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Abstract
In this paper we construct a functor Φ : proTop → proANR

which extends Mardešić correspondence that assigns to every
metrizable space its canonical ANR-resolution. Such a functor
allows one to define the strong shape category of prospaces and,
moreover, to define a class of spaces, called strongly fibered,
that play for strong shape equivalences the role that ANR-
spaces play for ordinary shape equivalences. In the last sec-
tion we characterize SSDR-promaps, as defined by Dydak and
Nowak, in terms of the strong homotopy extension property
considered by the author.

Introduction

In ordinary Shape Theory there is a canonical way of associating with every
topological space X an inverse system X̌ of absolute neighborhood retracts, namely
its Čech system [15]. It is an inverse system in the homotopy category hoTop of
topological spaces, whose bonding morphisms are homotopy classes of maps. This
gives a functor hoTop → pro(hoANR), where ANR is the category of absolute neigh-
borhood retracts. In Strong Shape Theory [14] one associates with every space X
an inverse system X in the category Top of topological spaces, bonded by continu-
ous maps. In [19] S. Mardešić introduced the notion of ANR-resolution and proved
that every topological space X admits a canonically associated ANR-resolution
M(X) ∈ proANR. However, the correspondence X 7→ M(X) does not give a func-
tor Top → proANR. In their 1991 paper [8], Dydak and Nowak tried to overcome
such difficulties defining a Mardešić-like functor Top → proANR but, due to some
technical error, their construction there does not work (see [14], [9]). In another
more recent paper [9], the same authors correct their errors adopting a different
point of view. In this paper we undertake the program above and construct a func-
tor Φ : proTop → proANR, from the category of prospaces (inverse systems of
topological spaces) to the category of inverse systems of absolute neighborhood
retracts, which has the following properties :
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i) the restriction of Φ to the category of metrizable spaces coincides with
Mardešić’s correspondence which assigns to every space its canonical ANR-resolution
[13],

ii) Φ has a reflective lifting ho(Φ) : ho(proTop) → ho(proANR) to the Steenrod
homotopy categories,

iii) the restriction of ho(Φ) to ho(Top) is naturally equivalent to Cathey and
Segal’s functor R : ho(Top) → ho(proANR) [5],

iv) one can define the strong shape category of prospaces sSh(proTop) as a
natural extension of the category sSh(Top), defined in [5], [19], considering the
full image factorization of ho(Φ). It is shown that sSh(proTop) can be obtained
localizing proTop at the class of strong shape equivalences (cf.[17]).
Crucial for the definition of the functor Φ is the consideration of the metrizable
proreflector Top → proMet which gives a reflector ho(proTop) → ho(proMet) and
the fact that the strong shape theory of metrizable spaces is well settled in the
literature.
The existence of the functor Φ allows one to characterize strong shape equivalences
as those maps inducing bijections f∗Z : [Y, Z] → [X,Z], between sets of homotopy
classes, for every strongly fibered space Z (section 2). Hence, strongly fibered spaces
play, for strong shape equivalences, the role that ANR-spaces play for ordinary
shape equivalences. Such a result was already stated by Dydak and Nowak in [8]
and corrected in [9], where SSDRTop- fibrant spaces were introduced. We compare
our results with those of [9] in last section. In particular we prove that SSDR-
promaps of [9] coincide with the class of level cofibrations that are strong shape
equivalences. As a fundamental tool we use a generalization of the SHEP (strong
homotopy extension property), introduced in [21].

1. Procategories and Localizations.
Let C be any category. The category proC of inverse system in C has objects the

contravariant functors X : Λ → C, where Λ = (Λ,6) is a directed set. An inverse
system in C will be explicitly denoted by X = (Xλ, xλλ′ , Λ), where Xλ = X(λ) and
xλλ′ = X(λ 6 λ′).
We refer to [15] for all details concerning the definition of proC, but it will be useful
to recall the following facts :

- a morphism x : X → X, where X ∈ C, is a family x = {xλ : X → Xλ | λ ∈ Λ}
of morphisms of C, with the property that xλλ′ ◦ xλ′ = xλ, for all λ 6 λ′.

- given a morphism f : X → Y in proC, it is always possible to assume, up
to isomorphisms, that Λ is cofinite (that is: every λ ∈ Λ has only finitely many
predecessors), that Y = (Yλ, qλλ′ , Λ) is indexed over the same directed set as X and
that f is a level morphism, that is given by a family {fλ : Xλ → Yλ | λ ∈ Λ} of
morphisms of C, with yλλ′ ◦ fλ′ = fλ ◦ xλλ′ , for λ 6 λ′ ([15], Thm.3.1). Note that
a level morphism is actually a natural transformation of functors.

1.1. A full subcategory K of C is proreflective in C ([16], [20], [22]) if, for every
X ∈ C, there exists an inverse system X ∈ proK and a morphism x : X → X in
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proC, which is universal (initial) with respect to every other morphism f : X → K,
with K ∈ proK. In such a case x : X → X is called a K-expansion for X. It is clear
that a K-expansion for X is uniquely determined up to isomorphisms in proK. This
fact allows one to define a functor P : C → proK, X 7→ X, which is is called the
proreflector.
Let B be any category having inverse limits. Every functor F : C → B has an
extension F ∗ : proC → B which is defined by F ∗ = lim · proF where proF : proC →
proB is the functor such that proF (X) = (F (Xλ), F (xλλ′),Λ), while lim : proB → B
is the inverse limit functor. We give now a construction for the functor F ∗ in the
case B = proK, for some category K.

Let X = (Xλ, xλλ′ , Λ) ∈ proC and let F (Xλ) = (Kλ
i , kλ

ii′ , Iλ), for every λ ∈ Λ.
Then, (F (Xλ), F (xλλ′),Λ) is an inverse system in proK, whose inverse limit is the
system

F ∗(X) = (Kλ
i , kλλ′

ii′ , Γ),

where Γ =
⋃

{Λ× Iλ | λ ∈ Λ} is directed by the relation

(λ, i) 6 (λ′, i′) ⇔
{

λ 6 λ′ in Λ, and
kλλ′

ii′ : Kλ′
i′ → Kλ

i is part of F (xλλ′).

Let f : X → Y be a level morphism in proC, with Y = (Yλ, yλλ′ ,Λ) and f = {fλ :
Xλ → Yλ | λ ∈ Λ}. If we assume, as it is possible, that each F (fλ) : F (Xλ) →
F (Yλ), λ ∈ Λ, is a level morphism, then F (Yλ) = (Hλ

i , hλ
ii′ , Iλ), hence it follows

that

F ∗(Y) = (Hλ
i , hλλ′

ii′ , Γ),

while F ∗(f) is the level morphism given by

F ∗(f) = {F (fλ)i : Kλ
i → Hλ

i | (λ, i) ∈ Γ}.

Note that, if P : C → proK is a proreflector, then P ∗ : proC → proK is actually a
reflector [20], [22] .

1.2. Recall that, given a class Σ of morphisms in a category C, the localization
of C at Σ is a pair (C [Σ−1], LΣ), where C [Σ−1] is a category (possibly in a larger
universe) having the same objects as C and LΣ : C → C [Σ−1] is a functor which is
the identity on objects, having the following properties :

- LΣ inverts all morphisms of Σ, that is LΣ(s) is an isomorphism in C[Σ−1], for
all s ∈ Σ,

- LΣ is universal (initial) among all functors F : C → E that invert all morphisms
of Σ.
Σ is usually called the class of weak equivalences of C.
If D is another category, endowed with a notion ∆ of weak equivalences, then a
functor F : C → D can be extended to a functor ˜F : C [Σ−1] → D [∆−1] if and only
if F preserves weak equivalences, that is F (s) ∈ ∆, for all s ∈ Σ. ˜F is the unique
functor satisfying ˜F ◦ L∆ = LΣ ◦ F ; it acts on objects as F does [18].
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Let C = Top be the category of topological spaces and let Σ be the class of
homotopy equivalences. Then, Top [Σ−1] = ho(Top) is the usual homotopy category
of spaces. In general, if C has a Quillen model structure, with Σ the class of its
weak equivalences, then hoC = C [Σ−1]. Moreover, proC inherits a Quillen model
structure and its (Steenrod) homotopy category is ho(proC) = proC [Σ∗−1], where
Σ∗ is the class of level weak equivalences, that is the class of those level morphisms
which belong levelwise to Σ. Σ∗ will usually be considered as the class of weak
equivalences of proC [10], [16].

Theorem 1.3. (cf. [19]) Let C and K have classes of weak equivalences Σ and Π,
respectively, and let P : C → proK be any functor. If P preserves weak equivalences,
then also P ∗ preserves weak equivalences. If, moreover, P is a proreflector, then
˜P ∗ : (proC)[Σ∗−1] → (proC)[Γ∗−1] is a reflector.

Proof. Let f ∈ Σ∗, f = {fλ}. P ∗(f) has level components of the form P (fλ)i, (λ, i) ∈
Γ, which are all members of Π, by assumption. If P is a proreflector and Π =
Σ ∩ {morphisms of K}, then P ∗ is a reflector, hence left adjoint to the embedding
E : proK → proC. Since both P ∗ and E preserve weak equivalences, the assertion
follows from ([2], Thm.1.1).

1.4. The usual cylinder functor on Top can be extended naturally to a cylinder
functor on proTop : for every X = (Xλ, xλλ′ , Λ) ∈ proTop, let X × I = (Xλ ×
I, xλλ′ × 1, Λ), where I is the unit interval. One obtains, as a consequence, a notion
of (global) homotopy between promaps (that is: between morphisms of prospaces)
and a corresponding notion of (global) homotopy equivalence. Two promaps f, g :
X → Y are globally homotopic if there is a homotopy H : X × I → Y such that
H ◦ e0 = f and H ◦ e1 = g, where e0, e1 : X → X × I are the obvious promaps. The
quotient category of proTop modulo global homotopy is denoted by π(proTop) and
π : proTop → π(proTop) is the quotient functor. In general, the classes of global and
level homotopy equivalences in proTop do not coincide, as shown in ([10], pp.55-56);
however, every global homotopy equivalence X→ Y is a level homotopy equivalence,
whenever the bonding morphisms of X are epi ([19], Cor. 1.3).

1.5. Let F : C → K be any functor and let CF be the category having the
same objects as C while a morphism in CF (X, Y ) is a triple (1X , u, 1Y ), where
u ∈ K(F (X), F (Y )). CF is called the full image of F . There are functors F 0 : C →
CF and F 1 : CF → K, defined by F 0(X) = X and F 0(f) = (1X , F (f), 1Y ), for
f : X → Y in C, and F 1(X) = F (X), F 1(1X , u, 1Y ) = u. They give a factorization
F = F 1 ◦ F 0 of F which is uniquely determined, up to an isomorphism, among all
factorizations F = H ′′◦H ′, where H ′ is bijective on objects and H ′′ is fully faithful.
F = F 1 ◦ F 0 is called the full image factorization of F [18]. Recall that, when
F is a reflector and ΣF is the class of morphisms of C inverted by F , then there is
an isomorphism K ∼= C[Σ−1

F ] ([18], 19.3.1). Moreover, from the uniqueness of the
full image factorization and since LΣF is the identity on objects, one also obtains
an isomorphism C[Σ−1

F ] ∼= CF . Let ΣF 0 denote the class of morphisms in C that are
inverted by F 0. Then clearly ΣF = ΣF 0 holds.

In what follows we give a brief account of the construction of the Steenrod ho-
motopy category ho(proTop) of proTop, following the point of view of [5].
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Definition 1.6. Let f : X → Y and p : E → B be promaps. f has the left lifting
property with respect to p (and p has the right lifting property with respect to f)
if every commutative square

X E

Y B

-

-
??

a

b

f p

has a filler h : Y→ E, such that h ◦ f = a and p ◦ h = b.
Let Σ be a a class of morphisms in proTop, then

- a promap p : E → B is a Σ-fibration if it has the right lifting property with
respect to all f ∈ Σ,

- a prospace Z = (Zµ, zµµ′ ,M) is Σ-fibrant iff the unique morphism Z → ∗ is a
Σ-fibration, where ∗ denotes the final object in Top,

- a Σ-fibrant prospace Z is said to be strongly Σ-fibrant if, moreover, for every
µ∗ ∈ M , the unique map zµ∗ : Zµ∗ → limµ<µ∗ Zµ, induced by the bonding maps of
the system, is a Σ-fibration,

- a topological space Z is Σ-strongly fibered if it is the inverse limit of a strongly
Σ-fibrant prospace Z ∈ proANR.

In the homotopy theory of proTop, as defined in [10], a promap f is a trivial
cofibration if it has the left lifting property with respect to every Hurewicz fibration
p : E → B in Top. This notion is a natural extension of that of trivial cofibration
in Top. On the other hand, it is clear that a map p having the right lifting property
with respect to all trivial cofibrations f in proTop, has to be a Hurewicz fibration.
In the sequel, for Σ the class of trivial cofibrations in proTop, we shall speak of
(strongly) fibrant prospaces and strongly fibered spaces, omitting the reference to
the class Σ.

1.7. There is a reflective functor F : π(proTop) → π(proTop)f onto the full subcat-
egory of fibrant prospaces [5], with unit of adjunction [iX] : X→ ̂X, where iX is a triv-
ial cofibration. By ([5], Prop. 3.3) F has a reflective restriction F : π(proANR) →
π(proANR)sf , where π(proANR)sf is the full subcategory of strongly fibrant
prospaces. For Z ∈ proANR, iZ : Z → ̂Z is called the strongly fibrant modifica-
tion of Z.
ho(proTop) is the full image of the functor F above and is equipped with the canon-
ical functors F 0 : π(proTop) → ho(proTop) and F 1 : ho(proTop) → π(proTop)f .
The functor L = F 0 ◦ π : proTop → ho(proTop) is known to localize proTop at the
class of trivial cofibrations and also at the class of level homotopy equivalences [10],
[16].

Remark 1.8. For X, Y ∈ proTop, with Y fibrant, there is a natural bijection

ho(proTop)(X, Y) ∼= [X, Y],

where [X, Y] is the set of global homotopy classes of morphisms X → Y. This is
because every prospace X is in fact cofibrant in proTop ([10], Prop.3.4.1, pag. 95).
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2. The functor Φ : proTop → proANR and the category
sSh(proTop).

The category Met of metrizable spaces is proreflective in Top. In order to obtain
the metrizable expansion x : X → X of a topological space (X, τ), let us consider
the set Λ of all continuous pseudometrics on X, directed by the relation

λ 6 λ′ ⇐⇒ τλ ⊂ τλ′ ,

Here τλ denotes the topology induced on X by the pseudometric λ, while the conti-
nuity of λ means that τλ ⊂ τ [1]. Let Xλ denote the metric identification of (X, τλ).
For every λ ∈ Λ, let xλ : X → Xλ be the identity map (X, τ) → (X, τλ) followed
by the quotient map (X, τλ) → Xλ. Moreover, for λ 6 λ′, let xλλ′ : Xλ′ → Xλ be
the unique map induced on the quotients by the identity (X, τλ′) → (X, τλ). We
note explicitly that in the inverse system X = (Xλ, xλλ′ , Λ), the bonding morphisms
xλλ′ are all surjective maps. We shall denote by PM : Top → proMet, X 7→ X, the
metrizable proreflector.

Theorem 2.1. (cf. [19]) The metrizable proreflector PM : Top → proMet induces
a reflector ho(P ∗M ) : ho(proTop) → ho(proMet).

Proof. In view of Thm.1.3, it suffices to prove that PM preserves weak equivalences.
Let us note that PM respects the cylinders, in the sense that, if x : X → X =
(Xλ, xλλ′ , Λ) is the metrizable expansion of the space X, then x × 1 : X × I →
X×I = (Xλ×I, xλλ′×1, Λ) is the metrizable expansion of X×I, see ([19], Thm.2.3).
It follows that PM takes homotopy equivalences to global homotopy equivalences.
Since X has epi bonding morphisms, the proof is complete. The reflection morphism
χ : X→ P ∗M (X), for the prospace X, is induced by the family {xλ : Xλ → Xλ | λ ∈ Λ}
of the metrizable expansions of each Xλ, following the construction given in the
previous section (1.1).

In [13] S. Mardešić introduced the notion of ANR-resolution for topological
spaces and proved that every space X has a canonically associated ANR-resolution
mX : X → M(X). Although the correspondence Top → proANR, X 7→ M(X), is
not functorial in general, Cathey and Segal [5] proved that it induces a reflective
functor between the Steenrod homotopy categories R : ho(Top) → ho(proANR).
Moreover, they obtained the strong shape category sSh(Top) and the strong shape
functor sSTop by taking the full image factorization of R :

ho(Top) ho(proANR)

sSh(Top)
������*HHHHHHHj

-R

sSTop R1

where sSTop = R0 is the identity on objects, while R1 is fully faithful.
The fact that R is a reflective functor means that, for every X ∈ Top and for

every K ∈ proANR, Mardešić’s ANR-resolution m : X → M(X) induces a bijection
ho(proTop)(X, K) ∼= ho(proANR)(M(X), K).
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Another feature of Mardešić’s correspondence is that it becomes a functor

M : Met → proANR

when restricted to the category Met of metrizable spaces. This fact was pointed
out in [19] and used to give an alternative description of the strong shape category
of topological spaces. The same paper (Thm. 2.4) also gave a particularly simple
construction for the ANR-resolution mX : X → M(X) of a metrizable space X,
which is actually an ANR-expansion. In such a case M(X) is the inverse system of
all open neighborhoods of X in its convex hull H(X) in the Banach space C(X)
of all real, bounded, continuous functions on X, while mX is formed by all the
inclusions.
Let us note that, lifting the functor M : Met → proANR to the Steenrod homotopy
categories, amounts to taking the restriction ho(M) : ho(Met) → ho(proANR) of
Cathey and Segal’s functor R, to the homotopy subcategory of metrizable spaces.
It follows that M : Met → proANR has to preserve weak equivalences. By Thm.1.1,
the functor M∗ : proMet → proANR also preserves weak equivalences and has a
lifting

ho(M∗) : ho(proMet) → ho(proANR).

Theorem 2.2. ho(M∗) is a reflector.

Proof. Let X = (Xλ, xλλ′ ,Λ) be an inverse system of metrizable spaces. The family
{mλ : Xλ → M(Xλ)} of the ANR-resolutions constructed above, gives a morphism
mX : X→ M∗(X) in proMet. We have to prove that, for every Z ∈ proMet, it induces
a bijection

ho(proMet)(X, Z) ∼= ho(proANR)(M∗(X), Z).

Let iZ : Z → ̂Z be the strongly fibrant modification of Z. By the preceding re-
marks, one has ho(proMet)(X, Z) ∼= [X,̂Z] and ho(proANR)(M∗(X), Z) ∼= [M∗(X),̂Z].
It follows that proving the formula above amounts to proving that mX induces a
bijection

[M∗(X),̂Z] ∼= [X,̂Z].

This is a consequence of the fact that ho(M) is reflective and of the construction of
M∗(X), as recalled in the first section.

Let us now define the functor

Φ : proTop → proANR

as follows: for every X ∈ proTop, let Φ(X) = M∗(P ∗M (X)). It is clear that ho(Φ) :
ho(proTop) → ho(proANR) exists and can be written as ho(Φ) = ho(M∗)◦ho(P ∗M ).
By (1.7) we may assume, without restriction of generality, that Φ(X) is strongly fi-
brant in proANR. Moreover, by the results above, it follows that ho(Φ) is a reflector.
If X = (Xλ, xλλ′ , Λ), the reflection morphism µ : X → Φ(X) is the promap obtained
as the composition of χ : X → P ∗M (X), mP∗M (X) : P ∗M (X) → M∗(P ∗M (X)) and the
strongly fibrant modification of M∗(P ∗M (X)).
The restriction of ho(Φ) to ho(Top) coincides with the functor R of Cathey and
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Segal [19] and, consequently, it defines the same strong shape category for the class
of topological spaces. The functor Φ is an extension of Mardešić ’s functor defined
on the subcategory of metrizable spaces. Let us define the strong shape category
sSh(proTop) for inverse systems of topological spaces and the related strong shape
functor sS, by taking the full image factorization of ho(Φ), as illustrated in the
commutative diagram

ho(proTop) ho(proANR)

sSh(proTop)
������*HHHHHHj

-ho(Φ)

sS ho(Φ)1

3. Shape and Strong Shape Equivalences.
A continuous map f : X → Y is said to be a (strong) shape equivalence if it

becomes an isomorphism in the (strong) shape category of topological spaces, that
is sS(L(f)) is an isomorphism in sSh(proTop). We refer to [15] and [14] for basic
facts concerning shape and strong shape theory. In particular we recall that:

- f is a shape equivalence iff it induces a bijection f∗K : [Y, A] → [X, A] between
sets of homotopy classes, for all A ∈ ANR,

- a shape equivalence f is a strong shape equivalence iff, given maps g, h : Y →
A, A ∈ ANR, and a homotopy F : X × I → A connecting g ◦ f and h ◦ f , there
exists a homotopy G : Y × I → A connecting g and h, such that G ◦ (f × 1) is
homotopic to F w.r.t. end maps.

The notion of strong shape equivalence in proTop is the obvious generalization
of the notion given previously [8], [14] : f : X → Y is a strong shape equivalence
whenever the following two conditions hold :

(SSE1) for every A ∈ ANR and for every h : X → A, there is a morphism
g : Y→ A, such that g ◦ f ' h,

(SSE2) given morphisms g, h : Y→ A, A ∈ ANR, and a global homotopy F : X×
I → A joining f ◦ g and f ◦ h, there exists a global homotopy G : Y× I → A joining
g and h, such that F is homotopic to G ◦ (f× 1) w.r.t. end morphisms.

Notice that, if a composition g◦f satisfies (SSE1), then f satisfies (SSE1). In fact,
that f satisfies (SSE1) amounts to saying that the induced map f∗ : [Y, A] → [X, A]
is onto. On the other hand one has (g ◦ f)∗ = f∗ ◦ g∗.

Theorem 3.1. The morphism µ : X→ Φ(X) is a strong shape equivalence.

Proof. This is almost obvious. ho(Φ)(µ) must be an isomorphism in ho(proANR),
because of the reflectivity. Since ho(Φ) = ho(Φ)1 ◦ sS and ho(Φ)1 is fully faithful,
it follows that sS(µ) is an isomorphism in the strong shape category sSh(proTop),
hence µ is a strong shape equivalence.
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Corollary 3.2. For prospaces X, Y, the following relation holds

ho(proTop)(X, Y) ∼= [Φ(X),Φ(Y)].

We need to consider now the following facts. Let f : X→ Y, f = {fλ | λ ∈ Λ}, be
a level promap.

3.3. For every λ ∈ Λ, let M(fλ) be the mapping cylinder of fλ [12], with canonical
maps Πλ : Xλ×I → M(fλ) and jλ : Yλ → M(fλ), such that Πλ◦e0,λ = jλ◦fλ. Note
that jλ has a left inverse pλ, such that pλ ◦Πλ = fλ ◦σλ, where σλ : Xλ×I → Xλ is
the usual map. Then fλ has a decomposition fλ = f1

λ ◦ f0
λ, where f0

λ : Xλ → M(fλ)
is a cofibration and f1

λ : M(fλ) → Yλ is a homotopy equivalence. Since such a
decomposition is functorial [11], one can define (levelwise) the mapping cylinder
decompositon of the promap f, given by

X Y = X YM(f)- - -
f f0 f1

where f0 = {f0
λ | λ ∈ Λ} is a level cofibration, f1 = {f1

λ | λ ∈ Λ} is a level homotopy
equivalence and M(f) = (M(fλ),mλλ′ , Λ). The maps mλλ′ are obtained from the
universal properties of the various mapping cylinders.

3.4. DM(fλ) denote the double mapping cylinder of fλ [12], [14], [21], that is the
adjunction space (Xλ×I)∪fλ (Yλ×∂I), equipped with canonical maps Kλ : Xλ×I →
DM(fλ) and ji,λ : Yλ → DM(fλ), i = 0, 1, such that Kλ ◦ ei = ji,λ ◦ fλ, i = 0, 1.
Since DM(fλ) is a colimit object, there is a unique map Vλ : DM(fλ) → Yλ×I, with
the property that Vλ◦Kλ = fλ×1 and Vλ◦ji,λ = ei, i = 0, 1. For every λ 6 λ′, there
is a unique map nλλ′ : DM(f ′λ) → DM(fλ), such that nλλ′ ◦Kλ′ = Kλ ◦ (xλλ′ × 1)
and nλλ′ ◦ ji,λ′ = ji,λ ◦ yλλ′ , i = 0, 1. The situation is better illustrated by the
following commutative diagram

Xλ′ Xλ

Yλ′

fλ′ fλ

Yλ

DM(fλ′)

Vλ′
Vλ

DM(fλ)

Kλ′

fλ′ × 1 fλ × 1

Kλ

HHHHHHj

HHHHHHj

HHHHHHHj

HHHHHHHj

HHHHHHHj

HHHHHHHj

HHHHHHHj

HHHHHHHj

Xλ′ × I Xλ × I

-

-

-

A
A
A
A
A
A
A
A
A
A
A
AAU

HHHHHj

HHHHHj

A
A
A
A
A
A
A
A
A
A
A
AAU

??

??
-

xλλ′

xλλ′ × 1

yλλ′

nλλ′

yλλ′ × 1
-Yλ′ × I Yλ × I

e0

e1

e0

e1

j0

j1

j0

j1
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with the obvious meaning of the maps involved. It follows that there is an inverse
system DM(f) = (DM(fλ), nλλ′ , Λ) and level maps K : X × I → DM(f), j0, j1 :
Y → DM(f) and V : DM(f) → Y × I, with K ◦ ei = ji ◦ f, i = 0, 1, and such that
f× 1 = K ◦ V and V ◦ ji = ei, i = 0, 1.
We point out that, if f is a level cofibration, then V is one too [12].

Theorem 3.5. The class of strong shape equivalences of proTop has the following
properties:

1. contains all level homotopy equivalences,
2. if two of f, g, g ◦ f are strong shape equivalences, so is the third,
3. a level promap f is a strong shape equivalence iff f0 is,
4. if f is a strong shape equivalence and a level cofibration, then for every g : X→

A, A ∈ ANR, there is an h : Y→ A such that h ◦ f = g.

Proof. (1) is clear (see also [8], 4.1, 4.2). (2) depends on the fact that Ss(g ◦ f) =
Ss(g) ◦Ss(f). (3) follows from (2). (4) Since f is a level cofibration, there is a weak
pushout diagram in proTop, with respect to ANR

X X× I

Y Y× I

-

-
??

e0

e0

f f× 1

Given now promaps φ : Y → A, A ∈ ANR, and F : X × I → A such that F ◦ eX
0 =

φ ◦ f, there exists a λ ∈ Λ, such that the relative λ-diagram commutes. Therefore
there is a homotopy Gλ : Yλ × I → A with Gλ ◦ (fλ × 1) = Fλ and Gλ ◦ e0,λ = φλ.
Such data define a homotopy G : Y× I → A with G ◦ (f × 1) = F and G ◦ eY

0 = φ. At
this point the assertion follows from ([12], 2.2.4).

In view of the theorem above, one can restrict the study of strong shape equiva-
lences to those promaps that are level cofibrations.

In [21] the strong homotopy extension property (SHEP) for maps has been in-
troduced, with respect to ANR. This can be generalized to promaps in the following
way: a promap f : X→ Y has the SHEP, w.r.t. ANR, iff the following diagram

X X× I

Y Y× I

--

--
??

e0

e1

e0

e1

f f× 1

is a weak colimit in proTop, w.r.t. ANR. This means that, for given promaps u, v :
Y → A and homotopy H : X × I → A, A ∈ ANR, connecting u ◦ f and v ◦ f, there
exists a homotopy G : Y× I → A, connecting u and v and such that H = G ◦ (f× 1).



Homology, Homotopy and Applications, vol. 4(1), 2002 81

Theorem 3.6. (cf. [21], sec.2) Let f : X → Y be a level cofibration in proTop
having property (SSE1). The following are equivalent :

1. f is a strong shape equivalence,
2. f has the SHEP w.r.t. ANR,
3. V has property (SSE1).

Proof. (1) implies (2) : since f is a level cofibration, this follows from ([3], 7.2.5).
(2) implies (3) : Let α : DM(f) → A, A ∈ ANR, and consider α ◦ K : X × I → A.
It is a homotopy connecting α ◦ j0 ◦ f to α ◦ j1 ◦ f, then there is a homotopy
T : Y × I → A such that T ◦ (f × 1) = α ◦ K and T ◦ ei = α ◦ ji. It follows that
T ◦ V ◦ K = T ◦ (f × 1) = α ◦ K and T ◦ V ◦ ji = T ◦ ei = α ◦ ji, i = 0, 1. From the
universal property of the double mapping cylinder, one obtains that T ◦ V = α.
(3) implies (1) : Let h0, h1 : Y→ A, A ∈ ANR, be given together with a homotopy
H : X × I → A connecting h0 ◦ f to h1 ◦ f. There is a unique γ : DM(f) → A such
that γ ◦ j0 = h0, γ ◦ j1 = h1 and γ ◦ K = Ȟ. Since we may write V = pV ◦ ΠV ◦ e0
(see (3.3)), it follows that ΠV ◦ e0 satisfies (SSE1) too and is a level cofibration.
Then there is a G : M(V) → A such that G ◦ ΠV ◦ e0 = γ. It turns out that G ◦ jV
is a (global) homotopy connecting h0 and h1. Moreover, one has G ◦ jV ◦ (f × 1) =
G ◦ jV ◦ V ◦ K = γ ◦ K = H.

Corollary 3.7. V is a shape equivalence whenever f is a strong shape equivalence
and a level cofibration.

Proof. We only have to show that V induces, for all A ∈ ANR, an onto map V∗A :
[Y×I, A] → [DM(f), A]. Let α : DM(f) → A, then α ◦ K : X×I → A is a homotopy
connecting α ◦ j0 to α ◦ j1. Since α ◦ K ◦ ei = α ◦ ji ◦ f, there exists a homotopy
T : Y× I → A, such that T ◦ (f× 1) = α ◦ K and T ◦ ei = α ◦ ji. It follows T ◦ V ◦ K =
T ◦ (f × 1) = α ◦ K and T ◦ ei = α ◦ ji. From the universal property of the double
mapping cylinder, one has α = T ◦ V.

We need to state the following technical result.

Lemma 3.8. Let f : X→ Y be a strong shape equivalence and a level cofibration in
proTop. f induces a bijection f∗D : [Y, lim D] → [X, lim D], for every finite diagram
D [18] in ANR, having at most one arrow connecting every two vertices.

Proof. Let D have vertices Di, i ∈ I, and morphisms Du : Di → Dj , for u : i → j
in I. Assume that α : X → lim D is given and let pi : lim D → Di, i ∈ I, be the
projections of the limit. By 3.5(4), for every i ∈ I, there is a promap βi : Y → Di,
such that βi ◦f = pi ◦α. If I(i, j) = ∅, for all i ∈ I, i 6= j, put hj = βj . If u ∈ I(i, j),
define hi = Du ◦ j. In this way one obtains a natural cone from Y to the vertices of
the diagram, which induces a unique promap h : Y→ lim D, with h ◦ f = α.

The proof of the following theorem is partially inspired by Thm. 4.4 of [8].

Theorem 3.9. Let f : X → Y be a strong shape equivalence in proTop. Then
f induces a bijection f∗ : [Y, Z] → [X, Z], for every strongly fibrant prospace Z ∈
proANR.
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Proof. First of all we may assume, as usual, that f is a level promap with cofinite
index set. Moreover, using the mapping cylinder decomposition of f, we may also
assume that f is a level cofibration. Let g : X → Z be a given promap, with Z =
(Zµ, zµµ′ , M) ∈ proANR strongly fibrant. The fact that f is a shape equivalence, by
3.5(4), implies that, for every µ ∈ M , there is a kµ : Y→ Zµ such that kµ ◦ f = gµ.
By induction on the number #(µ) of the predecessors of µ, let us define hµ = kµ
if #(µ) = 0, and assume to have defined hµ, for every µ ∈ M with 1 6 #(µ) < n,
in such a way that zµµ′ ◦ hµ′ = hµ, for µ 6 µ′. Let µ∗ ∈ M having #(µ∗) = n.
The promaps hµ, for µ < µ∗, define a map zµ∗ : Zµ∗ → limµ6µ∗ Zµ∗ , and one has
zµ∗ ◦ kµ∗ ◦ f = zµ∗ ◦ gµ∗ . By Lemma 3.8, there is a promap γ : Y → limµ6µ∗ Zµ∗ ,
with the property that γ ◦ f = zµ∗ ◦ kµ∗ . In diagram

X Y

limµ6µ∗ Zµ∗

Zµ∗

�
�

���

�
�

�
�

�
�

���

@
@

@@R

-
f

zµ∗

gµ∗ kµ∗

γ

?

Then, zµ∗◦kµ∗◦f ' γ ◦ f. Again by Lemma 3.8, since f is a strong shape equivalence,
there is a homotopy H : Y × I → limµ6µ∗ Zµ∗ , with H : γ ' zµ∗ ◦ kµ∗ . Since zµ∗ is
a fibration, there is a homotopy H∗ : Y × I → Zµ∗ , such that H∗ ◦ e0 = kµ∗ and
zµ∗ ◦ H∗ = H. If we put hµ∗ = H∗ ◦ e1, the the definition of h : Y→ Z is complete and
one has h ◦ f = g. Let now h, h′ : Y → Z be such that h ◦ f ' h′ ◦ f, by means of a
homotopy F : X× I → Z. For every λ ∈ Λ, DM(fλ) = Xλ × I ∪ Yλ × {0, 1} and the
inclusion Vλ : DM(fλ) → Yλ × I is a cofibration. If F̃λ : Xλ × I ∪ Yλ × {0, 1} → Zλ

is defined by

F̃λ(x, t) =







Fλ(x, y), for (x, t) ∈ Xλ × I
hλ(x), t = 0
h′λ(x), t = 1

Then F̃ : DM(f) → Z, F̃ = {F̃λ | λ ∈ Λ}, is a level promap. Since the promap
V : DM(f) → Y× I is a shape equivalence and a level cofibration, it follows that F̃
has an extension G : Y× I → Z, which turns out to be a homotopy connecting h to
h′.

Theorem 3.10. A continuous map f : X → Y is a strong shape equivalence iff it
induces a bijection f∗ : [Y, Z] → [X, Z], for every strongly fibered space Z.

Proof. Let f be a strong shape equivalence, then by Thm 3.9 it induces a bijection
f∗ : [Y, Z] → [X, Z], for every strongly fibrant prospace Z ∈ proANR. Let Z = lim Z.
Since the projection of the limit p : Z → Z induces bijections [X, Z] → [X, Z] and
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[Y,Z] → [Y, Z], the first part of the theorem easily follows. Conversely, let f induce
bijections f∗ : [Y, Z] → [X, Z], for every strongly fibered space Z. Since every ANR-
space is strongly fibered, it follows at once that f is a shape equivalence. Taking
Z = Φ(X), there is a g : Y → Φ(X) such that [g ◦ f ] = [µ]. Since µ : X → Φ(X)
is a strong shape equivalence, it follows that f is such.

Recently, Prasolov [17] has defined the strong shape category of prospaces
sSh(proTop) by localizing proTop at the class of strong shape equivalences as de-
fined by the properties (SSE1) and (SSE2) above. The two categories coincide. In
fact, from the construction of sSh(proTop), since ho(Φ) is reflective, it follows that

sSh(proTop) ∼= (ho(proTop))ho(Φ)
∼= ho(proTop)[Σ−1

ho(Φ)
] ∼=

∼= ho(proTop)[Σ−1
sS ] ∼= proTop[SSE−1],

where SSE is the class of strong shape equivalences in proTop, that is those promaps
f ∈ proTop such that L(f) ∈ ΣsS .

4. SSDR-promaps.
In this section we discuss some points from [9] in connection with the results

obtained in the previous section. We need some preliminary results before to go on.

Let us recall the following definition from [9] :

4.1. a promap f : X→ Y is called an SSDR-promap provided that any commutative
diagram in proTop

X Map(K,A)

Y Map(L,A)

-

-
??

a

b

f i∗

has a filler Y→ Map(K, A), whenever K is a finite CW complex, L is a finite sub-
complex, i : L → K is the inclusion and A ∈ ANR. This notion is a generalization
of that of SSDR-map introduced in [4]. Map(K, A) denotes the space of mappings
with the compact-open topology.

In the sequel we shall denote by SSDR the class of SSDR-promaps while SSDRTop
will be the subclass of SSDR whose elements are of the form f : X→ Y, Y ∈ Top.

Thm. 3.5 of [9] states that f : X → Y is an SSDR promap iff it satisfies the
following two conditions :

(SSDR1) for every A ∈ ANR and for every h : X→ A, there is a g : Y→ A, such
that g ◦ f = h,

(SSDR2) given morphisms g, h : Y → A, A ∈ ANR, and a global homotopy
F : X× I → A joining f ◦ g and f ◦ h, there exists a global homotopy G : Y× I → A
joining g and h, such that F = G ◦ (f× 1).



Homology, Homotopy and Applications, vol. 4(1), 2002 84

Since (SSDR2) says exactly that f has the SHEP w.r.t. ANR, from theorems
3.5(4) and 3.6, one obtains the

Theorem 4.2. Theorem 4.2 Let f : X→ Y be a level cofibration in proTop. f is
an SSDR promap iff it is a strong shape equivalence.

Remark 4.3. As a consequence of the theorem, it follows that every trivial cofi-
bration is an SSDR-promap. In fact, by ([10], 3.3.36), one may assume, up to
isomorphisms, that f is a level trivial cofibration. Then, it is clear that every
(strongly) SSDR-fibrant prospace is also (strongly) fibrant. Moreover, if Z is a
(strongly) SSDR-fibered prospace, then its inverse limit lim Z is SSDRTop-fibrant:
let f : X→ Y ∈ SSDRTop and a : X→ lim Z, be given. If p : lim Z→ Z is the limiting
cone, there is a y : Y → Z, such that y ◦ f = p ◦ a and, by the universal property of
the limit, there is also a t : Y → lim Z, with p ◦ t = y. It follows that t ◦ f = a.
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