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Abstract
In this paper certain central extensions of crossed modules

are classified. For these extensions, we obtain several results
which extend the classical ones for central extensions of groups.
In particular, central stem extensions of a perfect crossed mod-
ule are classified in terms of a second integral homology crossed
module.

1. Introduction

Several homology and cohomology definitions have been given during the last
years: Ellis [5] and Baues [1] define the (co)homology of a crossed module (M,P, µ)
with coefficients in a P/µ(M)-module A as the cohomology of its classifying space.
Ladra and Grandjeán [11] define, for a crossed module, the two first crossed mod-
ules of homology; associated to an extension of crossed modules, they obtain a
five-term exact sequence connecting H1 and H2. For a crossed module, they also
get a generalized Hopf formula and in [7], for a prefect and aspherical crossed mod-
ule (T,G, ∂), they find a universal central extension whose kernel is the invariant
H2(T, G, ∂). In [16] a generalization to crossed modules of the Eilenberg-MacLane
cohomology groups through extensions is given.

For a given crossed module (M,P, µ), we introduce in [18] cohomological δ-
functors Opextn ((M,P, µ),−), n = 1, 2, from (M, P, µ)-modules to abelian groups
which generalize the functors of n-fold extensions of groups Opextn (G,−) [10].
Moreover, we obtain an exact and natural eight term exact sequence related to an
extension of crossed modules which gives rise to an eight term exact sequence in
group cohomology [14], as a particular case.

We begin section 2 by summarizing several results from [4]: we start by recalling
that the category of crossed modules CM is tripleable over the category of sets,
so that it is an algebraic category; this result involves new concepts of free and
projective crossed modules and leads to a cotriple (co)homology theory for crossed
modules; we recall from [11] and [16, 18] the five-term exact sequences for ho-
mology with trivial coefficients and for cohomology, respectively. Also from [4], we
consider, in section 3, the classification of central extensions of a crossed module
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by its second cohomology group, and an universal coefficient theorem for crossed
modules cohomology, which extends the classical one for cohomology of groups [9].
Finally, in the last section, we study two of these kinds of central extensions: stem
extensions and stem covers and we prove several results for central extensions of
perfect crossed modules, by generalizing the classical ones for central extensions
of groups, being our main result Theorem 4 where it is shown that stem exten-
sions of a perfect crossed module (M, P, µ) are in bijective correspondence with the
subcrossed modules of an appropriately defined H2(M, P, µ) and that the lattice of
subcrossed modules of H2(M,P, µ) is equivalent to the category of stem extensions
of (M,P, µ).

2. Preliminaries

For the faithful functor to groups, V : CM→ G, (T, G, ∂) → T ×G, a left adjoint
is given in [4] as follows: if H is any group, get the free product group H ∗H with
the injections

ui : H → H ∗H, i = 1, 2

and let H = Ker (p2 : H ∗H → H) be the kernel of the retraction p2, determinated
by the conditions p2u1 = 0 and p2u2 = idH . The triple (H, H ∗H, in) is a crossed
module with the inclusion as boundary map. The functor H →

(

H, H ∗H, in
)

is
left adjoint to V.

With the usual forgetful functor G → Set, there is the underlying set functor
U : CM → Set, (T, G, ∂) → T × G. Since the forgetful functor G → Set has the
free group functor, X → F (X), as a left adjoint, the functor U : CM → Set has a

left adjoint F : Set → CM given by X → F(X) =
(

F (X), F (X) ∗ F (X), in
)

, [4].
In that paper it is also shown that U is tripleable and it follows from this fact

that, in the category of crossed modules, regular epimorphisms are just those ho-
momorphisms (f1, f2) : (T, G, ∂) �

_ / /(T ′, G′, ∂′) such that both f1 and
f2 are onto maps. Hence, for any set X, the free crossed module on X, F(X), is
projective, and every crossed module (T,G, ∂) admits a projective representation
by means of the free crossed module on its underlying set and the counit of the ad-
junction. From [4] it is known that the category of abelian crossed modules, CMab,
is equivalent to the category of right modules over the ring of matrices

(

Z 0
Z Z

)

=
{(

a 0
b c

)

; a, b, c ∈ Z
}

and it has global dimension equal to 2. This result implies, in particular, that CMab

has enough projective and injective objects.
We consider now the abelianization functor Ab : CM → CMab, that to each

crossed module T = (T, G, ∂) associates its abelianization, that is, Tab = T/[T,T] =
(T/[G,T ], G/[G,G], ∂), [13], and to each morphism the induced one. This functor
Ab is left adjoint to the inclusion functor U : CMab → CM. This follows from
the universal property [13] of the commutator crossed submodule. Therefore, Ab
preserves surjective morphisms, as they are the conormal maps of CM. In [11] is
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defined the first homology crossed module of a crossed module T as H1(T) = Tab.
Examples:

1. If N is a normal subgroup of G, H1(N, G, i) =
(

N/[G,N ],H1(G), i
)

.

2. H1(G,G, id) = (H1(G),H1(G), id) and H1(1, G, i) = (1,H1(G), i).

3. If A is a G-module, then H1(A,G, 0) = (H0(G,A),H1(G), 0).

The second homology crossed module of a crossed module is also introduced
in [11] by using a particular kind of presentations called ε-projective. They show
that, with their definition, this second homology crossed module is indepent of the
chosen presentation. If we consider a projective presentation using the projective
crossed modules which are introduced in [4], we get the results of [11] using analo-
gous proofs; it is enough to consider projective presentations instead of ε-projective
presentations. Essentially, given a projective presentation B �

_

�

_ // U �

_ //T of
the crossed module T, the second homology crossed module of T is defined as

H2(T) =
B ∩ [U,U]

[U,B]
, where [U,B] = ([E, U ][V, B], [V,E], ω), if U= (U, V, ω) and

B= (B, E, ζ). This definition is independent, up to isomorphism, of the chosen
projective presentation and the correspondence T → H2(T) defines a functor H2 :
CM→ CMab. Moreover, if T is a projective crossed module, then H2(T) = 1.
Examples: H2(G,G, id) = (H2(G),H2(G), id), H2(1, G, i) = (1, H2(G), i).

An extension of N=(N, R, ν) by M=(M, P, µ) is an exact sequence of crossed

modules of the form e : N �

_

�

_

(χ1,χ2)
// T

(π1,π2)
�

_ //M . We will call e central
if Im (χ1, χ2) ⊆ Z(T) =

(

TG,Z(G) ∩ stG(T ), ∂
)

.
When N is abelian any extension e induces an action of M on N, [13].
For a M-module N (that means N is an abelian crossed module such that M

acts on it) the following definition can be given: an extension e of N by M is called
a M-extension if the induced action is the given action of M on N. In this case it
can be shown that e is central if and only if the induced action is the trivial one.

An extension morphism is a commutative diagram in CM of the form

e : N T M

e′ : N′ T′ M′

�

_

�

_

(χ1,χ2)
/ /

(π1,π2)
�

_ //

�

_

�

_

(χ′1,χ′2)
//

(π′1,π′2)
�

_ //

(ϕ1,ϕ2)

��

(φ1,φ2)

��

(ψ1,ψ2)

��

We will denote such morphisms as ((ϕ1, ϕ2), (φ1, φ2), (ψ1, ψ2)) : e → e′, and we
will say that two extensions, e and e′, of N by M are congruent if there exists an
extension morphism (idN,−, idM) : e → e′. This is an equivalence relation on the
set of M-extensions. Let Opext (M,N) be the set of equivalence classes. When we
consider a trivial M-module N, the M-extensions are central extensions; in this
case, Cext (M,N) denotes the set Opext (M,N).

Theorem 1. [7] Let e : N �

_

�

_

(χ1,χ2)
// T

(π1,π2)
�

_ //M be an extension, then
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there exists the following natural exact sequence

H2(T) −−−−→ H2(M)
θ?(e)−−−−→ (N/[G,N ][R, T ], R/[G,R], ν)

−−−−→ H1(T)
(π1,π2)?−−−−−→ H1(M) −−−−→ 0.

When e is central, N appears instead of N/[N,T] in the previous exact sequence.
Example: Whatever way we regard a group G as a crossed module either (1, G.i)
or (G,G, id) we get the five-term exact sequence in integral homology of groups [9]

H2(G) −−−−→ H2(P ) −−−−→ R −−−−→ H1(G) −−−−→ H1(P ) −−−−→ 0.

From Theorem 1, and by considering a projective presentation of T of the form

B �

_

�

_ / / U
(h1,h2)

�

_ //T, it is shown that Ker (π1, π2)? =
B

[U,B]
in [11].

Theorem 2. [17] Let e : N �

_

�

_

(χ1,χ2)
// T

(π1,π2)
�

_ //M be a M-extension,
then there exists the following natural exact sequences of abelian groups
i) 0 −−−−→ Der(M,N) −−−−→ Der(T,N) −−−−→ HomM (N,N)

θ?(e)−−−−→ Opext (M,N) −−−−→ Opext (T,N) ,

ii) 0 −−−−→ Der(M,N)
IDer(M,N) −−−−→ Der(T,N)

IDer(T,N) −−−−→ HomM (N,N)

θ?(e)−−−−→ Opext (M,N) −−−−→ Opext (T,N) .

This theorem gives us similar exact sequences that in group category, [2, 9].

3. Several kinds of central extensions

Now we define and classify certain central extension of crossed modules e in terms
of the morphism θ?(e) in Theorem 1:

Definition 1. The central extension e is called a commutator extension if θ?(e) is
the zero map.

It follows from Theorem 1 that θ?(e) = 0 if and only if the following sequence is
an exact sequence N �

_

�

_ // Tab
�

_ //Mab.

Theorem 3. The following statements are equivalent:

i) θ?(e) = 0,

ii) (π1, π2)? : [T,T] → [M,M] is an isomorphism,

iii) N ∩ [T,T] = 0.
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Proof:
It is enough to consider the following commutative diagram given by the cross

lemma [16]

0 = N ∩ [T,T] [T,T] [M,M]

N T M

N
N∩[T,T] Tab Mab

�

_

�

_ //

∼=
�

_ //

_

�

_

�

��

_

�

_

�

��

_

�

_

�

��

�

_

�

_ //

∼=
_�

��

_�

��

_�

� �

�

_ / /

�

_

�

_ //

(π1,π2)
�

_ //

and to keep in mind that (π1, π2) induces a surjective map (π1, π2)? : [T,T] →
[M,M]. �

Given e : N �

_

�

_

(χ1,χ2)
// T

(π1,π2)
�

_ //M and (ψ1, ψ2) : Nab → A = (A,K, σ)
a M-module morphism, the forward induced extension (ψ1,ψ2) ab(e) is the extension
of A by M in the following diagram

e : N T M

ab(e) : Nab U M

(ψ1,ψ2) ab(e) : A T′ M

�

_

�

_

(χ1,χ2)
//

(π1,π2)
�

_ //

�

_

�

_ //

�

_ //

�

_

�

_ //

�

_ //

ab
_�

��

©
��

(ψ1,ψ2)
��

©
��

(where © denotes de quasi-cocartesian square in CM, [16]). Thus we have an
extension morphism ((ψ1, ψ2)ab,−, idM) : e → (ψ1,ψ2) ab(e). Since θ? is natural, we
get the following commutative diagram

H2(M) N/[N,T]

H2(M) A/[A,T′]

θ?(e)
//

(ψ′1,ψ′2)
��

id
� �

θ?( (ψ1,ψ2) ab(e))
//

Knowing that θ? : HomM (Nab,A) → Opext (M,A) is given by θ?(ψ1, ψ2) =
[

(ψ1,ψ2) ab(e)
]

, then θ? (θ?(ψ1, ψ2)) = (ψ′1, ψ
′
2)θ?(e), [16].

Theorem 4 (Universal coefficient theorem). [4] For a given trivial M-module
A it is shown that:

i) there is a natural exact sequence

0 −−−−→ Ext1CMab
(H1(M),A)

φ−−−−→ H2(M,A) θ?−−−−→ Hom(H2(M),A)

−−−−→ Ext2CMab
(H1 (M),A) −−−−→ H3(M,A);
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ii) if H2(M) = 0, then there is a natural exact sequence

0 −−−−→ Ext2CMab
(H1(M),A) −−−−→ H3(M,A)

−−−−→ Hom(H3(M),A) −−−−→ 0;

iii) if Hi(M) = 0, for all 1 < i 6 n and n > 2 then

Hi(M,A) = 0, for all 3 6 i 6 n,

Hn+1(M,A) ∼= Hom(Hn+1(M),A) .

iv) Let A �

_

�

_ // I• be an injective resolution of A in CMab, such that Im = 0
for all m > 3. If Hom

(

Hi(M), I2
)

= 0 for all i > 1, then for all n > 1 there
exists an exact and natural sequence

0 −−−−→ Ext1CMab
(Hn(M),A) −−−−→ Hn+1(M,A)

−−−−→ Hom(Hn+1(M),A) −−−−→ 0.

Moreover, there exists an isomorphism Θ between Cext (M,A) and H2(M,A), [4].

Definition 2. The central extension e is called a quasi-commutator extension if
θ?(e) is injective.

Note that the map θ?(e) is injective if and only if (π1, π2)? : H2(T) → H2(M) has
trivial image, that is, if and only if (π1, π2)? is the zero map. Thus

0 −−−−→ H2(M)
θ?(e)−−−−→ (N, R, ν)

(χ1,χ2)?−−−−−→ H1(T) −−−−→ H1(M) −−−−→ 0

is an exact sequence.
From [11], θ?(e) can be factored as a surjective and an injective morphisms:

H2(M) N

(N ∩ [G,T ], R ∩ [G,G], ν)

θ?(e)
//

/

o

/

o

7 7

o

o

o

o

o

o

o

o

�

O

''

O

O

O

O

O

hence, θ?(e) is an injective morphism if and only if H2(M) ∼= (N ∩ [G,T ], R ∩ [G,G], ν).
In fact, if H2(M) = 0, then e is a commutator extension.

Definition 3. The central extension e is called a stem extension when θ?(e) is
surjective.

Proposition 1. The following statements are equivalent:

i) e is a stem extension,
ii) N → H1(T) is the trivial map,
iii) (π1, π2)? : H1(T) → H1(M) is an isomorphism,
iv) N ⊆ [T,T]

The proof is very easy by using the five-term homology sequence exactness in
Theorem 1 and the cross lemma.
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Definition 4. The central extension e is called a stem cover if θ?(e) is an isomor-
phism.

It is trivial to prove the following result

Proposition 2. The following statements are equivalent:

1. e is a stem cover,

2. H2(M) ∼= N,

3. Tab ∼= Mab and (π1, π2)? : H2(T) → H2(M) is the zero map.

If we write Definitions 1, 3 and 4 and Propositions 1, 2 and 3 for the crossed
modules (G, G, id) and (1, G, i), then we obtain definition and caracterization in
[15] for theoretical group central extensions.

4. Stem extensions and stem covers of perfect crossed mod-
ules

From now, let us consider M a perfect crossed module, that is M = [M,M]; in
this situation H2(M,N) ∼= Hom(H2(M),N) , from Theorem 4.

Proposition 3. Let N be a trivial M-module. Every central extension class of N
by M is forward induced from a stem extension.

Proof:

We consider
[

e : N �

_

�

_

(χ1,χ2)
// T

(π1,π2)
�

_ //M

]

,

[e] ∈ Cext (M,N)
Θ∼= H2(M,N) ∼= Hom(H2(M),N) .

It is also known the factorization of θ?(e)

H2(M) N(N ∩ [G,T ], R ∩ [G, G], ν)
(h1,h2)

�

_ //

�

_

�

_

(i1,i2)
/ /

(see [11]), where N∩[T,T] is also M-trivial. Then, by Theorem 4, there exists [e1] ∈
Cext (M,N ∩ [T,T]) such that θ?(e1) = (h1, h2) (hence e1 is a stem-extension), and
we can consider the extension morphism ((i1, i2),−, id) : e1 → (i1,i2)e1 and so, by
θ? naturality, θ?(e) = (i1, i2)(h1, h2) = (i1, i2)θ? (e1) = θ? ((i1, i2)? (e1)). Thus,
(i1, i2)?(e1) ≡ e. �

Proposition 4. Let U=(U, V, ω) be a subcrossed module of H2(M). Then there
exists a stem extension e with U = Ker θ?(e).

Proof:

Let N =
H2(M)

U
. By applying Theorem 4, we choose any central extension

e : N �

_

�

_ // T �

_ / /M with θ?([e]) the canonical projection H2(M) → N. Then
Ker θ?(e) = U being e a stem extension. �
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It is known that a stem extension e is a stem cover if and only if θ?(e) is also
injective. If θ?(e) is an isomorphism, we can consider its inverse (ϕ1, ϕ2) : N →
H2(M). Theorem 4 allows us to consider the following commutative diagram

Cext (M,N) ∼= H2(M,N)
θ?∼= Hom(H2(M),N)

Cext (M, H2(M)) ∼= H2 (M,H2(M))
θ?∼= Hom (H2(M),H2(M))

(ϕ1,ϕ2)?

��

(ϕ1,ϕ2)?

��

(ϕ1,ϕ2)?

��

(see also [4]), and thus (ϕ1, ϕ2)? (θ?(e)) = θ?

(

(ϕ1,ϕ2)e
)

= idH2(M). Hence, any
stem cover e is isomorphic to a stem cover

e′ : H2(M) T′ M�

_

�

_ //

�

_ //

with θ?(e′) = idH2(M). Since we have the commutative diagram

e : N T M

e′ : H2(M) T′ M

�

_

�

_ //

�

_ //

�

_

�

_ //

�

_ //

(ϕ1,ϕ2)
��

��

we can say that e and e′ belong to the same isomophism class [16].
From this and from Definition 4 we conclude the following

Proposition 5. For a perfect crossed module (M, P, µ), there exists only one iso-
morphism class of stem covers of M.

Proposition 6. Every stem extension of the perfect crossed module M is epimor-
phic image of some stem cover.

Proof:

Let e : N �

_

�

_

(χ1,χ2)
// T

(π1,π2)
�

_ / /M be a stem extension; from Theorem
2, we have the morphism

θ? : HomM (N,N) → Cext (M,N) ,

given by θ?(h1, h2) =
[

(h1,h2)e
]

, (also see [16]); thus e can be a stem extension

characterized by θ?(idN) = [e] ∈ Cext (M,N), that is, an element ξ ∈ H2(M,N) ∼=
Cext (M,N). Then we have an epimorphism

θ? (Θ[e]) = θ?(ξ) = (ϕ1, ϕ2) = θ?(ξ) : H2(M) → N.

We have, from Theorem 4, the commutative square

H2 (M,H2(M))
θ?∼= Hom(H2(M), H2(M))

H2 (M,N)
θ?∼= Hom(H2(M),N)

(ϕ1,ϕ2)?

� �

(ϕ1,ϕ2)?

��
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Let ξ′ ∈ H2 (M, H2(M)) with θ?(ξ′) = idH2(M); then θ? (ξ − (ϕ1, ϕ2)?ξ
′) = θ?(ξ)−

(ϕ1, ϕ2)θ?(ξ′) = 0. Thus ξ = (ϕ1, ϕ2)?ξ
′.

Hence, there exists [e′] ∈ Cext (M,H2(N)) with Θ[e′] = ξ′. So (ϕ1, ϕ2)?[e
′] = [e],

where (ϕ1, ϕ2)? is an ephimorphism. �

Proposition 7. Let e′ : H2(M′) �

_

�

_ // T′
�

_ //M′ be a stem cover

and e : N �

_

�

_

(χ1,χ2)
// T

(π1,π2)
�

_ //M be a stem extension with M′ and M
perfect crossed modules. Then every homomorphism (f1, f2) : M′ → M can be lifted
to a map (f ′1, f

′
2) : T′ → T.

Proof:
If (f1, f2) is given, Theorem 4 allows us to construct the following commutative

diagram

H2 (M,N)
θ?∼= Hom(H2(M),N)

H2 (

M′,N
) θ?∼= Hom

(

H2(M′),N
)

(1) (f1,f2)?

��

(f1,f2)?

� �

As we have been doing, we identify ξ ∈ H2(M,N) with [e] via the isomorphism
(see [4]) Θ : Cext (M,N) → H2 (M,N), and we consider the morphism (ϕ1, ϕ2) =
(f1, f2)

? (θ?(ξ)) ∈ Hom
(

H2(M′),N
)

to construct the diagram

H2 (

(M′),H2(M′)
) θ?∼= Hom

(

H2(M′), H2(M′)
)

H2 (

M′,N
) θ?∼= Hom

(

H2(M′),N
)

(2) (ϕ1,ϕ2)?

� �

(ϕ1,ϕ2)?

��

again from Theorem 4. Since Θ[e′] = ξ′ is a stem cover, we can suppose that
θ?(ξ′) = idH2(M′). Thus (ϕ1, ϕ2)? (θ?(ξ′)) = (ϕ1, ϕ2) from (2) commutativity. So
(ϕ1, ϕ2)?(ξ

′) = (f1, f2)
?(ξ). The conclusion can be obtained by applying Theorem

2.1.1 from [16], and seeing [4, 9]. �

Proposition 8. Let e : N �

_

�

_ // T �

_ //M and e′ : N′ �

_

�

_ / / T′
�

_ //M′ be
two central extensions with M and M′ perfect crossed modules. Also consider (f1, f2) :
N → N′ and (h1, h2) : M → M′ two crossed module morphisms. There exists a
unique morphism (ω1, ω2) : T → T′ such that ((f1, f2), (ω1, ω2), (h1, h2)) : e → e′ is
a morphism of extensions if and only if

H2(M) N

H2(M′) N′

(3)

θ?(e)
//

θ?(e′)
//

(h1,h2)?

��

(f1,f2)

� �

is a commutative square.
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Proof:
If ((f1, f2), (ω1, ω2), (h1, h2)) exists, then the square (3) is commutative, from

Theorem 1. Conversely, Theorem 4 gives up the diagram

H2(M,N)
θ?∼= Hom(H2(M),N)

H2 (

M,N′) θ?∼= Hom
(

H2(M),N′)

H2 (

M′,N′) θ?∼= Hom
(

H2(M),N′)

(f1,f2)?

��

(f1,f2)?

��

(h1,h2)?

OO

(h1,h2)?

OO

Let ξ ∈ H2(M,N) and ξ′ ∈ H2(M′,N′) be the corresponding element to [e]
and [e′], respectively, by the isomorphism Θ. From the above diagram and since
(f1, f2)θ?(e) = θ?(e′)(h1, h2)?, we have (f1, f2)?(ξ) = (h1, h2)

?(ξ′) ∈ H2(M,N′).
For getting the existence and uniqueness of (ω1, ω2) see Theorem 2.1.1 from [16].

�

Proposition 9. Let e : N �

_

�

_

(χ1,χ2)
// T

(π1,π2)
�

_ //M be a central extension
and let (f1, f2) : M′ → M be a morphism of crossed modules where M′ and M are
perfect crossed modules. Then there exists a morphism of crossed modules (ϕ1, ϕ2) :
M′ → T verifying (π1, π2)(ϕ1, ϕ2) = (f1, f2) if and only if (f1, f2)?

(

H2(M′)
)

⊆
(π1, π2)? (H2(T)). If (ϕ1, ϕ2) exists, it is uniquely determined.

Proof:
If (ϕ1, ϕ2) exists, since H2(−) preserves de composition,

(f1, f2)?

(

H2(M′)
)

= (π1, π2)?(ϕ1, ϕ2)?

(

H2(M′)
)

⊆ (π1, π2)? (H2(T)) .

Conversely, by considering the exact sequence

Ker (f1, f2) M′ Im (f1, f2),
�

_

�

_ //

(f1,f2)
�

_ //

we get the following one

e′ :
Ker (f1,f2)

[Ker (f1,f2),M′]
M′

[Ker (f1,f2),M′] Im (f1, f2),
�

_

�

_ //

(f ′1,f ′2)
�

_ / /

where (f ′1, f
′
2) is induced by (f1, f2). Let

N′ =
Ker (f1, f2)

[

Ker (f1, f2),M′] and (T ′, G′, ∂′) =
M′

[

Ker (f1, f2),M′] ;

then (f ′1, f
′
2)? (H2(T)) = (f1, f2)?

(

H2(M′)
)

.
Since M′ is perfect and (f ′1, f

′
2)? (H2(T)) ⊆ (π1, π2)? (H2(T)), there exists an

injective map Im (f ′1, f
′
2)? → Im (π1, π2)? that induces a morphism (h1, h2) : N′ →

N. From Proposition 8, the existence of (ω1, ω2) : T′ → T is followed; this morphism
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yields a morphism ((h1, h2), (ω1, ω2), inc) : e′ → e. Now, the morphism (ϕ1, ϕ2) can

be obtained as the composition M′ �

_ / /T′
(ω1,ω2)

/ / T. �

Theorem 5. The isomorphism classes of stem extensions of the perfect crossed
module M are in bijective correspondence with the subcrossed modules of H2(M).
Moreover, if U and U′ are two subcrossed modules of H2(M), then U ⊆ U′ if and
only if there is a map from the stem extension corresponding to U to the corre-
sponding one to U′.

Proof:
Since there is only one isomorphism class of stem cover of M from Proposition 5,

if we consider a stem extension e : N �

_

�

_ // T �

_ / /M, then we get
U = Ker (θ?(e) : H2(M) → N), a subcrossed module of H2(M), and another stem
extension isomorphic to e will yield the same subcrossed module.

Conversely, let U ⊆ H2(M) be given, and N =
H2(M)

U
. We can consider the

canonical projection (q1, q2) : H2(M) → N and so, from Theorem 4, there exists
a unique ξ ∈ H2(M,N) such that θ?(ξ) = (q1, q2), being ξ the corresponding to
[e] ∈ Cext (M,N) by the isomorphism Θ. Since θ?(e) = (q1, q2), is an epimorphism,
e is a stem extension such that (U, V, ω) = Ker (θ?(e) : H2(M) → N) .

If [e′] ∈ Cext
(

M,N′) is another stem extension which verifies U = Ker θ?(e′),
we can construct the following commutative diagram

U H2(M) N

U H2(M) N′

�

_

�

_ //

θ?(e)
�

_ //

�

_

�

_ //

θ?(e′)

�

_ / /

(f1,f2)

��

�

�

�

Obviously, (f1, f2) is an isomorphism, so e and e′ are in the conditions of Propo-
sition 8 and we have a morphism of extensions ((f1, f2), (ω1, ω2), idM) : e → e′.
Hence e and e′ belong to the same isomorphism class

Now we consider an extension morphism ((f1, f2), (ω1, ω2), idM) : e → e′, where
e and e′ are stem extensions of M with U = Ker θ?(e) and U′ = Ker θ?(e′); then
we construct the commutative square

H2(M) N

H2(M) N′

θ?(e)
�

_ / /

θ?(e′)

�

_ //

(f1,f2)
_�

� �

Thus, there exists (h1, h2) : U �

_

�

_ // U′.
Conversely, let U ⊆ U′ ⊆ H2(M) be given, and denote N = H2(M)/U and

N′ = H2(U)/U′. Since from Proposition 4 and the previous results obtained in this
proof we can say that every stem extension is isomorphic to a stem extension e
with θ?(e) the canonical projection, we get the following commutative diagram of
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canonical projections

H2(M) N

H2(M) N′

θ?(e)=(q1,q2)
�

_ //

θ?(e′)=(q′1,q′2)

�

_ //

(f1,f2)
_�

� �

We now can apply Proposition 8 which yields the existence of

((f1, f2), (ω1, ω2), idM) : e → e′,

where (ω1, ω2) is an epimorphism since (f1, f2) also is. �

Proposition 10. If M is perfect and e : N �

_

�

_ // T �

_ / /M, is a

stem extension, then H2(T) / / H2(M)
θ?(e)

�

_ //N, is exact.

The proof is easy by seeing Theorem 1.

Corollary 1. Let M be perfect and let e : N �

_

�

_ // T �

_ //M, be
a central extension. If H1(T) and H2(T) are trivial crossed modules, then e is a
stem cover of M.

Corollary 2. Let e : N �

_

�

_ / / T �

_ //M, be an universal central
extension of crossed modules, then is a stem cover.

Proof:
By theorem 2.60 in [13], T is a perfect crossed module, then H1(T) = 0. More-

over, the universal central extension of T is H2 T �

_

�

_ // X
ρ

�

_ //T, (see [4]). Again
by Theorem 2.60 in [13] this sequence is split, then H2(T) = 0. Thus Corollary 1
says that e is a stem cover. �
Examples:

1. Let I be a two-sided ideal of a ring R and let GL(R, I) be the kernel of
GL(R) → GL(R/I) and E(I) = E(R)∩GL(R, I), where E(R) is the subgroup
of the infinite general linear group GL(R) generated by the elementary matri-
ces. Then (E(I),E(R), i), is a perfect crossed module and its universal central
extension is

1 → (K2(R, I),K2(R), δ) → (St(R, I),St(R), δ) → (E(I), E(R), i) → 1

where St(R) and St(R, I) are the Steinberg and relative Steinberg groups
respectively [6, 12]. This extension is a stem cover, by Corollary 2, and
H2(St(R, I),St(R), δ) = 0. (Further information about Steinberg groups can
be seen in [8]).

2. Let A be a G-module, where G is a perfect group. We know that

[(A,G, 0), (A, G, 0)] = (A ◦ IG, G, 0)
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where IG is the augmentation ideal of ZG → Z, [16]. Let B be the subgroup
of A generated by {( ga)− 2a | g ∈ G, a ∈ A}. Then (A/B, G, 0) is a perfect
crossed module and its universal central extension is

1 → (H1(G,A/B),H2(G), 0) → ((A/B)⊗G,G⊗G, 0) → (A/B, G, 0) → 1

where ⊗ denotes the non abelian tensor product of Brown and Loday (see [3,
8]). By Corollary 2, this universal central extension is a stem cover. Moreover,
H2((A/B)⊗G,G⊗G, 0) = 0. Since

H2((A/B)⊗G,G⊗G, 0) = (H1(G⊗G, (A/B)⊗G),H2(G⊗G), 0)

then H1(G⊗G, (A/B)⊗G) = 0 and H2(G⊗G) = 0.
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[8] A. R.-Grandjeán and M. P. López, H2(T, G, ∂) and q-perfect crossed
modules. To appear in Applied Categorical Structures.

[9] P. J. Hilton and U. Stammbach, A Course in Homological Algebra
(Graduate Texts in Mathematics 4, Springer-Verlag, 1971).

[10] J. Huebschmann, Crossed n-fold extensions of groups and cohomology,
Comment. Math. Helvetici 55 (1980), 302-314.

[11] M. Ladra and A. R.-Grandjeán, Crossed modules and homology, J.
P. App. Algebra 95 (1994), 41-55.

[12] J.-L. Loday, Cohomologie et groupe de Steinberg relatifs, J. Algebra 54
(1978), 178-202.

[13] K. J. Norrie, Actions and automorphims of crossed modules, Bull. Soc.
Math. France 118 (1990), 129-146.



Homology, Homotopy and Applications, vol. 4(1), 2002 42

[14] J.G. Ratcliffe, Crossed extensions, Trans. Am. Math. Soc. 257, n. 1
(1980), 73-89.

[15] U. Stammbach, “Homology in group theory”. Lecture Notes in Math.
359, Springer-Verlag, Berlin-New York. 1973.

[16] A. M. Vieites, Extensiones Abelianas, Cruzadas y 2-Extensiones
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