

α

� �

M×C α
// C

(2.3)

[0]× C = C u × 1C
/ /

1C
))

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

M×C

α

��

C

(2.4)

commute.
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Clearly any left M action on a category C induces a right M action on any functor
category AC .

3. The Category of Fractions induced by a Monoid Action

If C is a category with an action (wlog from the left) α : M× C → C, then any
element M in M defines a functor M : C → C which is α(M, −) on objects and
α(M 6 M, −) on morphisms. Especially the minimal element u defines the identity
functor 1C .
For every M in M, there exists a natural transformation τM : 1C ⇒ M such that,
for any B in |C|, τM

B = α(u 6 M, 1B). Remembering that a morphism ϕ can be
written as α(u 6 u, ϕ), it is straightforward to check naturality. Depending on
context we refer to either τM or τM

B as a delay map.

Proposition 3.1. Let C be a category with action α : M×C → C. Then

Σ = { τM
B | M ∈M, B ∈ |C| } (3.1)

admits a calculus of left fractions on C.

Proof. We show that Σ has the four properties given in [6, page 258]. Σ contains
all identities since τu

B = α(u 6 u, idB) = idB , for any B in |C|.
Let τM

α(L,B), τ
L
B ∈ Σ then the composite τM

α(L,B) ◦ τL
B is defined and the second

component is by definition α(u 6 L, idB), for the first component we get :

τM
α(L,B) = α(u 6 M, idα(L,B))

= α(u 6 M, α(L 6 L, idB)), by functoriality of α.

= α(L 6 ML, idB), by definition 2.1 (ii)

Hence the composite is α(u 6 ML, idB) which is in Σ.
Let

D C
s

oo

f
/ / E (3.2)

be a diagram in C with s in Σ, say s = τM
C = α(u 6 M, idC). We have C = α(u,C)

and D = α(M, C). Set C ′ = α(M,E) and s′ = τM
E = α(u 6 M, idE) which is in Σ,

and finally f ′ = α(M 6 M, f). Then the following diagram

C
f

//

s

��

E

s′

��

D
f ′

// C ′

(3.3)

commutes by naturality of τM .
Let

α(u,C) s
// α(M,C)

f
//

g
// E (3.4)
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be a diagram in C with s = τM
C = α(u 6 M, idC) in Σ and f ◦ s = g ◦ s. We have

to find an object E′ in |C| and a morphism t : E → E′ in Σ, such that t ◦ f = t ◦ g.
The given equality of composites immediately gives :

α(M 6 M, f ◦ α(u 6 M, idC)) = α(M 6 M, g ◦ α(u 6 M, idC))

Computing the left hand side gives:

α(M 6 M, f) ◦ α(M 6 M, α(u 6 M, idC))

= α(M 6 M, f) ◦ α(M 6 M2, idC)
= α(M 6 M,f) ◦ α(u 6 M, α(M 6 M, idC))

= α(M 6 M, f) ◦ α(u 6 M, idα(M,C))

= α(u 6 M, f) = τM
E ◦ f

By symmetry the right hand side is τM
E ◦ g, thus with t = τM

E and E′ = α(M,E),
the desired result is obtained.

All in all Σ admits a calculus of left fractions on C.

Of course the above also holds for right actions, still giving a calculus of left fractions.

Note that given any morphism set, you can always form the category of fractions.
But only when the used set allows a calculus of at least left fractions it is straight-
forward to transfer properties of C to C(Σ−1), see [6, p.19.5] and [1, I.2].

4. Categories with Endomorphism/Action

Here we develop some categorical tools for the comparison of bounded control
and monoidal control.

Definition 4.1. [1, p.3] A category with endomorphism is a triple (B, C, τ), where
B is a category, C : B → B is a functor and τ : 1B ⇒ C is a natural transformation,
s.t. Cτ = τC, meaning that for all B ∈ |B|, C(τB) = τC(B).

Proposition 4.2. If C is a category with an M- action, then for every M in M,
(C, M, τM ) is a category with endomorphism.

The proof is by inspection. Note that induced actions on functor categories, give
induced endomorphism structures in the sense of [1]. For brevity let CM denote
(C, M, τM ).
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Definition 4.3. [1, p.13] Let (Bi, Ci, τi), i = 1, 2, be categories with endomorphism.
A functor ϕ : B1 → B2 is said to be almost endomorphism preserving if for some
k > 0, there exists a natural transformation ψ : ϕC1 ⇒ Ck

2 ϕ s.t. the diagram of
natural transformations

ϕ ϕτ1
//

τk
2 ϕ

   

A

A

A

A

A

A

A

A

ϕC1

ψ
��

Ck
2 ϕ

(4.1)

commutes. Notice that for B ∈ |B|, (ϕτ1)B = ϕ((τ1)B) and (τn
2 ϕ)B = (τn

2 )ϕ(B).

Proposition 4.4. Let C be a category with an M action α. If M 6 N ∈ M, then
the identity functor 1C : CM → CN is almost endomorphism preserving.

The proof is simply by the fact that α(Mn 6 Nn, idB) ◦ τMn

B = τNn

B .
Let us recall some definitions from [1]. If (Bi, Ci, τi), i = 1, 2, are categories with
endomorphism, [1, p.3], then a functor ϕ : B1 → B2 is called endomorphism pre-
serving, [1, lemma 5.2,p.27] if it is almost endomorphism preserving and there exist
some l in N and a natural transformation ω : C2ϕ → ϕCl

1 such that the diagram of
natural transformations

ϕ τ2ϕ
/ /

ϕτ l
1    

A

A

A

A

A

A

A

A

C2ϕ

ω
��

ϕCl
1

(4.2)

commutes. It is obvious that a category with endomorphism (B, C, τ), can be in-
terpreted as a category with action by the cyclic monoid generated by C with the
natural ordering. And of course any cyclic monoid action induces an endomorphism
structure.
We define the concept of functors between categories with monoid actions being
action preserving, which is a natural generalization of endomorphism preserving
functors.

Definition 4.5. Let αi : Mi × Bi → Bi, i = 1, 2, be monoid actions on categories
Bi, i = 1, 2. Assume the existence of functors µ : M1 →M2 and ν : M2 →M1,
which are composition and order preserving. Furthermore for any M in M1 and any
N in M2, assume that M 6 νµM and N 6 µνN . A functor ϕ : B1 → B2 is called
action preserving, with respect to µ and ν, if there exist binatural transformations

• ψ : ϕα1 → α2 ◦ (µ× ϕ)

• ω : α2 ◦ (1M2 × ϕ) → ϕα1 ◦ (ν × 1B1)

such that for all M in M1 and N in M2, the diagrams
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ϕ
ϕτM

1
//

τµ(M)
2 ϕ

% %

L

L

L

L

L

L

L

L

L

L

L

ϕα1(M, )

ψM

��

ϕ
τN
2 ϕ

/ /

ϕτν(N)
1 % %

J

J

J

J

J

J

J

J

J

J

J

α2(N, ϕ( ))

ωN

��

α2(µ(M), ϕ( )) ϕα1(ν(N), )

(4.3)

commute.

Remember α1(M, ), or similar, above, is the functor we normally just call M , here
we write it out to emphasize the binaturality of ψ and ω. If a functor between
categories with action (only) satisfies the leftmost diagram, we call the functor
almost action preserving.
Given categories with endomorphism (Bi, Ci, τi), i = 1, 2, and an endomorphism
preserving functor ϕ : B∞ → B∈, with constants k and l respectively, we may define
µ, ν : N → N for n ∈ N, by µ(n) = kn and ν(n) = ln respectively. If we interpret
the induced actions of the cyclic monoids generated by Ci on Bi as actions by N, it
is immediate that ψ of 4.1 and ω of 4.2, extend to ψ and ω respectively, satisfying
4.3. So an endomorphism preserving functor is action preserving with respect to the
canonically induced N actions. Generally in the case of cyclic monoid actions, all
information can be obtained from the canonically induced endomorphism structure,
especially 4.3 reduces to 4.1 and 4.2. So the concept of an action preserving functor
is a true generalization of the concept of an endomorphism preserving functor.

5. Monoid Actions and Colimits

We now consider the category of fractions defined by the action of the cyclic
submonoid defined by a single monoid element. This uses some results from [1], but
the colimit results are entirely new.

Definition 5.1. Let C be a category with an M action α. Let M ∈M. Set

ΣM = { τMn

B : B → Mn(B) | n ∈ Z+, B ∈ |C| } (5.1)

Here τMn

B = α(u 6 Mn, idB). Trivially τMn

B = (τM )n
B , so ΣM is exactly the Σ

defined by the category with endomorphism CM , see [1, p.5] and proposition 4.2.
For M 6 N in M it follows from proposition 4.4 and [1, prop.I.3.2] that there exists
a unique functor λM,N : C(Σ−1

M ) → C(Σ−1
N ) such that the diagram

C
QM

| |y

y

y

y

y

y

y

y

y

QN

" "

E

E

E

E

E

E

E

E

E

C(Σ−1
M )

λM,N

// C(Σ−1
N )

(5.2)

commutes, where QM and QN are the canonical functors. Note that λM,N is the
identity on objects. By uniqueness λM,N followed by λN,K , where defined, is λM,K .
Having an initial element and an ordering, M is directed. Hence any M-action on
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any category C, defines a direct system

Dα
C : M→ Cat (5.3)

with Dα
C (M) = C(Σ−1

M ) and Dα
C (M 6 N) = λM,N .

Theorem 5.2. If C is a category with an M-action, and Dα
C is the direct system

defined by the action, then there exists an isomorphism

lim−→Dα
C → C(Σ−1)

Proof. For M 6 N in M we immediately have a commutative diagram

C(Σ−1)

C

Q

OO

QM
vvn

n

n

n

n

n

n

n

n

n

n

n

n

n

QN
((

P

P

P

P

P

P

P

P

P

P

P

P

P

P

Dα
C (M) = C(Σ−1

M )

ψM

::

λM,N

//

βM
''

O

O

O

O

O

O

O

O

O

O

O

C(Σ−1
N ) = Dα

C (N)

ψN

dd

βN
wwo

o

o

o

o

o

o

o

o

o

o

lim−→Dα
C

(5.4)

where ψM and ψN are uniquely determined by the universal properties of respec-
tively QM and QN . The family {ψL| L ∈ M} is thus compatible with Dα

C , hence
we get a unique ψ : lim−→Dα

C → C(Σ−1), such that for any L in M, ψβL = ψL. Note
that, since we have a direct system, for any M and N in M, βMQM = βNQN ,
thus we actually have a map ρ̂ : C → lim−→Dα

C , which for each M in M sends every
σ ∈ ΣM into an isomorphism. Since Σ =

⋃

L∈M ΣL, we can invoke the universal
property of Q, which gives a unique map ρ : C(Σ−1) → lim−→Dα

C , such that for any L
in M, ρQ = βLQL = ρ̂. Collecting things, for arbitrary L in M, we end up with a
commutative diagram,

C(Σ−1)
ρ

// lim−→Dα
C

ψ
oo

C

Q

OO

QL

// C(Σ−1
L )

ψL

d dI

I

I

I

I

I

I

I

I

βL

OO

(5.5)

on which a simple chase invoking all universal properties, shows that ψ, respectively
ρ, is an isomorphism.

Next we use the above colimit result to transfer an important result on functors
induced by almost endomorphism preserving funtors, to the context of almost action
preserving functors.

Proposition 5.3. [1, prop.I.3.2] Let Bi be categories with monoid action, αi :
Mi × Bi → Bi, (i = 1, 2). If F is an almost action preserving functor, then there
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exists a unique induced functor F! : B1(Σ−1
1 ) → B2(Σ−1

2 ), such that the diagram

B1

Q1

��

F
/ / B2

Q2

� �

B1(Σ−1
1 )

F!
// B2(Σ−1

2 )

(5.6)

commutes.

Proof. Let F : B1 → B2 be an almost action preserving functor, and M in M1

be arbitrary. Directly by definition 4.5, F is almost endomorphism preserving with
respect to the endomorphism structures induced by M respectively µ(M), where µ
is from the definition. Hence the definition of Qµ(M)

2 and [1, prop.I.3.2] provides a
commutative diagram

B1

QM
1

��

F
// B2

Qµ(M)
2

� �

Q2

&&

M

M

M

M

M

M

M

M

M

M

M

B1(Σ−1
M )

F M
!

/ / B2(Σ−1
µ(M)) // B2(Σ−1

2 )

(5.7)

By the commutative square Qµ(M)
2 F ((τ1)M

B ) is an isomorphism for every M in M1,
hence so is Q2F ((τ1)M

B ) and the universal property of Q1 thus tells us that there
exists exactly one F! such that Q2F = F!Q1.

6. Monoidal Control Spaces

Definition 6.1. Let Z be a space. Denote by E(Z) the set of reflexive relations
on Z, with monoid structure given by composition of relations, and partial order
given by inclusions. A monoidal structure on Z, is a submonoid M of E(Z) with
the following properties :

i) M consists of the diagonal of Z × Z, and open neighborhoods thereof. The
diagonal plays the role of identity/initial element.

ii) M is closed with respect to composition and inversion of relations.

iii) For any M in M and any compact subset C of Z, M(C) is relatively compact.

iv)
⋃

M∈MM = Z × Z

Example 6.2. Let (Z, d) be a proper metric space which is geosdesic in the sense
of Ballmann, [3].
For any ε > 0, let Mε = { (x, y) ∈ Z × Z | d(x, y) < ε }. Then

M0 = { Mε | ε > 0 } ∪ {δ(Z × Z)}

is a monoidal structure on Z.

It is straightforward to prove the following :
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Proposition 6.3. Let M be a monoidal structure on a space Z, then M− {u} is
a coarse structure on Z, as defined in [5].

In a private communication Pedersen told us that Higson, Pedersen and Roe, do
not insist on entourages being open, even though they said so in [5]. If they did,
then, in order to lift entourages, they would have to consider continuous, not just
proper, control maps. This tells us that we can actually avoid removing u in the
proposition above.

Definition 6.4. A monoidal control space is a triple (Z, P,M), where Z is a space,
P is a subset of the family of all subsets of Z, containing all singleton sets, and not
containing the empty set. And M is a monoidal structure on Z, acting by evaluation
of relations on the category P, which has objects the elements of P , and morphisms
the respective inclusions.

We call the pair (P,M) a monoidal control structure on Z, see [1, p.41-42] for the
corresponding bounded notions. Condition [1, 1.1(iv),p.42] in the definition of a
boundedness control structure on Z, is replaced by the following simple fact.

Lemma 6.5. Let (Z,P,M) be a monoidal control space, then

∀K ∈ P ∀M ∈M ∀x ∈ Z : M({x}) ∩K 6= Ø ⇒ x ∈ M−1(K). (6.1)

The proof is trivial.

Example 6.6. Given a space Z with some monoidal structure M, we can always
obtain a monoidal control structure (P,M) on Z, by taking P to be the whole
powerset on Z, except for the empty set. More interestingly though, we can also take
P to be the relatively compact non-empty subsets of Z. This structure is actually
the right setting for doing mc algebraic topology.

In [1, p.42] the notion of radius of a subset of a boundedness control space Z is
defined. This is used to define the concept of a bounded family of subsets of Z, as
follows : Let (Z,P, C) be a boundedness control space and A ∈ A then

rad A = inf { n ∈ Z+ ∪ {∞} | A ⊆ CnK0 for some minimal K0 ∈ P }

And a family A of subsets of Z is called bounded if the set { rad A | A ∈ A } is
bounded in Z. This is equivalent to the statement that there exists some d > 0 such
that for all A ∈ A there exists some minimal K0 ∈ P with A ⊆ CdK0. The following
generalizes this to the mc setting, where size is measured by monoid elements, and
not by an integer radius.

Definition 6.7. Let Z be a space with monoidal structure M. A family A of subsets
of Z is said to be M-bounded if one of the following two equivalent statements hold:

• ∃M ∈M ∀A ∈ A ∃x ∈ Z : A ⊆ M({x})
• ∃M ∈M ∀A ∈ A ∀a ∈ A : A ⊆ M({a})

Thus when reading [1] from a monoidal point of view, any occurrence of radius
should be replaced by the concept of M-boundedness, mutatis mutandis.
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7. Monoidally Controlled Spaces

Definition 7.1. Let Z be any space. A controlled space over Z is a pair (E, p),
where E is some space and p : E → Z is a continuous map.

Notice that in the setting of control by entourage, see [5], the corresponding map
p is only demanded to be proper. Given a monoidal control space (Z, P,M), any
space controlled over Z is called an mc space over (Z, P,M).

Definition 7.2. Let (E, p) and (E′, p′) be mc spaces over a monoidal control space
(Z, P,M). An mc map f : (E, p) → (E′, p′) is a continuos map f : E → E′ for
which the following equivalent statements hold :

• ∃M ∈M ∀B ∈ P(E) : p′(f(B)) ⊆ M(p(B)).

• ∃M ∈M ∀B ∈ P : f (p−1 (B)) ⊆ (p′)−1 (M (B))

We say that f is controlled by M .

It is immediate that the collection of mc spaces over (Z,P,M), and mc maps
between them, form a category. We denote this by T OPM/Z.

Example 7.3. As in example 6.2, let (Z, d) be a proper metric space which is
geodesic, and P be the collection of open bounded subsets of Z. Take M to be
the submoniod of M0 consisting of the elements {Mn | n ∈ N} together with the
diagonal. By considering the usual, ”blow up”, action of N∪{0} on the metric balls
in Z, it is easily seen that M acts on P by evaluation of relations. This is the metric
monoidal control structure on Z. Note that the action defines a function C : P → P
which together with P gives the metric boundedness control structure on Z. The mc
maps with respect to this control structure are called bounded, see also [1, example
1.3,p.43] where there is no obvious reason to stick with the metric balls. Notice that
the condition A required in [1] is replaced by the more general requirement of the
metric space being geodesic.

An mc CW complex over (Z, P,M) is a pair (E, p), where (E, p) ∈ T OPM/Z, with
E a finite dimensional CW complex, and such that the set { p(e) | e a cell of E }
is M-bounded, see definition 6.7. We denote the subcategory of T OPM/Z consist-
ing of mc CW complexes and mc maps between them by CWM/Z. Any (E, p) in
CWM/Z, with the property that, for any K in P , p−1(K) is contained in a finite
subcomplex of E, is called a finite mc CW complex . We denote the full subcategory
of finite mc CW complexes by CWM

f /Z.

8. Continuous Control, at infinity

As an example of the usefulness of monoidal control, we give an mc description
of continuous control.
Let (Z, Y ) be a pair of compact Hausdorff spaces, with Z = Z − Y , assuming
Z is dense in Z. Given a controlled space (E, p) over Z, set E = E q Y and
p = pq 1Y : E → Z. E is given the smallest topology such that:
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i) E ⊆ E is open and inherits its original topology.

ii) p is continuous.

In other words W ⊆ E is open if and only if W ∩ E is open in E, and there exists
some open subset U in Z s.t. W = (W ∩ E) ∪ (p)−1(U). This is sometimes called
the teardrop topology, see [2, p.221]. Note that a function g : E1 → E2 is continuous
if and only if g|E1 : E1 → E2 and p2 ◦ g : E1 → Z are continuous.

Definition 8.1. Let (E, p) and (E′, p′) be controlled spaces over Z. A continuous
map f : E → E′ is called continuously controlled at infinity, if and only if f =
f q 1Y : E → E

′
is continuous.

Let CC(Z, Y ) denote the category of spaces controlled over Z and continuously
controlled maps between them.

Remark 8.2. The category CC(Z, Y ) is the subcategory of T OPcc/LC of [2, p.223],
obtained by having fixed base space Z and fixed space at infinity Y .

For the sake of comparison with other descriptions of continuous control, we give
the following interpretation of continuous control via neighborhoods, without (the
easy) proof.

Proposition 8.3. Let (E, p), (E′, p′) ∈ |CC(Z, Y )| and let f : E → E′ be continu-
ous. Then f ∈ CC(Z, Y )((E, p), (E′, p′)) if and only if

∀y ∈ Y ∀U ⊆ Z(nbh. of y) ∃V ⊆ U(nbh. of y) ∀e ∈ E : p(e) ∈ V ⇒ p′ ◦ f(e) ∈ U .

Next we give the monoid/entourage version of continuous control, this is parallel to
[5].

Definition 8.4. Let (Z, Y ) be as above. Let Mcc be given as follows: A relation
R ∈ E(Z) is in Mcc if it is either the diagonal, δ(Z × Z) in Z × Z, or an open
proper neighborhood of δ(Z × Z) satisfying the following characteristic property :

closure(R, Z × Z) ∩ (Y × Y ) = δ(Y × Y )

i.e. the closure at infinity of any Mcc element is the diagonal in Y ×Y . Here proper
is in the sense of definition 6.1[(iii)].

It is obvious that (Mcc,P(Z)) is a monoidal structure on Z.

Remark 8.5. We can generalize the setup further, see also [5, p.5]. If there is given
some equivalence relation on Y , for example the diagonal as above, we may define
a monoidal structure on Z, by requiring that the monoid elements, at infinity, close
off to a subset of the graph of the relation.
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Proposition 8.6. Let (Z, Y ) be as above and metric. Then

T OPM
cc

/Z((E1, p1), (E2, p2))

is precisely the set of continuously controlled maps from E1 to E2.

Proof. Assume f ∈ T OPM
cc

/Z((E1, p1), (E2, p2)) i.e.

∃M ∈Mcc ∀e ∈ E1 : (p1(e), p2(f(e))) ∈ M

Let y ∈ Y be arbitrary and let Uy ⊆ Z be an arbitrary open neighborhood of y. Fol-
lowing [5, lemma 2.4] there exists an open neighborhood Vy of y in Z, wlog assume
Vy ⊆ Uy, such that for any e in E, p1(e) ∈ Vy implies that f(p2(e)) ∈ Uy. Thus by
proposition 8.3 f is continuously controlled. Assume f ∈ CC(Z, Y )((E1, p1), (E2, p2))
and that f /∈ T OPM

cc
/Z((E1, p1), (E2, p2)) i.e. ∀M ∈ Mcc ∃eM ∈ E1 :

(p1(eM ), p2(f(eM ))) /∈ M . Note that for any N ∈ Mcc with N 6 M we have that
(p1(eM ), p2(f(eM ))) /∈ N . Since Mcc is directed we obtain a net (eM )M∈Mcc in
E1, and since Z is compact we can find a convergent subnet, (p1(eM ′))M ′∈K, of
the p1 image of this net in Z. Since Z × Z is covered by Mcc and K is cofinal,
the subnet cannot converge in Z without violating our assumption on f , hence
(p1(eM ′)) → y ∈ Y . By [2, remark 1.3,p.222] the preimage of this subnet is a
convergent subnet, of the original net, in E1, also converging to y ∈ Y .
We will now construct a monoid element which controls f , hence contradicting the
original assumption. Denote the distance from a point x in Z to Y by d(x,Y). This
is welldefined since Y is compact. Let Br(x) denote the open ball in Z with center
x and radius r. For M ∈ K set

• r1 = r1(M) = 1
2d(p1(eM ), Y )

• r2 = r2(M) = 1
2d(p2(f(eM )), Y )

• BM = Br1(p1(eM ))×Br2(p2(f(eM ))).

Now for N in Mcc − δ(Z × Z) set N0 = N ∪ { BM |M ∈ K }
Clearly N0 is open in Z ×Z and contains the diagonal. For any compact C ⊆ Z

we can argue that only finitely many of the BM , which all are relatively compact,
can contribute to N0(C) and N−1

0 (C) thus these are relatively compact.
We have, so far, shown that N0 could be an element of some monoidal structure

on Z, we need to show that it is actually in Mcc.
Let (x1

n, x2
n) be a sequence in N0 that converges to a point (y1, y2) ∈ Y ×Y . If a

subsequence is contained in N we are done. Thus let us assume that a subsequence
is contained in the

⋃

M∈MBM part of N0. The subsequence cannot be contained in
any single BM , since it would converge in the closure hereof which is disjoint from
Y × Y by construction, we may even assume that each BM contains at most one
element of the subsequence. Since the radii of the BM tend to zero as the centers
converge, the subsequence converges to (y, y) i.e. (x1

n, x2
n) converges to (y, y). As

above we may write N−1
0 instead of N0 and the same arguments hold.

All in all N0 is in Mcc and this contradicts the construction of the original net,
thus f is Mcc controlled.
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9. Comparison of Bounded- and Monoidal Control

In this section we show that given a monoidal control space (Z, P,M) the sym-
metrized monoid elements induce boundedness control structures on Z in the sense
of [1]. It is in this context that we, by the colimit result, theorem 5.2, say that
monoidal control is a colimit of bounded control.

Theorem 9.1. If (Z, P,M) is a monoidal control space, where Z is a connected
metric space, with proper metric d : Z × Z → R+, then for each symmetric M ∈
M− {u}, (Z,M,P ) is a boundedness control space.

Proof. We have to check that for every symmetric M inM, (P, M) defines a bound-
edness control structure on Z, as given in [1, definition II.1.1]. That is we check
that:

i) P is a subposet of the power set on Z and M : P → P is an order preserving
function such that for all K ∈ P , K ⊆ M(K).

ii) For all K ∈ P , Z =
⋃

n Mn(K)

iii) For all K ∈ P , there exists a minimal element K0 ∈ P with K0 ⊆ K.

iv) There exists a function Θ : Z+ → Z+ such that if K0 ∈ P is minimal, L ∈ P ,
and MnK0 ∩ L 6= ∅, then K0 ⊆ MΘ(n)(L).

ad (i) P is by definition a subposet of P(Z) and clearly the function K 7→ M(K), is
order preserving.

ad (ii) For any x ∈ Z set Ux =
⋃

n∈N0
Mn(x). Since M0(x) ⊆ M(x) and M(V ) is

open for any V ∈ P , it follows that Ux is open. Let x, y ∈ Z and m,n ∈ N0. If
Mn(y) ∩Mm(x) 6= ∅, then by lemma 6.5 and symmetry of M , y ∈ Mm+n(x)
and x ∈ Mm+n(y). Hence if Ux ∩ Uy 6= ∅, then Ux = Uy.
Now assume there exists x ∈ Z such that Ux 6= Z. Set Vx =

⋃

y∈Z−Ux
Uy.

Then Ux ∩ Vx = ∅, both are open and their union is Z. This contradicts the
connectedness of Z, thus for all x ∈ Z, Ux = Z proving (ii).

ad (iii) By definition the singleton sets are in P .

ad (iv) Let θ = idZ+ , this works because for x in Z and L in P , we get that if
Mn({x}) ∩ L 6= ∅ then, by lemma 6.5, x is in (Mn)−1(L), but by symmetry
of M (Mn)−1 = Mn.

All in all (P,M) is a bc structure on Z.

For the connection between monoidal and bounded control we observe the fol-
lowing fact
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Lemma 9.2. For (Z,P,M) a monoidal control space, the symmetrized elements

{ MM−1 | M ∈M }

form a cofinal subset of M.

Now if (Z, P,M) is a monoidal control space, and M is in M, then T OPM/Z
denotes the category of controlled spaces and maps between them controlled by the
monoid generated by M , {T OPM/Z | M ∈ M} with inclusions ιM,N for M 6
N defines a direct system M → Cat. We get the following proposition almost
immediately, the easy proof is left for the reader.

Proposition 9.3. Let (Z, P,M) be a monoidal control space. Then there exists an
isomorphism of categories :

lim−→
M∈M

T OPMM−1
/Z → T OPM/Z (9.1)

The category with endomorphism determined by (MM−1, P ), following [1, p.42], is
exactly the one determined by MM−1 as in 4.2. As we shall see later all interesting
algebraic topology invariants of mc spaces, live in categories of fractions determined
by the monoid action. Thus in the light of theorem 9.1, theorem 5.2 and proposi-
tion 9.3 we very concretely interpret monoidal control as the colimit of bounded
control. This is, to our knowledge, the most explicit and general presentation of the
connection between continuous control at infinity and bounded control. As we shall
see later it enables us to take the results from bounded control, [1], and interpret
them as results of monoidal, especially continuous, control.

10. Fragmented Spaces and Fragmentations
We recall definitions and results from [1, section II.2] and put them in a monoidal

setting. The given proofs nicely demonstrate the transition from bc to mc context.
Let B be a category with action α : M×B → B, and let Σ be the, by now, usual
set of morphisms defined via this action. We call the category T OPB(Σ−1) the
category of fragmented spaces over B. By now we know a lot about the inner works
of categories like this, and by section 5 we immediately conclude that it is the colimit
of the categories of fragmented spaces T OPB(Σ−1

M ) as defined in [1, p.47], where
the subscript denotes that the endomorphism structure is induced by the element
M of M. Any X in |T OPB| is thus called a fragmented space, for K ∈ |B| we
write XK = X(K). It is convenient to think of X as the family { XK | K ∈ |B| }
together with the family of maps { X(g) | g ∈ B(K, L) }, corresponding to the
fact that maps between fragmented spaces are natural transformations. If X, Y are
fragmented spaces, then a morphism F : X → Y in T OPB(Σ−1), is represented
by a natural transformation fM : X → Y M in T OPB, for some M in M. In the
above, when T OP is replaced by another category C, the category CB is called the
category of fragmented C-objects over B. Let (Z, P,M) be a monoidal control space.

Definition 10.1. [1, p.48] A fragmentation of (E, p) ∈ T OPM/Z, is a functor
F : P → P(E) such that ∪K∈P F (K) = E.
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Here P(E) denotes the subcategory of T OP consisting of all subsets of E and
inclusions among them. Note that F is a fragmented space in the above sense.

Example 10.2. Let (E, p) ∈ |T OPM/Z|. Then K 7→ p−1(K) defines a fragmen-
tation of (E, p) called the inverse image fragmentation.

Example 10.3. Let (E, p) ∈ |CWM/Z|. Then

K 7→ smallest subcomplex of E containing p−1(K)

defines a fragmentation of (E, p) called the smallest subcomplex fragmentation.

Definition 10.4. [1, p.50] Let (E, p) ∈ |T OPM/Z| and let F1, F2 : P → P(E) be
two fragmentations of (E, p). We say that F1 and F2 are equivalent if there exists
M,N ∈ M such that for all K ∈ P , F1(K) ⊆ F2(M(K)) and F2(K) ⊆ F1(N(K)).
(This is an equivalence relation).

As an illustration of the transition between bc and mc contexts, especially concern-
ing the radius notion, we present

Lemma 10.5. [1, Lemma II.2.5] If (E, p) is an mc CW complex over some monoidal
control space (Z,P,M), then the inverse image fragmentation of (E, p) is equivalent
to the smallest subcomplex fragmentation of (E, p).

Proof. Let (E, p) be an mc space over (Z, P,M) and, for K in P , let K → XK be
the smallest subcomplex fragmentation. By definition, for all K in P , p−1(K) ⊆ XK .
Thus we only need to find some N inM such that, for all K in P , XK ⊆ p−1(N(K)).
Let K be arbitrary in P . Following the proof of the bc version [1, p.51], an i-cell
ei is in XK if and only if there exists a sequence of cells ei < ei(1) < ... < ei(j)

where i = i(0) < i(1) < ... < i(j), where ei(j) ∩ p−1(K) 6= ∅, and where ei(k) <
ei(k+1), k = 0, 1, ..., j − 1 means that ei(k) ∩ ei(k+1) 6= ∅. Note that since (E, p) is
an mc CW complex, there exists some M in M such that for every cell e of E,
there exists an element z of Z, such that the image p(e) is contained in M({z}).
Hence let z be in Z such that p(ei(j)) ⊆ M({z}), then M({z}) ∩ K 6= ∅, thus by
the inversion lemma z ∈ M−1(K), whereby it follows that p(ei(j)) ⊆ MM−1(K).
Decreasing induction over the sequence of cells, gives that ei ⊆ p−1((MM−1)n(K)),
with n = j + 1 6 dimE + 1. Setting N = (MM−1)n every cell of XK is contained
in p−1(N(K)), hence so is XK , proving the lemma.

Now we will consider categories of fragmented spaces induced by a monoidal
control structure. We will need the following two results, which are parallel to
results in [1].

Lemma 10.6. [1, lemma II.2.6] Let (Z,M, P ) be a monoidal control space. Then

• The inverse image fragmentation defines a functor:

Fr1 : T OPM/Z → T OPP(Σ−1)

• The smallest subcomplex fragmentation defines a functor:

Fr2 : CWM
f /Z → CWP

f (Σ−1)
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Lemma 10.7. [1, lemma II.2.7] The functors Fr12 and 2 Fr2 are naturally equiv-
alent. Here 2 denotes the suitable forgetful functor.

The proofs of these lemmata are direct translations of the bc versions. The first
lemma is used to lift definitions from fragmented spaces to mc spaces, and the second
lemma shows us that whatever we define using the first lemma, is independent of the
actual CW-structure. If (Z, P,M) is a monoidal control space, then the canonical
universal cover of an mc space (E, p) is the universal cover of the fragmented space
Fr1(E, p), details below. We could have used Fr2, and if we do it will be clear from
the context, thus PG1(Fri(E, p)), i = (1, 2) is always denoted PG1(E, p). Let X in
T OPB(Σ−1) be a fragmented space over B. Let G1(X) be the composite functor

B
X

// T OP
G1

// GPOID (10.1)

where G1 is the fundamental groupoid functor. BG1(X) is the wreath product
B

∫

G1(X), thus objects are pairs (K, x) where K is in |B| and x is in XK , morphisms
are also pairs

(i, ω) : (K,x) → (L, y) (10.2)

where i : K → L is a morphism and ω is a homotopy class relative to endpoints of
paths from y to X(i)(x) in XL. Note that BG1(X), in the obvious way, inherits an
M action from the action on B.
The universal cover of X is the fragmented space ˜X : BG1(X) → T OP defined by
setting

˜X(K,x) = P (XK , x)/ ∼

for (K, x) ∈ |BG1(X)| and

˜X(i, ω)(α) = ω ∗X(i)(α)

for (i, ω) : (K, x) → (L, y) and α ∈ ˜X(K,x). Here P (XK , x)/∼ is the space of paths in
XK with initial point x, modulo the relation of homotopy relative to endpoints. We
let εx denote the class of the constant path at x. Let p(K,x) : ( ˜X(K,x), εx) → (XK , x)
be the endpoint projection. When X is a fragmented CW complex, this is the
universal cover of the component of XK containing x. As in [1, p.184], an mc
subspace (W,p) of (X, p) determines a sub fragmented space W of ˜X by requiring
that

W (K,x)
⊆

//

� �

X̃(K, x)

p(K,x)

��

W ∩XK
⊆

/ / XK

(10.3)

be a pullback for any K ∈ |B|.

11. Homology of Monoidally Controlled Spaces
Parallel to [1, Section II.3] we go via fragmented spaces to obtain the homology

of mc spaces. Let Hn : T OP → AB denote the usual n’th singular homology
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functor. For any category B, composition on the left with Hn induces a functor
Hn∗ : T OPB → ABB. Given a category with action α : M × B → B, it is a
straightforward inspection to see that, with respect to the induced actions on the
two functor categories, Hn∗ is almost action preserving. By proposition 5.3 there
exists a unique functor

HF
n : T OPB(Σ−1) → ABB(Σ−1) (11.1)

such that the diagram

T OPB
Hn∗

//

Q
� �

ABB

Q
� �

T OPB(Σ−1)
HF

n

// ABB(Σ−1)

(11.2)

commutes. Details of the above in the bounded case are given in [1, lemma I.5.1].
HF

n has the following concrete description :

• For any E ∈ T OPB(Σ−1)

– For every K ∈ |B|, HF
n (E)(K) = Hn(E(K))

– For every g ∈ B(K,L), HF
n (E)(g) = E(g)∗

• For any f ∈ T OPB(Σ−1)(E, Y ), if fM : E → MY represents f with

fM = { fMK : E(K) → Y (M(K)) | K ∈ |B| },
then HF

n (f) is represented by

fM∗ = { fMK∗ : Hn(E(K)) → Hn(Y (M(K))) | K ∈ |B| }.
As in [1] homology of pairs and triples of fragmented spaces follow the same lines,
and we have the expected long exact sequences in homology. Furthermore, since
homotopies of maps of fragmented spaces are defined fragmentwise, see [1, p.57],
homotopy invariance is immediate. Notice that interchanging the n’th homology
functor with the n’th chain functor changes nothing but notation in this setup, and
we thereby get chain complexes of fragmented spaces.

Definition 11.1. Let (E, p) be an mc space over a monoidal control space (Z, P,M).
The n’th mc homology of (E, p) is defined as:

HM
n (E, p) = HF

n (Fr1(E, p)) ∈ ABP(Σ−1). (11.3)

Thus, for any K in P , we have HM
n (E, p)(K) = Hn(p−1(K)), and for any inclusion

ι : K → L in P we have HM
n (E, p)(ι) = ι∗ : Hn(p−1(K)) → Hn(p−1(L)). In [1,

p.89 ff.] the n’th bc homology functor is defined as the composite

T OPc/Z
Fr1

// T OPP(Σ−1)
HF

n
// ABP(Σ−1) (11.4)

Of course the n’th bc chain functor is defined similarly. Now by theorem 9.1 given a
monoidal control space (Z,P,M), for every M ∈M, we get a boundedness control



Homology, Homotopy and Applications, vol. 4(1), 2002 230

space (Z, P,MM−1), and the composite

T OPMM−1
/Z

FrM
1

// T OPP(Σ−1
MM−1)

HF M
n

// ABP(Σ−1
MM−1) (11.5)

defines the n’th bc homology– (chain–) functor corresponding to this induced bound-
edness control structure. With theorems 5.2 and 9.3 in mind the colimit of this
diagram is exactly the n’th mc homology of (E, p), with the concrete description
given above. Notice that by the considerations of section 5 and [1, cor. I.4.3], all of
the categories ABP(Σ−1

M ) are abelian, hence by theorem 5.2 ABP(Σ−1) is abelian.
Furthermore the mc equivalent of [1, corollary II.3.5] tells us that mc homology is
the homology of the similarly defined mc chain complex.

12. Homotopy of Monoidally Controlled Spaces

Following [1] we define the homotopy of mc spaces via the homotopy of frag-
mented spaces. Let (Z,M, P ) be a monoidal control space. All references to [1]
refer to the bc case with boundedness control structure generated by some sym-
metrized monoid element, see theorem 9.1. Let C be the category Sets∗,Gp or Ab
depending on whether n is 0, 1 or > 2 respectively. For (E, p) an mc space over
Z, let E denote either the inverse image or the smallest subcomplex fragmentation
induced by (E, p), according to circumstances. Define a functor

πn(E) : PG1(E) → C

by

• πn(E)(A, x) = πn(EA, x), for (A, x) ∈ |PG1(E)|
• πn(E)(i, ω) = ω∗ ◦ (E(i))∗, for (i, ω) ∈ PG1(E)((A, x), (B, y))

where ω∗ is the change of basepoint isomorphism induced by conjugation with ω.

Definition 12.1. [1, def. 4.1 p. 60] For n > 0 set

πF
n (E) = Q(πn(E)) ∈ |CPG1(E)(Σ−1)|

where Q is the canonical functor. πF
n (E) is called the n’th homotopy of the frag-

mented space E.

Now G1 is the fundamental groupoid functor, hence Aut(A, x) in PG1(E) is iso-
morphic to π1(EA, x) whereby the latter gets an action on πF

n (E), hence the n’th
homotopy of the fragmented space E gets a kind of PG1(E) module structure, see
[1, p.61]. Now we will need the notion of morphism induced by maps of fragmented
spaces, furthermore these should turn out to be isomorphisms if the original maps
are homotopy equivalences. There is a slight, but wellknown, problem here, the
module structures do not match apriori. But as for the classical case, whenever
there is a map f : Y → E of fragmented spaces we can give πF

n (E) a PG1(Y )
module structure, this is contained in the following.

Proposition 12.2. [1, prop. 4.2 p. 61] Any map of fragmented spaces over B,
f : Y → E, induces a functor
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f ! : CBG1(E)(Σ−1) → CBG1(Y )(Σ−1)

and a morphism

f∗ : πF
n (Y ) → f !πF

n (E).

The functor f ! is unique up to a canonical natural equivalence, and, given f !, f∗ is
unique.

The proof is mutatis mutandis (mm) the same as in [1]. For pairs and triples of
fragmented spaces [1] gives us similar results, and it also provides exact sequences
for both. Furthermore, by mm [1, cor.4.10, p.66], πF

n is homotopy invariant. Now
we define the n’th homotopy of an mc space.

Definition 12.3. Let (E, p) ∈ |T OPM/Z|. Define the n’th homotopy of (E, p) to
be the object

πMn (E, p) = πF
n (Fr1(E, p)) ∈ |CPG1(E,p)(Σ−1)|

We are now able to give mc, and hence especially cc, versions of the Hurewicz
and Whitehead theorems, demonstrating the usability of the colimit results. First
however, we need a concrete description of the isomorphisms in categories of the
type CB(Σ−1) where M acts on B.

Lemma 12.4. Let M be a monoid acting on a category B, C be a category with
zero object and F ∈ |CB(Σ−1)|. Then F = 0 if and only if there exists an N ∈ M
such that for all B ∈ |B|, F (τN

B ) : F (B) → F (NB) is the zero morphism.

The proof is exactly the same mm as the one given for the bc version [1, lemma
I.4.5 p.23], and is left to the reader.

Definition 12.5. [1, some of page 23] Let C be R − mod, Gp or Sets∗. Let σ ∈
CB(F, G), σ is :

1. Eventually monomorphic if, ∃N ∈ M ∀B ∈ |B| ∀x1, x2 ∈ F (B) : σB(x1) =
σB(x2) ⇒ τN

B (x1) = τN
B (x2)

2. Eventually epimorphic if, ∃N ∈M ∀B ∈ |B| ∀x ∈ G(B) : τN
B (x) ∈ Im{σN(B) :

F (NB) → G(NB)}
If σ ∈ CB(Σ−1)(F, G), we say that σ is eventually one or the other if it has a
representative σM : F → MG which is eventually one or the other.

Directly from the characterization of isomorphisms in a category of fractions and
[1, lemma I.4.6 p.24], using the fact that R −mod, Gp and Sets∗ are balanced [6,
5.3.3 p.34], we get the following lemma.

Lemma 12.6. Let C be R −mod, Gp or Sets∗, σ ∈ CB(Σ−1)(F,G). Then σ is an
isomorphism if and only if it is eventually monomorphic and eventually epimorphic.

As an application of the lemmata above and earlier colimit results, we give mc
versions of the absolute and relative Hurewicz theorem together with a Whitehead
theorem. The corresponding bc versions are in [1, p.90 - 93].
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Let ρ : PG1(E, p) → P and U : Ab → Gp be the forgetful functors. Let

ϕ : πM1 (E, p) → ρ!U!HM
1 (E, p) (12.1)

and

ϕ : πMn (E, p) → ρ!HM
n (E, p), n > 2 (12.2)

be induced by the Hurewicz map

ϕ(x,K) : πn(p−1(K), x) → Hn(p−1(K)), n > 1.

Let

ψ : ρ!πM1 (E, p) → U!HM
1 (E, p) (12.3)

and

ψ : ρ!πMn (E, p) → HM
n (E, p), n > 2 (12.4)

be the adjoints of the morphisms ϕ. Finally let ψab be the image of ψ under
the functor ()ab : GpP(Σ−1) → AbP(Σ−1) induced by the abelianization functor
ab : Gp → Ab. Notice that viewing the categories of fractions with monoid action as
colimits, see section 5, of the categories of fractions with monoid element induced
boundedness control structures, almost trivially, gives that the above are the col-
imits of the corresponding bc versions denoted respectively ρ!

M , ρM
! , ιMψab

M , ιMψM

and ()ab
M , where the M ∈M indicates that the boundedness control structure is in-

duced by MM−1. Here ιM : CP(Σ−1
M ) → CP(Σ−1) is given by the universal property

of the canonical functor QM : CP → CP(Σ−1
M ). Hence {ιM |M ∈ M} is the colimit

cone associated with the colimit CP(Σ−1).

Theorem 12.7 (Absolute Hurewicz). [1, thm.9.1,p.90] Let (E, p) be an mc
space over (Z, P,M). Then ψab : (ρ!πM1 (E, p))ab → HM

1 (E, p) is an isomor-
phism in AbP(Σ−1). If for some n > 2, πMi (E, p) = 0 for 1 6 i 6 n − 1, then
ψ : ρ!πMn (E, p) → HM

n (E, p) is an isomorphism AbP(Σ−1). If (E, p) is simply
connected i.e. πMi (E, p) = 0, i = 0, 1, and, for some n > 2, HM

i (E, p) = 0 for
1 6 i 6 n− 1, then πMi (E, p) = 0 for 1 6 i 6 n− 1 and

ϕ : πMn (E, p) → ρ!HM
n (E, p) (12.5)

is an isomorphism in AbPG1(E,p)(Σ−1).

Proof. Let (E, p) be an mc space over Z. By [1, thm. 9.1 p.90],

ψab
M : (ρM

! πM
1 (E, p))ab

M → HM
1 (E, p) (12.6)

is an isomorphism for any M ∈ M, hence the colimit in AbP(Σ−1) is an isomor-
phism.
Assume that, for some n > 2, πMi (E, p) = 0 for 1 6 i 6 n− 1, then by lemma 12.4
there exists N ∈M such that for all (K, x) ∈ |PG1(E, p)|,

πMi (E, p)(τN
(K,x)) : πMi (E, p)(K,x) → πMi (E, p)(NK, x) (12.7)

is the zero morphism. Trivially for any M ∈ M with M > N , for all (K,x) ∈
|PG1(E, p)|, πMi (E, p)(τM

(K,x)) is the zero map. Especially πM
i (E, p) = 0, for 1 6
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i 6 n− 1, so by the bc Hurewicz theorem [1, thm. 9.1, p.90], ψM : ρM
! πM

n (E, p) →
HM

n (E, p) is an isomorphism for all M > N . Thus the colimit ψ : ρ!πMn (E, p) →
HM

n (E, p) is an isomorphism.
Assume πMi (E, p) = 0, i = 0, 1, and, for some n > 2, HM

i (E, p) = 0, 1 6 i 6 n−1.
Then again for some N ∈ M, πM

i (E, p) = 0, i = 0, 1, and HM
i (E, p) = 0, 1 6 i 6

n− 1, for all M > N in M. Hence by the bc Hurewicz theorem, for such M ,

ϕM : πM
n (E, p) → ρ!

MHM
n (E, p) (12.8)

is an isomorphism and πM
i (E, p) = 0 for 1 6 i 6 n − 1, thus πMi (E, p) = 0 for

1 6 i 6 n− 1 and the colimit

ϕ : πMn (E, p) → ρ!HM
n (E, p) (12.9)

is an isomorphism.

Definition 12.8. [1, p.91] Let (E, p) and (Y, q) be mc spaces over (Z,P,M), (Y, q)
is coextensive with (E, p) if there exists an M ∈ M such that for every K ∈ P if
p−1(K) 6= ∅, then q−1(M(K)) 6= ∅ and if q−1(K) 6= ∅, then p−1(M(K)) 6= ∅.

Note that mc coextensive implies bc coextensive (boundedness control structure
induced by M) and vice versa. See [1, p.91] for the bc definition.

Theorem 12.9 (Relative Hurewicz). [1, thm.9.2,p.91] Let (E, Y, p) be an mc
pair over (Z, P,M) and suppose that πMi (E, Y, p) = 0 for i = 0, 1. Then ψab :
(ρ!πM2 (E, Y, p))ab → HM

2 (E, Y, p) is an isomorphism. In addition if, for some
n > 3, πMi (E, Y, p) = 0 for i 6 n− 1, then ψ : ρ!πMn (E, Y, p) → HM

n (E, Y, p) is an
isomorphism. If (Y, p|Y ) is coextensive with (E, p) and both mc spaces are simply
connected, then ϕ : πM2 (E, Y, p) → ρ!U!HM

2 (E, Y, p) is an isomorphism. Further-
more, if for some n > 3, HM

i (E, Y, p) = 0 for i 6 n− 1, then πMi (E, Y, p) = 0 for
i 6 n− 1 and ϕ : πMn (E, Y, p) → ρ!HM

n (E, Y, p) is an isomorphism.

The proof is done in the same way as the absolute theorem above. Let C be one of
the categories Sets∗, Gp or Ab depending on context.

Theorem 12.10 (Whitehead). [1, cor.10.4,p.93] Let f : (E, p) → (Y, q) be a
morphism in CWM/Z. Then f is a homotopy equivalence in CWM/Z, if and only
if (Y, q) is coextensive with (E, p) and for all n > 0, f∗ : πMn (E, p) → f !πMn (Y, q)
is an isomorphism in CPG1(E,p)(Σ−1).

Proof. Let f : (E, p) → (Y, q) be an mc map controlled by M ∈ M. For the
only if part, assume that f has homotopy inverse g : (Y, p) → (E, q). We may
wlog assume that g and the homotopies are controlled by N ∈ M. Then f is a bc
homotopy equivalence with boundedness control structure induced by any L ∈ M
with L > MN . Hence by the bc Whitehead theorem [1, cor.10.4, p.93], (Y, q) is
coextensive with (E, p) and fL

∗ : πL
n (E, p) → f !

LπL
n (Y, q) is an isomorphism for all

n > 0 and all L > MN . Thus the colimit f∗ : πMn (E, p) → f !πMn (Y, q) is an
isomorphism for all n > 0.
For the other direction, assume that (Y, q) is coextensive with (E, p) for some N ∈
M, and that f∗ : πMn (E, p) → f !πMn (Y, q) is an isomorphism for all n > 0. By lemma



Homology, Homotopy and Applications, vol. 4(1), 2002 234

12.6 there exists L ∈M (wlog L > N), such that fL
∗ : πL

n (E, p) → f !
LπL

n (Y, q) is an
isomorphism in CPG1(E,p)(Σ−1

L ) for all n > 0, thus by the bc Whitehead theorem, f
is a bc homotopy equivalence, where the boundedness control structure is induced
by L. Hence f is an mc homotopy equivalence.
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