CROSSED EXTENSIONS OF ALGEBRAS AND HOCHSCHILD COHOMOLOGY

HANS-JOACHIM BAUES and ELIAS GABRIEL MINIAN

(communicated by Clas Löfwall)

Abstract

We introduce the notion of crossed n-fold extensions of an algebra B by a bimodule M and prove that such extensions represent classes in the Hochschild cohomology of B with coefficients in M. Moreover we consider this way characteristic classes of chain (resp. cochain) algebras in Hochschild cohomology.

To Jan-Erik Roos on his sixty-fifth birthday

1. Introduction

Crossed modules over groups were introduced by J.H.C.Whitehead [12]. Mac Lane-Whitehead [11] observed that a crossed module over a group G with kernel a G-module M represents an element in the cohomology $H^{3}(G, M)$. This result was generalized by Huebschmann [7] by showing that crossed n-fold extensions over G by M represent elements in $H^{n+1}(G, M)$.

In this paper we prove similar results for the Hochschild cohomology $H H^{n+1}(B, M)$ of an algebra B with coefficients in a B-bimodule M. We show that crossed modules over algebras as introduced in [2] can be used to define crossed n-fold extensions of B by M which represent elements in $H H^{n+1}(B, M)$ for $n \geqslant 2$.

Our results are also available for graded algebras. In particular we show that each chain (resp. cochain) algebra C yields canonically a crossed module over the homology (resp. cohomology) algebra $B=H C$ and this crossed module represents a characteristic class $\langle C\rangle$ in the Hochschild cohomology of $H C$. The characteristic class $\langle C\rangle$ determines all triple Massey products which are secondary operations on $H C$ determined by C. We can consider $\langle C\rangle$ as an analogue of the first k-invariant of a connected space X (in the Postnikov decomposition) which is an element in the cohomology of the fundamental group $G=\pi_{1} X$. Berrick-Davydov [6] recently studied the class $\langle C\rangle$ without using crossed modules over algebras. We compute also the characteristic class $\langle A \otimes B\rangle$ of the tensor product of chain algebras A and B.

[^0]
2. Hochschild cohomology

Let k be a field. Classical Hochschild cohomology is defined for algebras and also for graded algebras over k. We consider here the graded and the non-graded case at the same time. In this paper an algebra B will mean an associative (graded) algebra with unit $k \rightarrow B$. A B-bimodule is a (graded) k-vector space V which is a left and a right B-module such that for $a, b \in B$ and $x \in V$ we have $(a x) b=a(x b)$. For example B can be considered as a B-bimodule via the multiplication in B. Given two (graded) k-vector spaces V and W we denote the tensor product $V \otimes_{k} W$ simply by $V \otimes W$.

Recall that the Hochschild cohomology of B with coefficients in a B-bimodule M is the family of extension groups

$$
\begin{equation*}
H H^{*}(B, M)=\operatorname{Ext}_{B-B}^{*}(B, M) \tag{2.1}
\end{equation*}
$$

between the B-bimodules B and M.
One can associate to B the bar complex $B_{*}(B)$, where $B_{n}(B)=B^{\otimes(n+2)}$ with differential $d: B_{n}(B) \rightarrow B_{n-1}(B)$ given by

$$
d\left(x_{0} \otimes \ldots \otimes x_{n+1}\right)=\sum_{i=0}^{n}(-1)^{i}\left(x_{0} \otimes \ldots \otimes x_{i-1} \otimes x_{i} x_{i+1} \otimes x_{i+2} \otimes \ldots \otimes x_{n+1}\right)
$$

The bar complex is acyclic for any B. This follows from the existence of a homotopy h between the identity of $B_{*}(B)$ and the zero map. The homotopy $h: B_{n}(B) \rightarrow$ $B_{n+1}(B)$ is defined by $h(x)=1 \otimes x$.

The differential of the bar complex is B-bilinear. Thus we get the standard resolution of the B-bimodule B. Using this resolution one can identify the cohomology groups $H H^{n}(B, M)$ with the cohomology of the complex

$$
\begin{equation*}
F^{n}(B, M)=\operatorname{Hom}_{B-B}\left(B^{\otimes(n+2)}, M\right)=\operatorname{Hom}_{k}\left(B^{\otimes n}, M\right) \tag{2.2}
\end{equation*}
$$

with differential $\delta: F^{n}(B, M) \rightarrow F^{n+1}(B, M)$ given by

$$
\begin{aligned}
(\delta f)\left(x_{1} \otimes \ldots \otimes x_{n+1}\right)= & x_{1} f\left(x_{2} \otimes \ldots \otimes x_{n+1}\right) \\
& +\left(\sum_{i=1}^{n}(-1)^{i} f\left(x_{1} \otimes \ldots \otimes x_{i} x_{i+1} \otimes \ldots \otimes x_{n+1}\right)\right) \\
& +(-1)^{n+1} f\left(x_{1} \otimes \ldots \otimes x_{n}\right) x_{n+1} .
\end{aligned}
$$

3. Crossed modules over algebras and $H H^{3}$

We recall from [2] the following definition of crossed modules over algebras.
Definition 3.1. A Crossed module over a k-algebra is a triple (V, A, ∂) where A is a (graded) k-algebra, V is a (graded) A-bimodule and $\partial: V \rightarrow A$ is a map of A-bimodules such that $(\partial v) w=v(\partial w)$ for $v, w \in V . \mathrm{A} \operatorname{map}(\alpha, \beta):(V, A, \partial) \rightarrow$ $\left(V^{\prime}, A^{\prime}, \partial^{\prime}\right)$ between crossed modules consists of a map $\alpha: V \rightarrow V^{\prime}$ of k-vector spaces and a map $\beta: A \rightarrow A^{\prime}$ of k-algebras such that $\partial^{\prime} \alpha=\beta \partial$ and $\alpha(a v b)=\beta(a) \alpha(v) \beta(b)$ for $a, b \in A$ and $v \in V$.

Given a crossed module $\partial: V \rightarrow A$, we consider $B=\operatorname{coker}(\partial)$ and $M=\operatorname{ker}(\partial)$ in the category of (graded) k-vector spaces. The algebra structure of A induces an algebra structure on B and the A-bimodule structure on V induces a B-bimodule structure on M given by $\pi(a) m=a m$ and $m \pi(a)=m a$ where $\pi: A \rightarrow \operatorname{coker}(\partial)$ is the projection. This multiplication is well defined since $(a+\partial(v)) m=a m+\partial(v) m=$ $a m+v \partial(m)=a m$. Hence a crossed module yields an exact sequence

$$
0 \longrightarrow M \xrightarrow{i} V \xrightarrow{\partial} A \xrightarrow{\pi} B \longrightarrow
$$

in which all the maps are maps of A-bimodules. Here the A-bimodule structure on M and B is induced by the map π. We call $\partial: V \rightarrow A$ a crossed module over the k-algebra B with kernel M. Let $\operatorname{Cross}(B, M)$ be the category of such crossed modules. Morphisms are maps between crossed modules which induce the identity on M and B.

For a category C, let $\pi_{0} C$ be the class of connected components in C. An object in $\pi_{0} C$ is also termed a connected class of objects in C. In fact, $\pi_{0} \operatorname{Cross}(B, M)$ is a set, as implied by the following result, which extends the well-known facts that $H H^{1}(B, M)$ is given by derivations and $H H^{2}(B, M)$ classifies the singular algebra extensions of M by B (cf. [10]). The proof of this result can also be found in [9].
Theorem 3.2. There exists a bijection

$$
\psi: \pi_{0} \operatorname{Cross}(B, M) \rightarrow H H^{3}(B, M)
$$

Proof. We define $\psi: \pi_{0} \operatorname{Cross}(B, M) \rightarrow H H^{3}(B, M)$ as follows. Given

$$
\mathcal{E}=(0 \longrightarrow M \xrightarrow{i} V \xrightarrow{\partial} A \xrightarrow{\pi} B \longrightarrow 0)
$$

choose k-linear sections $s: B \rightarrow A, \pi s=1$ and $q: \operatorname{Im}(\partial) \rightarrow V, \partial q=1$. For $x, y \in B$, we have $\pi(s(x) s(y)-s(x y))=0$ and then $s(x) s(y)-s(x y) \in \operatorname{Im}(\partial)$. Take $g(x, y)=q(s(x) s(y)-s(x y)) \in V$ and define

$$
\begin{equation*}
\theta_{\mathcal{E}}(x, y, z)=s(x) g(y, z)-g(x y, z)+g(x, y z)-g(x, y) s(z) \tag{§}
\end{equation*}
$$

Since ∂ is a map of A-bimodules it follows that $\partial\left(\theta_{\mathcal{E}}(x, y, z)\right)=0$ and therefore $\theta_{\mathcal{E}}(x, y, z) \in M=\operatorname{ker}(\partial)$. Thus we have defined a k-linear map $\theta_{\mathcal{E}}: B^{\otimes 3} \rightarrow M$ which is a cocycle with respect to the coboundary map δ in (2.2). In fact, one easily checks that $\delta\left(\theta_{\mathcal{E}}\right)=0$. We define $\psi: \pi_{0} \operatorname{Cross}(B, M) \rightarrow H H^{3}(B, M)$ by taking $\psi(\mathcal{E})$ to be the class of $\theta_{\mathcal{E}}$ in $H H^{3}(B, M)$.

One has to check that ψ is a well defined function from $\pi_{0} \operatorname{Cross}(B, M)$ to $H H^{3}(B, M)$, i.e. the class of $\theta_{\mathcal{E}}$ in $H H^{3}(B, M)$ does not depend on the sections s and q. Moreover, if $\mathcal{E} \rightarrow \mathcal{E}^{\prime}$ is a map in $\operatorname{Cross}(B, M)$, then $\theta_{\mathcal{E}}=\theta_{\mathcal{E}^{\prime}}$ in $H H^{3}(B, M)$.

We show first that the class of $\theta_{\mathcal{E}}$ does not depend on the section s. Suppose $\bar{s}: B \rightarrow A$ is another section of π and let $\bar{\theta}_{\mathcal{E}}$ be the map defined using \bar{s} instead of s. Since s and \bar{s} are both sections of π there exists a linear map $h: B \rightarrow V$ with $s-\bar{s}=\partial h$. We have

$$
\begin{align*}
\left(\theta_{\mathcal{E}}-\bar{\theta}_{\mathcal{E}}\right)(x, y, z)= & h(x)(s(y) s(z)-s(y z))-(s(x) s(y)-s(x y)) h(z) \\
& +\bar{s}(x)(g-\bar{g})(y, z)-(g-\bar{g})(x y, z) \\
& +(g-\bar{g})(x, y z)-(g-\bar{g})(x, y) \bar{s}(z) \quad(*) \tag{*}
\end{align*}
$$

where $g(x, y)=q(s(x) s(y)-s(x y))$ and $\bar{g}(x, y)=q(\bar{s}(x) \bar{s}(y)-\bar{s}(x y))$. We define a map $b: B^{\otimes 2} \rightarrow V$ as follows.

$$
b(x, y)=s(x) h(y)-h(x y)+h(x) s(y)-h(x) \partial h(y)
$$

Since $\partial b=\partial(g-\bar{g})$ then $(g-\bar{g}-b)$ is a map from $B^{\otimes 2}$ to M. Moreover we can replace $(g-\bar{g})$ by b without changing the equality $(*)$ in $H H^{3}(B, M)$ since the difference is the coboundary $\delta(g-\bar{g}-b)$. After replacing $(g-\bar{g})$ by b, since $\partial: V \rightarrow A$ is a crossed module we obtain the following equality in $H H^{3}(B, M)$.

$$
\begin{aligned}
(*) \equiv & \partial h(x) s(y) h(z)-h(x) s(y) \partial h(z)-\partial h(x) h(y z)+h(x) \partial h(y z) \\
& +\partial h(x) h(y) \bar{s}(z)-h(x) \partial h(y) \bar{s}(z)=0
\end{aligned}
$$

That proves that the class of $\theta_{\mathcal{E}}$ does not depend on the section s.
Consider a $\operatorname{map} \mathcal{E} \rightarrow \mathcal{E}^{\prime}$ as follows.

Let $s: B \rightarrow A$ and $q: \operatorname{Im}(\partial) \rightarrow V$ be sections of π and ∂ and let $s^{\prime}: B \rightarrow A^{\prime}$ and $q^{\prime}: \operatorname{Im}\left(\partial^{\prime}\right) \rightarrow V^{\prime}$ be sections of π^{\prime} and ∂^{\prime}. Then

$$
\begin{align*}
\left(\theta_{\mathcal{E}}-\theta_{\mathcal{E}^{\prime}}\right)(x, y, z)= & \alpha(s(x) q(s(y) s(z)-s(y z))-q(s(x y) s(z)-s(x y z)) \\
& +q(s(x) s(y z)-s(x y z))-q(s(x) s(y)-s(x y)) s(z)) \\
& -s^{\prime}(x) q^{\prime}\left(s^{\prime}(y) s^{\prime}(z)-s^{\prime}(y z)\right)+q^{\prime}\left(s^{\prime}(x y) s^{\prime}(z)-s^{\prime}(x y z)\right) \\
& -q^{\prime}\left(s^{\prime}(x) s^{\prime}(y z)-s^{\prime}(x y z)\right)+q^{\prime}\left(s^{\prime}(x) s^{\prime}(y)-s^{\prime}(x y)\right) s^{\prime}(z) \tag{*}
\end{align*}
$$

Since $\pi^{\prime} \beta s=1$ then βs is another section for π^{\prime} and therefore we can now replace s^{\prime} by βs and we obtain the following equality in $H H^{3}(B, M)$.

$$
\begin{aligned}
(*) \equiv & \beta s(x)\left(\left(\alpha q-q^{\prime} \beta\right)(s(y) s(z)-s(y z))\right)-\left(\alpha q-q^{\prime} \beta\right)(s(x y) s(z) . s(x y z)) \\
& +\left(\alpha q-q^{\prime} \beta\right)(s(x) s(y z)-s(x y z))-\left(\alpha q-q^{\prime} \beta\right)(s(x) s(y)-s(x y)) \beta s(z)
\end{aligned}
$$

Thus $\left(\theta_{\mathcal{E}}-\theta_{\mathcal{E}^{\prime}}\right)(x, y, z)=\delta \phi(x, y, z)$ for some $\phi: B^{\otimes 2} \rightarrow M$. This proves that $\theta_{\mathcal{E}}=\theta_{\mathcal{E}^{\prime}}$ in $H H^{3}(B, M)$ and that the class of $\theta_{\mathcal{E}}$ in $H H^{3}(B, M)$ does not depend on the sections s and q. Therefore ψ is well defined.

The bijectivity of ψ follows from the following lemma.

Lemma 3.3. Given $c \in H H^{3}(B, M)$ there exists a crossed module $\mathcal{E}_{c} \in \operatorname{Cross}(B, M)$ such that $\theta_{\mathcal{E}_{c}}=c$. Moreover if $\mathcal{E} \in \operatorname{Cross}(B, M)$ and $\theta_{\mathcal{E}}=c$ in $H^{3}(B, M)$ there exists a map of crossed modules $\mathcal{E}_{c} \rightarrow \mathcal{E}$.

Before we proceed with the proof, we show a construction which will be useful to prove the lemma.

Construction 3.4. Free crossed module. Given a (graded) k-algebra A, a (graded) k-vector space V and a k-linear map $d: V \rightarrow A$ (of degree 0) we obtain the free
crossed module with basis (V, d) as follows. Define

$$
A \otimes V \otimes A \otimes V \otimes A \xrightarrow{d_{2}} A \otimes V \otimes A \xrightarrow{d_{1}} A
$$

by

$$
\begin{aligned}
d_{2}(a \otimes x \otimes b \otimes y \otimes c) & =(a(d x) b \otimes y \otimes c)-(a \otimes x \otimes b(d y) c) \\
d_{1}(a \otimes x \otimes b) & =a(d x) b
\end{aligned}
$$

for $a, b, c \in A$ and $x, y \in V$. Since $d_{1} d_{2}=0$ then d_{1} induces

$$
\partial: W=A \otimes V \otimes A / \operatorname{Im}\left(d_{2}\right) \rightarrow A
$$

It is easy to see that (W, A, ∂) is a crossed module which has the universal property of the free crossed module with basis (V, d).

Proof of Lemma 3.3. Let

$$
T(B)=\bigoplus_{n \geqslant 0} B^{\otimes n}
$$

be the tensor algebra generated by B as a k-vector space and let $\pi: T(B) \rightarrow B$ be the map of algebras given by $\pi\left(a_{1} \otimes \ldots \otimes a_{n}\right)=a_{1} \ldots a_{n}$. Let $V=B \otimes B$ and let $d: V \rightarrow T(B)$ be the linear map defined by

$$
d(x \otimes y)=x \otimes y-x y
$$

and consider $(W, T(B), \partial)$ the free crossed module with basis (V, d). The cokernel of this crossed module is the algebra B. Let N be the kernel of ∂.

Now consider the bar resolution $\left(B^{\otimes(n+2)}, d\right)$ and the following commutative diagram of vector spaces

Here the map $h_{0}: T(B) \rightarrow B^{\otimes 3}$ is not a bimodule map but a derivation defined by $h_{0}(b)=1 \otimes b \otimes 1$ for $b \in B$ and $h_{0}(x y)=\pi(x) h_{0}(y)+h_{0}(x) \pi(y)$ for $x, y \in T(B)$. The map $h_{1}: W \rightarrow B^{\otimes 4}$ is the bimodule map defined by $h_{1}(x \otimes a \otimes b \otimes y)=$ $\pi(x) \otimes a \otimes b \otimes \pi(y)$ for $x, y \in T(B)$ and $a, b \in B$. It is easy to see that $d_{2} h_{1}=h_{0} \partial$. By restricting h_{1} to N we obtain the map of B-bimodules $h: N \rightarrow B^{\otimes 5} / \operatorname{Im}\left(d_{4}\right)$.

An element $c \in H H^{3}(B, M)$ can be seen as a map $c: B^{\otimes 5} / \operatorname{Im}\left(d_{4}\right) \rightarrow M$ of B bimodules. Composing with h we obtain the map $\tilde{c}=c h: N \rightarrow M$ of B-bimodules.

Consider the pushout of $T(B)$-bimodules

We show that $\mathcal{E}_{c}=(0 \longrightarrow M \longrightarrow \bar{W} \xrightarrow{\bar{\partial}} T(B) \longrightarrow B \longrightarrow 0)$ is the desired crossed module.

The free crossed module $\mathcal{F}=(0 \longrightarrow N \longrightarrow W \longrightarrow \quad \partial \quad T(B) \longrightarrow B \longrightarrow 0)$ induces a cocycle $\theta_{\mathcal{F}}: B^{\otimes 5} / \operatorname{Im}\left(d_{4}\right) \rightarrow N$ as a map of B-bimodules by the formula (§) via the linear sections $s: B \rightarrow T(B)$ given by $s(b)=b$ and $q: \operatorname{Im}(\partial)=\operatorname{ker}(\pi) \rightarrow W$ defined by $q(x \otimes y-x y)=\overline{1 \otimes x \otimes y \otimes 1} \in W$. Now $\theta_{\mathcal{E}_{c}}$ can be computed from $\theta_{\mathcal{F}}$ since the $\operatorname{map} \bar{q}=r q: \operatorname{Im}(\bar{\partial})=\operatorname{ker}(\pi) \rightarrow \bar{W}$ is a section of $\bar{\partial}$, that is

$$
\theta_{\mathcal{E}_{c}}=\operatorname{ch} \theta_{\mathcal{F}}: B^{\otimes 5} / \operatorname{Im}\left(d_{4}\right) \rightarrow M
$$

Since $h \theta_{\mathcal{F}}=1: B^{\otimes 5} / \operatorname{Im}\left(d_{4}\right) \rightarrow B^{\otimes 5} / \operatorname{Im}\left(d_{4}\right)$ it follows that $\theta_{\mathcal{E}_{c}}=c$.
Suppose now we have a crossed module

$$
\mathcal{E}=(0 \longrightarrow M \longrightarrow V \xrightarrow{\alpha} A \xrightarrow{p} B \longrightarrow 0)
$$

such that $\psi(\mathcal{E})=c \in H H^{3}(B, M)$. That implies that for certain choice of linear sections $s: B \rightarrow A$ and $q: \operatorname{Im}(\alpha) \rightarrow V$ we have $\theta_{\mathcal{E}}=c$ where $\theta_{\mathcal{E}}$ is constructed by the formula (§). This induces a map of crossed modules

where the map $\bar{s}: T(B) \rightarrow A$ is the map of algebras induced by s and the map $\bar{g}: W \rightarrow V$ is induced by the linear map $g: B^{\otimes 2} \rightarrow V, g(x, y)=q(s(x) s(y)-s(x y))$. By the universal property of the pushout

there is a map $\mathcal{E}_{c} \rightarrow \mathcal{E}$ in $\operatorname{Cross}(B, M)$.
Any differential graded k-algebra induces a crossed module as we can see in the following construction.

Construction 3.5. The characteristic class of a cochain algebra. Let C be a differential graded k-algebra with differential of degree +1 , that is $C=\bigoplus_{i \geqslant 0} C^{i}$ with $C^{i} C^{j} \subseteq C^{i+j}$ and a differential $d: C \rightarrow C$ of degree +1 satisfying $d(x y)=(d x) y+$ $(-1)^{|x|} x d(y)$ and $d^{2}=0$. Consider the graded k-vector spaces $V=\operatorname{coker}(d)[1]$ and $A=\operatorname{ker}(d)$. Here we define for a graded vector space W the shifted graded vector space $W[1]$ by

$$
(W[1])^{n+1}=W^{n}
$$

The elements in $(W[1])^{n+1}$ are denoted by $s(w)$, where $w \in W^{n}$. Hence for the cokernel of the differential $W=\operatorname{coker}(d)$ we obtain the shifted object $V=\operatorname{coker}(d)[1]$. We denote by $s(\bar{x}) \in \operatorname{coker}(d)[1]$ the element corresponding to $x \in C$ via the projection $C \rightarrow \operatorname{coker}(d)$. Then d induces a map of graded k-vector spaces

$$
\partial: V=\operatorname{coker}(d)[1] \rightarrow A=\operatorname{ker}(d)
$$

carrying $s(\bar{x})$ to $d x$. The multiplication in C induces a structure of k-algebra on A. Moreover it induces a structure of A-bimodule on V by setting

$$
\begin{aligned}
& a * s(\bar{x})=(-1)^{|a|} s(\overline{a x}) \\
& s(\bar{x}) * b=s(\overline{x b})
\end{aligned}
$$

In fact, for $y=d z$ and $a \in A$ we have $(-1)^{|a|} a y=d(a z)$ and therefore the multiplication is well defined. We now check that $\partial: V \rightarrow A$ is a crossed module. Given $a \in A$ and $s(\bar{x}) \in V$ we have

$$
\partial(a * s(\bar{x}))=(-1)^{|a|} \partial(s(\overline{a x}))=(-1)^{|a|} d(a x)=a d(x)=a \partial(s(\bar{x}))
$$

In the same way one can check that $\partial(s(\bar{x}) * a)=\partial(s(\bar{x})) a$. Given now $s(\bar{x}), s(\bar{y}) \in V$ we have

$$
\begin{aligned}
\partial(s(\bar{x})) * s(\bar{y})=(d x) * s(\bar{y})= & (-1)^{|x|+1} s(\overline{(d x) y})=s(\overline{x(d y)})=s(\bar{x}) *(d y)= \\
& s(\bar{x}) * \partial(s(\bar{y})) .
\end{aligned}
$$

Thus the DG-algebra C induces a crossed module (V, A, ∂), the cokernel of which is the algebra $H^{*}(C)$ and the kernel is the $H^{*}(C)$-bimodule whose underlying k-vector space is $H^{*}(C)[1]$ and where the left multiplication is twisted, i.e. $x * y=(-1)^{|x|} x y$ and the right multiplication is the ordinary one. We denote this $H^{*}(C)$-bimodule by $\overline{H^{*}(C)}[1]$. The crossed module $\partial: V \rightarrow A$ represents by 3.2 an element $\langle C\rangle \in$ $H H^{3}\left(H^{*}(C), \overline{H^{*}(C)}[1]\right)$ which is termed the characteristic class of the cochain algebra C (compare with [6]).

Construction 3.6. The characteristic class of a chain algebra. For a chain algebra $C=\left\{C_{i}, i \geqslant 0\right\}$ concentrated in non-negative degrees with differential $d: C \rightarrow C$ of degree -1 satisfying $d(x y)=(d x) y+(-1)^{|x|} x d(y)$ and $d^{2}=0$ we proceed in the same way as in 3.5. We consider the graded vector spaces $V=\operatorname{coker}(d) \geqslant 1[-1]$ and $A=\operatorname{ker}(d)$. Here $\operatorname{coker}(d) \geqslant 1[-1]$ denotes the shifted graded vector space from $\operatorname{coker}(d) \geqslant 1$ similarly as above. The differential d induces as before a crossed module

$$
\partial: V=\operatorname{coker}(d)_{\geqslant 1}[-1] \rightarrow A=\operatorname{ker}(d)
$$

the cokernel of which is the algebra $H_{*}(C)$ and the kernel is the $H_{*}(C)$-bimodule whose underlying vector space is $H_{\geqslant 1}(C)[-1]$ and where the left multiplication is twisted and the right multiplication is the ordinary one. We denote this bimodule by $\overline{H_{\geqslant 1}(C)}[-1]$. The crossed module represents by 3.2 an element $\langle C\rangle \in$ $H H^{3}\left(H_{*}(C), \overline{H \geqslant 1(C)}[-1]\right)$ which is termed the characteristic class of the chain algebra C.

Defination and Remark 3.7. Massey triple products of crossed modules. Let

$$
\mathcal{E}=(0 \longrightarrow M \xrightarrow{i} V \xrightarrow{\partial} A \xrightarrow{\pi} B \longrightarrow 0)
$$

be a crossed module over B with kernel M. Given $a, b, c \in B$ with $a b=b c=0$, we define the Massey triple product $\langle a, b, c\rangle \in M /(a M+M c)$ as follows. Let $s: B \rightarrow A$ be a k-linear section of π, i.e. $\pi s=1$ and let $q: \operatorname{Im}(\partial) \rightarrow V$ be a k-linear section of ∂. Since $a b=0$ then $s(a) s(b) \in \operatorname{ker}(\pi)$ and we can take $q(s(a) s(b)) \in V$. In the same way, since $b c=0$, we consider $q(s(b) s(c)) \in V$. Now consider the element $\{a, b, c\}=s(a) q(s(b) s(c))-q(s(a) s(b)) s(c) \in V$. Since $\partial(\{a, b, c\})=0$ this element is in fact in M and we define

$$
\langle a, b, c\rangle=\overline{\{a, b, c\}} \in M /(a M+M c),
$$

where $\overline{\{a, b, c\}}$ denotes the class of $\{a, b, c\}$ in the quotient. One can check that $\langle a, b, c\rangle$ does not depend on the choice of s and q. Moreover it depends only on the class of \mathcal{E} in $\pi_{0} \operatorname{Cross}(B, M)$ and the elements a, b and c. In fact $\langle a, b, c\rangle$ can be computed from $H H^{3}(B, M)$ by taking

$$
\langle a, b, c\rangle=\overline{\theta_{\mathcal{E}}(a, b, c)}
$$

where $\theta_{\mathcal{E}}$ is any cocycle representing the class of $\psi(\mathcal{E}) \in H H^{3}(B, M)$. Note that for any DG-algebra C and any Massey triple $x, y, z \in H^{*}(C)$ the Massey product defined here in terms of ∂ in 3.5 coincides with the classical one.

Remark 3.8. Connection with Baues-Wirsching cohomology of categories. Given a monoid C one can consider C as a category \mathcal{C} with one object $*$. Let $M: \mathcal{C} \times \mathcal{C}^{o p} \rightarrow$ Vect_{k} be a functor, where Vect $_{k}$ denotes the category of k-vector spaces. Then the \mathcal{C}-bimodule M induces a natural system on \mathcal{C} also denoted by M (see [5]) and we have the Baues-Wirsching cohomology groups of \mathcal{C} with coefficients in M denoted by $H^{n}(\mathcal{C}, M)$. On the other hand one can consider the k-algebra $k[C]$ and the $k[C]$-bimodule $i M$ induced by the \mathcal{C}-bimodule M. It is easy to see that $H H^{n}(k[C], i M)=H^{n}(\mathcal{C}, M)$. For $n=3$ this isomorphism induces a bijection

$$
\pi_{0} \operatorname{Track}(\mathcal{C}, M)=\pi_{0} \operatorname{Cross}(k[C], i M)
$$

Here Track (\mathcal{C}, M) denotes the category of track extensions over \mathcal{C} with kernel M (cf. [3],[4]).

In the last section of this paper we define the \odot-product of crossed modules in order to compute the characteristic class of a tensor product of differential algebras.

4. crossed n-fold extensions and main result

We introduce in this section the groups Opext ${ }^{n}(B, M)$ of crossed n-fold extensions of a k-algebra B by a B-bimodule $M, n \geqslant 2$. These extensions are analogous to crossed extensions of groups (cf. [7]). Our result 4.3 shows that the connected classes of such extensions represent cohomology classes in $H H^{n+1}(B, M)$.

Definition 4.1. Let B be a k-algebra and M a B-bimodule. For $n \geqslant 2$, a crossed n-fold extension of B by M is an exact sequence

$$
0 \rightarrow M \xrightarrow{f} M_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} M_{1} \xrightarrow{\partial_{1}} A \xrightarrow{\pi} B \rightarrow 0
$$

of k-vector spaces with the following properties.

1. $\left(M_{1}, A, \partial_{1}\right)$ is a crossed module with cokernel B,
2. M_{i} is a B-bimodule for $1<i \leqslant n-1$ and ∂_{i} and f are maps of B-bimodules.

Note that the map ∂_{1} is a map of A-bimodules since $\left(M_{1}, A, \partial_{1}\right)$ is a crossed module and it makes sense to require ∂_{2} to be a map of B-bimodules since the kernel of ∂_{1} is naturally a B-bimodule.

Definition 4.2. Given a crossed n-fold extension of B by M

$$
\mathcal{E}=\left(0 \rightarrow M \xrightarrow{f} M_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} M_{1} \xrightarrow{\partial_{1}} A \xrightarrow{\pi} B \rightarrow 0\right)
$$

and a crossed n-fold extension of B by M^{\prime}

$$
\mathcal{E}^{\prime}=\left(0 \rightarrow M^{\prime} \xrightarrow{f^{\prime}} M_{n-1}^{\prime} \xrightarrow{\partial_{n-1}^{\prime}} \cdots \xrightarrow{\partial_{2}^{\prime}} M_{1}^{\prime} \xrightarrow{\partial_{1}^{\prime}} A^{\prime} \xrightarrow{\pi^{\prime}} B \rightarrow 0\right)
$$

a map from \mathcal{E} to \mathcal{E}^{\prime} is a sequence $\left(\alpha, \delta_{n-1}, \ldots, \delta_{1}, \beta\right)$ such that $\alpha: M \rightarrow M^{\prime}$ and $\delta_{i}: M_{i} \rightarrow M_{i}^{\prime}$ are morphisms of B-bimodules for $i \geqslant 2,\left(\delta_{1}, \beta\right):\left(M_{1}, A, \partial_{1}\right) \rightarrow$ $\left(M_{1}^{\prime}, A^{\prime}, \partial_{1}^{\prime}\right)$ is a map of crossed modules which induces the identity on B and the whole diagram commutes.

Let $\mathcal{E}^{n}(B, M)$ be the following category. The objects are the crossed n-fold extensions of B by M and the morphisms are the maps between such extensions that induce the identity on M. We denote Opext $^{n}(B, M)=\pi_{0} \mathcal{E}^{n}(B, M)$. Of course Opext $^{2}(B, M)$ coincides with $\pi_{0} \operatorname{Cross}(B, M)$.

We will exhibit a natural structure of Abelian group on Opext ${ }^{n}(B, M)$ and prove the main result of this section.

Theorem 4.3. There exists an isomorphism of Abelian groups

$$
\operatorname{Opext}^{n}(B, M)=H H^{n+1}(B, M), n \geqslant 2
$$

Definition 4.4. For $n \geqslant 3$ we define the element $0 \in \operatorname{Opext}^{n}(B, M)$ as the class of the extension

$$
0 \longrightarrow M \Longrightarrow M \longrightarrow 0 \longrightarrow \quad M \longrightarrow \quad B \longrightarrow 0
$$

Remark 4.5. If B is a projective algebra or M is injective as a B-bimodule, then Opext $^{n}(B, M)=0$. In general, if

$$
\mathcal{E}=\left(0 \rightarrow M \xrightarrow{f} M_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} M_{1} \xrightarrow{\partial_{1}} A \xrightarrow{\pi} B \rightarrow 0\right)
$$

and there is a map $g: M_{n-1} \rightarrow M$ such that $g f=1_{M}$, then $\mathcal{E}=0$ in $\operatorname{Opext}^{n}(B, M)$, $n \geqslant 3$.

Proposition 4.6. Given $\mathcal{E} \in \operatorname{Opext}^{n}(B, M)$ and a map $\alpha: M \rightarrow M^{\prime}$ of B bimodules, there exists an extension $\alpha \mathcal{E} \in \operatorname{Opext}^{n}\left(B, M^{\prime}\right)$ and a morphism of the form $\left(\alpha, \delta_{n-1}, \ldots, \beta\right)$ from \mathcal{E} to $\alpha \mathcal{E}$. Moreover, $\alpha \mathcal{E}$ is unique in Opext $^{n}\left(B, M^{\prime}\right)$ with this property.

Proof. Let $\mathcal{E}=\left(0 \rightarrow M \xrightarrow{f} M_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} M_{1} \xrightarrow{\partial_{1}} A \xrightarrow{\pi} B \rightarrow 0\right)$. Consider the following pushout of B-bimodules

Take $\alpha \mathcal{E}=\left(0 \rightarrow M^{\prime} \rightarrow \overline{M_{n-1}} \rightarrow \cdots \cdots \rightarrow M_{1} \xrightarrow{\partial_{1}} A \rightarrow B \rightarrow 0\right) \quad$ in $\operatorname{Opext}^{n}\left(B, M^{\prime}\right)$ and the morphism $(\alpha, i, 1, \ldots, 1): \mathcal{E} \rightarrow \alpha \mathcal{E}$.

Given $\mathcal{E}^{\prime} \in \operatorname{Opext}^{n}\left(B, M^{\prime}\right)$ and a morphism of the form $\left(\alpha, \delta_{n-1}, \ldots, \beta\right): \mathcal{E} \rightarrow$ \mathcal{E}^{\prime}, by properties of the pushout we find a map $\left(1, j, \delta_{n-2}, \ldots, \beta\right): \alpha \mathcal{E} \rightarrow \mathcal{E}^{\prime}$ and therefore $\alpha \mathcal{E}=\mathcal{E}^{\prime} \in$ Opext $^{n}\left(B, M^{\prime}\right)$.

Defination and Remark 4.7. By 4.6, a morphism of B-bimodules $\alpha: M \rightarrow M^{\prime}$ induces a well defined function

$$
\alpha_{*}: \operatorname{Opext}^{n}(B, M) \rightarrow \operatorname{Opext}^{n}\left(B, M^{\prime}\right)
$$

by $\alpha_{*}(\mathcal{E})=\alpha \mathcal{E}$.
Lemma 4.8. If $\mathcal{E}=\left(0 \longrightarrow M \xrightarrow{f} M_{n-1} \longrightarrow \ldots\right) \in$ Opext $^{n}(B, M)$, then $f \mathcal{E}=$ $0 \in \operatorname{Opext}^{n}\left(B, M_{n-1}\right)$.
Proof. Consider the morphism of extensions

By definition the row in the bottom corresponds to $f \mathcal{E}$, therefore by $4.5 f \mathcal{E}=0$.

Definition 4.9. Given two crossed n-fold extensions of B

$$
\mathcal{E}=\left(0 \rightarrow M \xrightarrow{f} M_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_{2}} M_{1} \xrightarrow{\partial_{1}} A \xrightarrow{\pi} B \rightarrow 0\right)
$$

and

$$
\mathcal{E}^{\prime}=\left(0 \rightarrow M^{\prime} \xrightarrow{f^{\prime}} M_{n-1}^{\prime} \xrightarrow{\partial_{n-1}^{\prime}} \cdots \xrightarrow{\partial_{2}^{\prime}} M_{1}^{\prime} \xrightarrow{\partial_{1}^{\prime}} A^{\prime} \xrightarrow{\pi^{\prime}} B \rightarrow 0\right)
$$

the sum of \mathcal{E} and \mathcal{E}^{\prime} over B is denoted by $\mathcal{E} \oplus_{B} \mathcal{E}^{\prime}$ and corresponds to the following crossed n-fold extension

$$
\begin{aligned}
0 \longrightarrow M \oplus M^{\prime} \longrightarrow M_{n-1} \oplus M_{n-1}^{\prime} \longrightarrow \cdots \longrightarrow \\
\longrightarrow M_{1} \oplus M_{1}^{\prime} \xrightarrow{\left(\partial_{1}, \partial_{1}^{\prime}\right)} A \times_{B} A^{\prime} \xrightarrow{q} B \longrightarrow 0 .
\end{aligned}
$$

Here the algebra $A \times{ }_{B} A^{\prime}$ is defined as follows. The elements of it are the pairs (a, a^{\prime}) with $a \in A$ and $a^{\prime} \in A^{\prime}$ such that $\pi a=\pi^{\prime} a^{\prime}$, addition and multiplication is defined coordinatewise. The map $q: A \times{ }_{B} A^{\prime} \rightarrow B$ is the map $q\left(a, a^{\prime}\right)=\pi(a)=\pi^{\prime}\left(a^{\prime}\right)$. The action of $A \times_{B} A^{\prime}$ on $M_{1} \oplus M_{1}^{\prime}$ is also defined coordinatewise. It is easy to check that this defines a crossed module $\left(M_{1} \oplus M_{1}^{\prime}, A \times_{B} A^{\prime},\left(\partial_{1}, \partial_{1}^{\prime}\right)\right)$.

Definition 4.10. Given $\mathcal{E}, \mathcal{E}^{\prime} \in \operatorname{Opext}^{n}(B, M)$ with $n \geqslant 3$, we define the Baer Sum $\mathcal{E}+\mathcal{E}^{\prime} \in \mathrm{Opext}^{n}(B, M)$ as follows.

$$
\mathcal{E}+\mathcal{E}^{\prime}=\nabla_{M}\left(\mathcal{E} \oplus_{B} \mathcal{E}^{\prime}\right)
$$

where $\nabla_{M}: M \oplus M \rightarrow M$ is the codiagonal.
Theorem 4.11. For $n \geqslant 3$ the set Opext $^{n}(B, M)$ equipped with the Baer sum is an abelian group with the zero element defined as in 4.4. The inverse of an extension

$$
\mathcal{E}=\left(0 \rightarrow M \xrightarrow{f} M_{n-1} \xrightarrow{g} \cdots \cdots \rightarrow M_{1} \xrightarrow{\partial_{1}} A \rightarrow B \rightarrow 0\right)
$$

is the extension

$$
\left(-1_{M}\right) \mathcal{E}=\left(0 \rightarrow M \xrightarrow{-f} M_{n-1} \xrightarrow{g} \cdots \cdots \rightarrow M_{1} \xrightarrow{\partial_{1}} A \rightarrow B \rightarrow 0\right)
$$

Moreover, the maps $\alpha_{*}: \operatorname{Opext}^{n}(B, M) \rightarrow \operatorname{Opext}^{n}\left(B, M^{\prime}\right)$ are morphisms of groups.
Proof. Follows the classical one (cf. [10]). One has to check that

1. $(\alpha+\beta) \mathcal{E}=\alpha \mathcal{E}+\beta \mathcal{E}$
2. $\alpha\left(\mathcal{E}+\mathcal{E}^{\prime}\right)=\alpha \mathcal{E}+\alpha \mathcal{E}^{\prime}$

The Baer sum in Opext ${ }^{2}(B, M)$ is defined in a slightly different way. Recall that the elements in Opext ${ }^{2}(B, M)$ are classes of crossed modules with cokernel B and kernel M. The class of $0 \in \operatorname{Opext}^{2}(B, M)$ is the class of the extension

$$
0 \longrightarrow M \xlongequal{\longrightarrow} M \stackrel{0}{\longrightarrow} B \rightleftharpoons 0
$$

Now given

$$
\mathcal{E}=(0 \longrightarrow M \xrightarrow{i} V \xrightarrow{\partial} A \xrightarrow{\pi} B \longrightarrow 0)
$$

and

$$
\mathcal{E}^{\prime}=\left(0 \longrightarrow M \xrightarrow{i^{\prime}} V^{\prime} \xrightarrow{\partial^{\prime}} A^{\prime} \xrightarrow{\pi^{\prime}} B \longrightarrow 0\right),
$$

the Baer $\operatorname{sum} \mathcal{E}+\mathcal{E}^{\prime}$ is the class of the extension

$$
\mathcal{E}+\mathcal{E}^{\prime}=\left(0 \longrightarrow M \xrightarrow{j} V+V^{\prime} \xrightarrow{\tilde{\partial}} A \times_{B} A^{\prime} \xrightarrow{q} B \longrightarrow 0\right)
$$

where $q: A \times_{B} A^{\prime} \rightarrow B$ is defined as in 4.9 and $V+V^{\prime}$ is the pushout of k-vector spaces

The structure of $\left(A \times{ }_{B} A^{\prime}\right)$-bimodule on $V+V^{\prime}$ is induced by the structure on $V \oplus V^{\prime}$ (coordinatewise) via the quotient map $r: V \oplus V^{\prime} \rightarrow V+V^{\prime}$ by ($\left.a, a^{\prime}\right) r\left(v, v^{\prime}\right)=$ $r\left(a v, a^{\prime} v^{\prime}\right)$ and $r\left(v, v^{\prime}\right)\left(a, a^{\prime}\right)=r\left(v a, v^{\prime} a^{\prime}\right)$. Note that the multiplication is well defined since $\left(a, a^{\prime}\right) \in A \times_{B} A^{\prime}$ and therefore $\pi(a)=\pi^{\prime}\left(a^{\prime}\right)$. It is easy to check that $\tilde{\partial}: V+V^{\prime} \rightarrow A \times_{B} A^{\prime}$ is a crossed module.
Remark 4.12. With this structure of abelian group in $\operatorname{Opext}^{2}(B, M)$ the bijection

$$
\psi: \operatorname{Opext}^{2}(B, M) \rightarrow H H^{3}(B, M)
$$

of 3.2 is an isomorphism of groups.
Definition 4.13. Given a short exact sequence of B-bimodules

$$
0 \longrightarrow M \xrightarrow{\alpha} M^{\prime} \xrightarrow{\beta} M^{\prime \prime} \longrightarrow 0
$$

we define a connecting homomorphism $(n \geqslant 2)$

$$
\delta: \operatorname{Opext}^{n}\left(B, M^{\prime \prime}\right) \rightarrow \operatorname{Opext}^{n+1}(B, M)
$$

as follows. Given an extension $\mathcal{E}=\left(0 \longrightarrow M^{\prime \prime} \xrightarrow{f} M_{n-1} \longrightarrow \cdots\right)$, take $\delta(\mathcal{E})$
to be the class of the extension $\left(0 \longrightarrow M \xrightarrow{\alpha} M^{\prime} \xrightarrow{f \beta} M_{n-1} \longrightarrow \cdots\right)$.
Note that δ is a well defined homomorphism for all $n \geqslant 2$.
Theorem 4.14. A short exact sequence

$$
0 \longrightarrow M \xrightarrow{\alpha} M^{\prime} \xrightarrow{\beta} M^{\prime \prime} \longrightarrow 0
$$

of B-bimodules induces a long exact sequence of abelian groups $(n \geqslant 2)$

$$
\begin{aligned}
\operatorname{Opext}^{n}(B, M) \xrightarrow{\alpha_{*}} & \operatorname{Opext}^{n}\left(B, M^{\prime}\right) \xrightarrow{\beta_{*}} \operatorname{Opext}^{n}\left(B, M^{\prime \prime}\right) \xrightarrow{\delta} \\
& \operatorname{opext}^{n+1}(B, M) \longrightarrow
\end{aligned}
$$

Proof. To prove exactness at $\operatorname{Opext}^{n}\left(B, M^{\prime}\right)$ with $n \geqslant 3$ note first that $\beta_{*} \alpha_{*}=$ $(\beta \alpha)_{*}=0$. Now let
$\mathcal{E}=\left(0 \rightarrow M^{\prime} \xrightarrow{f} M_{n-1} \xrightarrow{g} M_{n-2} \rightarrow \cdots \rightarrow M_{1} \xrightarrow{\partial} A \rightarrow B \rightarrow 0\right) \in \operatorname{Opext}^{n}\left(B, M^{\prime}\right)$
and $\beta \mathcal{E}=0$. We suppose first that there is a $\operatorname{map} \beta \mathcal{E} \rightarrow 0$, i.e.

$$
\beta \mathcal{E}=\left(0 \rightarrow M^{\prime \prime} \xrightarrow{h} \overline{M_{n-1}} \stackrel{g^{\prime}}{\longrightarrow} M_{n-2} \rightarrow \cdots \rightarrow M_{1} \xrightarrow{\partial} A \rightarrow B \rightarrow 0\right)
$$

and there is a map $r: \overline{M_{n-1}} \rightarrow M^{\prime \prime}$ such that $r h=1$. The following diagram shows that $\mathcal{E}=\alpha \overline{\mathcal{E}}$.

Suppose now that there is a map $0 \rightarrow \beta \mathcal{E}$. In this case it is easy to see that $\mathcal{E}=0$. The general case follows combining these both cases. Suppose for example there exists an extension $\tilde{\mathcal{E}}=\left(0 \longrightarrow M^{\prime \prime} \longrightarrow \tilde{M}_{n-1} \longrightarrow \tilde{M}_{n-2} \longrightarrow \cdots\right) \in \operatorname{Opext}^{n}\left(B, M^{\prime \prime}\right)$ and maps $\tilde{\mathcal{E}} \rightarrow \beta \mathcal{E}$ and $\tilde{\mathcal{E}} \rightarrow 0$. In this case we construct the extension $\overline{\mathcal{E}}$ with $\alpha \overline{\mathcal{E}}=\mathcal{E}$ as follows. There exists a retraction $r: \tilde{M}_{n-1} \rightarrow M^{\prime \prime}$ such that $r l=1$. Consider the pushout of B-bimodules

and take $\overline{\mathcal{E}}=\left(0 \longrightarrow M \xrightarrow{f \alpha} \operatorname{Ker} \bar{r} t \xrightarrow{g} M_{n-2} \longrightarrow \cdots\right)$.
For $n=2$ exactness at $\operatorname{Opext}^{2}\left(B, M^{\prime}\right)$ follows from 3.2.
To prove exactness at Opext $^{n+1}(B, M)$ for $n \geqslant 2$ note first that $\delta(\mathcal{E})$ has the form

$$
\delta(\mathcal{E})=\left(0 \rightarrow M \xrightarrow{\alpha} M^{\prime} \xrightarrow{f \beta} M_{n-1} \rightarrow \cdots \rightarrow M_{1} \xrightarrow{\partial} A \rightarrow B \rightarrow 0\right)
$$

and therefore $\alpha \delta(\mathcal{E})=0$ by 4.8. Now let
$\mathcal{E}=\left(0 \rightarrow M \xrightarrow{f} M_{n-1} \xrightarrow{g} M_{n-2} \rightarrow \cdots \rightarrow M_{1} \xrightarrow{\partial} A \rightarrow B \rightarrow 0\right) \in \operatorname{Opext}^{n}(B, M)$
with $\alpha \mathcal{E}=0$. Applying the same argument as above, we can suppose that there is a $\operatorname{map} \alpha \mathcal{E} \rightarrow 0$, i.e.

$$
\alpha \mathcal{E}=\left(0 \rightarrow M^{\prime} \xrightarrow{l} \overline{M_{n-1}} \xrightarrow{g^{\prime}} M_{n-2} \rightarrow \cdots \rightarrow M_{1} \xrightarrow{\partial} A \rightarrow B \rightarrow 0\right)
$$

and there is a map $t: \overline{M_{n-1}} \rightarrow M^{\prime}$ such that $t l=1$.
Consider the following diagram

The map j can be factored $j=h \beta$ for some $h: M^{\prime \prime} \rightarrow \overline{M_{n-2}}$ and therefore $\mathcal{E}=\delta\left(\mathcal{E}^{\prime}\right)$ with

$$
\mathcal{E}^{\prime}=\left(0 \longrightarrow M^{\prime \prime} \xrightarrow{h} \overline{M_{n-2}} \longrightarrow M_{n-3} \longrightarrow \cdots\right) .
$$

To prove exactness at Opext $^{n}\left(B, M^{\prime \prime}\right)$ for $n \geqslant 2$ consider the following diagrams. The first row of the first diagram corresponds to $\mathcal{E} \in \operatorname{Opext}^{n}\left(B, M^{\prime}\right)$ and the second row corresponds to $\beta \mathcal{E} \in \operatorname{Opext}^{n}\left(B, M^{\prime \prime}\right)$.

Proof of 4.3. The result is true for $n=2$ by 3.2 . For $n \geqslant 3$ we use theorem 4.14. Since the category of B-bimodules has enough injectives, we can find a short exact sequence

$$
0 \longrightarrow M \xrightarrow{\alpha} M^{\prime} \xrightarrow{\beta} M^{\prime \prime} \longrightarrow 0
$$

with M^{\prime} injective. By 4.14 and 4.5 we have

$$
\operatorname{Opext}^{n+1}(B, M)=\operatorname{Opext}^{n}\left(B, M^{\prime \prime}\right)
$$

On the other hand we have $H H^{n+2}(B, M)=H H^{n+1}\left(B, M^{\prime \prime}\right)$ by the long exact sequence of cohomology. Hence the result follows by induction from 3.2.

Remark 4.15. Theorem 4.3 is the analogue of a corresponding result for the cohomology of groups. In fact, using crossed modules in the category of groups as introduced by J.H.C.Whitehead [12] one can consider crossed extensions of groups which represent elements in the cohomology of groups (cf. Huebschmann [7]).

5. The characteristic class of a tensor product of differential algebras

In this section we define the \odot-product of crossed modules. The definition of $\partial_{1} \odot \partial_{2}$ is used below for the computation of the characteristic class of a tensor product of differential algebras (see 3.5 above).

Definition 5.1. Let $\partial_{1}: V_{1} \rightarrow A_{1}$ and $\partial_{2}: V_{2} \rightarrow A_{2}$ be crossed modules. Consider the diagram of (graded) vector spaces

$$
\begin{equation*}
V_{1} \otimes V_{2} \xrightarrow{d_{2}}\left(V_{1} \otimes A_{2}\right) \oplus\left(A_{1} \otimes V_{2}\right) \xrightarrow{d_{1}}\left(A_{1} \otimes A_{2}\right) \tag{*}
\end{equation*}
$$

where d_{1} and d_{2} are defined as follows.

$$
\begin{aligned}
& d_{2}\left(v_{1} \otimes v_{2}\right)=\partial_{1} v_{1} \otimes v_{2}-v_{1} \otimes \partial_{2} v_{2} \\
& d_{1}\left(v_{1} \otimes a_{2}\right)=\partial_{1} v_{1} \otimes a_{2} \\
& d_{1}\left(a_{1} \otimes v_{2}\right)=a_{1} \otimes \partial_{2} v_{2}
\end{aligned}
$$

Since $d_{1} d_{2}=0$ we obtain a map ∂ induced by d_{1} :

$$
\partial: W=\frac{\left(V_{1} \otimes A_{2}\right) \oplus\left(A_{1} \otimes V_{2}\right)}{\operatorname{Im}\left(d_{2}\right)} \rightarrow A_{1} \otimes A_{2}
$$

Note that the diagram $\left(^{*}\right)$ is in fact a diagram of $\left(A_{1} \otimes A_{2}\right)$-bimodules. Here the $\left(A_{1} \otimes A_{2}\right)$-bimodule structure on $V_{1} \otimes V_{2}$ is given by

$$
\begin{aligned}
& \left(a_{1} \otimes a_{2}\right)\left(v_{1} \otimes v_{2}\right)=(-1)^{\left|a_{2}\right|\left|v_{1}\right|}\left(a_{1} v_{1} \otimes a_{2} v_{2}\right) \\
& \left(v_{1} \otimes v_{2}\right)\left(a_{1} \otimes a_{2}\right)=(-1)^{\left|v_{2}\right|\left|a_{1}\right|}\left(v_{1} a_{1} \otimes v_{2} a_{2}\right)
\end{aligned}
$$

Thus the map $\partial: W \rightarrow A_{1} \otimes A_{2}$ is a map of $\left(A_{1} \otimes A_{2}\right)$-bimodules. We show now that ∂ is a crossed module. Given $w, w^{\prime} \in W$ we have to check that $\partial(w) w^{\prime}=w \partial\left(w^{\prime}\right)$. For $v_{1}, v_{1}^{\prime} \in V_{1}, a_{2}, a_{2}^{\prime} \in A_{2}$ we have

$$
\begin{gathered}
\partial\left(\overline{v_{1} \otimes a_{2}}\right)\left(\overline{v_{1}^{\prime} \otimes a_{2}^{\prime}}\right)=\left(\partial_{1} v_{1} \otimes a_{2}\right)\left(\overline{v_{1}^{\prime} \otimes a_{2}^{\prime}}\right) \\
=(-1)^{\left|a_{2}\right|\left|v_{1}^{\prime}\right|}\left(\overline{\left(\partial_{1} v_{1}\right) v_{1}^{\prime} \otimes a_{2} a_{2}^{\prime}}\right)=\left(\overline{v_{1} \otimes a_{2}}\right) \partial\left(\overline{v_{1}^{\prime} \otimes a_{2}^{\prime}}\right)
\end{gathered}
$$

We have similar equation for $\partial\left(\overline{a_{1} \otimes v_{2}}\right)\left(\overline{a_{1}^{\prime} \otimes v_{2}^{\prime}}\right)$. Now for $\left(\overline{v_{1} \otimes a_{2}}\right)$ and $\left(\overline{a_{1} \otimes v_{2}}\right)$ we have

$$
\begin{aligned}
\partial\left(\overline{v_{1} \otimes a_{2}}\right)\left(\overline{a_{1} \otimes v_{2}}\right) & =\left(\partial_{1} v_{1} \otimes a_{2}\right)\left(\overline{a_{1} \otimes v_{2}}\right)=(-1)^{\left|a_{2}\right|\left|a_{1}\right|}\left(\overline{\partial_{1}\left(v_{1} a_{1}\right) \otimes a_{2} v_{2}}\right) \\
& =(-1)^{\left|a_{2}\right|\left|a_{1}\right|}\left(\overline{v_{1} a_{1} \otimes \partial_{2}\left(a_{2} v_{2}\right)}\right)=\left(\overline{v_{1} \otimes a_{2}}\right) \partial\left(\overline{a_{1} \otimes v_{2}}\right)
\end{aligned}
$$

Thus $\partial: W \rightarrow A_{1} \otimes A_{2}$ is a crossed module termed the \odot-product of ∂_{1} and ∂_{2} and is denoted by $\partial_{1} \odot \partial_{2}$.
Notation. Given a crossed module $\partial: V \rightarrow A$ we denote the cokernel of ∂ by $\pi_{0}(\partial)$ and the kernel by $\pi_{1}(\partial)$.
Proposition 5.2. The \odot-product of two crossed modules ∂_{1} and ∂_{2} satisfies

$$
\begin{align*}
& \pi_{0}\left(\partial_{1} \odot \partial_{2}\right)=\pi_{0}\left(\partial_{1}\right) \otimes \pi_{0}\left(\partial_{2}\right) \tag{1}\\
& \pi_{1}\left(\partial_{1} \odot \partial_{2}\right)=\left(\pi_{0}\left(\partial_{1}\right) \otimes \pi_{1}\left(\partial_{2}\right)\right) \oplus\left(\pi_{1}\left(\partial_{1}\right) \otimes \pi_{0}\left(\partial_{2}\right)\right) \tag{2}
\end{align*}
$$

Proof. To prove (1) consider the map

$$
\psi: \pi_{0}\left(\partial_{1} \odot \partial_{2}\right) \rightarrow \pi_{0}\left(\partial_{1}\right) \otimes \pi_{0}\left(\partial_{2}\right)
$$

defined by $\psi\left(\overline{a_{1} \otimes a_{2}}\right)=\overline{a_{1}} \otimes \overline{a_{2}}$. It is easy to check that this map is well defined and is and isomorphism.

To prove (2) consider the map

$$
\phi:\left(\pi_{0}\left(\partial_{1}\right) \otimes \pi_{1}\left(\partial_{2}\right)\right) \oplus\left(\pi_{1}\left(\partial_{1}\right) \otimes \pi_{0}\left(\partial_{2}\right)\right) \rightarrow \pi_{1}\left(\partial_{1} \odot \partial_{2}\right)
$$

given by $\phi\left(\overline{a_{1}} \otimes v_{2}\right)=\overline{a_{1} \otimes v_{2}}$ and $\phi\left(v_{1} \otimes \overline{a_{2}}\right)=\overline{v_{1} \otimes a_{2}}$.
We show that ϕ is well defined. For $a_{1}=\partial_{1} v_{1}$ and $v_{2} \in \operatorname{ker}\left(\partial_{2}\right)$ we have

$$
\overline{\partial_{1} v_{1} \otimes v_{2}}=\overline{v_{1} \otimes \partial_{2} v_{2}}=0
$$

The same procedure for $a_{2}=\partial_{2} v_{2}$ and $v_{1} \in \operatorname{ker}\left(\partial_{1}\right)$. Moreover $\partial\left(\overline{a_{1} \otimes v_{2}}\right)=0$ if $v_{2} \in \operatorname{ker}\left(\partial_{2}\right)$ and $\partial\left(\overline{v_{1} \otimes a_{2}}\right)=0$ for $v_{1} \in \operatorname{ker}\left(\partial_{1}\right)$.

To prove that ϕ is and isomorphism consider a k-linear section of ∂_{1}, q_{1} : $\operatorname{Im}\left(\partial_{1}\right) \rightarrow V_{1}$. Suppose $\overline{v_{1} \otimes a_{2}} \in W$ and $\partial_{1} v_{1} \otimes a_{2}=0$. Then $\left(q_{1} \partial_{1} v_{1} \otimes a_{2}\right)=0$ and therefore $v_{1} \otimes a_{2}=\left(v_{1}-q_{1} \partial_{1} v_{1}\right) \otimes a_{2}$ and $v_{1}-q_{1} \partial_{1} v_{1} \in \operatorname{ker}\left(\partial_{1}\right)$. The same procedure for $\overline{a_{1} \otimes v_{2}}$. This implies that ϕ is an isomorphism.

Proposition 5.3. Let ∂_{1} and ∂_{2} be crossed modules with cokernel B_{i} and kernel $M_{i}, i=1,2$. Then the class

$$
\begin{gathered}
\left\langle\partial_{1} \odot \partial_{2}\right\rangle \in \pi_{0} \operatorname{Cross}\left(B_{1} \otimes B_{2},\left(B_{1} \otimes M_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right)\right)= \\
H H^{3}\left(B_{1} \otimes B_{2},\left(B_{1} \otimes M_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right)\right)
\end{gathered}
$$

depends only on the classes $\left\langle\partial_{1}\right\rangle \in H H^{3}\left(B_{1}, M_{1}\right)$ and $\left\langle\partial_{2}\right\rangle \in H H^{3}\left(B_{2}, M_{2}\right)$. Moreover one obtains a group homomorphism

$$
\Gamma: H H^{3}\left(B_{1}, M_{1}\right) \oplus H H^{3}\left(B_{2}, M_{2}\right) \rightarrow H H^{3}\left(B_{1} \otimes B_{2},\left(B_{1} \otimes M_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right)\right)
$$

defined by $\Gamma\left(\left\langle\partial_{1}\right\rangle,\left\langle\partial_{2}\right\rangle\right)=\left\langle\partial_{1} \odot \partial_{2}\right\rangle$.
Proof. To check that $\left\langle\partial_{1} \odot \partial_{2}\right\rangle$ depends only on the class of ∂_{1} and ∂_{2} consider a $\operatorname{map} \alpha: \partial_{1} \rightarrow \partial_{1}^{\prime}$ in $\operatorname{Cross}\left(B_{1}, M_{1}\right)$

Then α induces a map

$$
\alpha \odot 1: \partial_{1} \odot \partial_{2} \rightarrow \partial_{1}^{\prime} \odot \partial_{2}
$$

given by $(\alpha \odot 1)_{0}: A_{1} \otimes A_{2} \rightarrow A_{1}^{\prime} \otimes A_{2},(\alpha \odot 1)_{0}\left(a_{1} \otimes a_{2}\right)=\alpha_{0}\left(a_{1}\right) \otimes a_{2}$ and $(\alpha \odot 1)_{1}:\left(V_{1} \otimes A_{2}\right) \oplus\left(A_{1} \otimes V_{2}\right) \rightarrow\left(V_{1}^{\prime} \otimes A_{2}\right) \oplus\left(A_{1}^{\prime} \otimes V_{2}\right)$ defined by

$$
\begin{aligned}
& (\alpha \odot 1)_{1}\left(v_{1} \otimes a_{2}\right)=\alpha_{1}\left(v_{1}\right) \otimes a_{2} \\
& (\alpha \odot 1)_{1}\left(a_{1} \otimes v_{2}\right)=\alpha_{0}\left(a_{1}\right) \otimes v_{2}
\end{aligned}
$$

It is easy to check that $(\alpha \odot 1)$ is a well defined map in $\operatorname{Cross}\left(B_{1} \otimes B_{2},\left(B_{1} \otimes\right.\right.$ $\left.\left.M_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right)\right)$ from $\partial_{1} \odot \partial_{2}$ to $\partial_{1}^{\prime} \odot \partial_{2}$. The same argument applies to $\beta: \partial_{2} \rightarrow \partial_{2}^{\prime}$. That proves the first part of the proposition.

To prove that Γ is a well defined homomorphism one has to check that

$$
\begin{equation*}
\left\langle\left(\partial_{1}+\partial_{1}^{\prime}\right) \odot 0\right\rangle=\left\langle\partial_{1} \odot 0\right\rangle+\left\langle\partial_{1}^{\prime} \odot 0\right\rangle \tag{*}
\end{equation*}
$$

and the same for $\left\langle 0 \odot\left(\partial_{2}+\partial_{2}^{\prime}\right)\right\rangle$. The sum $\left(\partial_{1}+\partial_{1}^{\prime}\right) \in H H^{3}\left(B_{1}, M_{1}\right)$ and the element $0 \in H H^{3}\left(B_{2}, M_{2}\right)$ are defined explicitly in section 4 below (Baer Sum in $\left.\mathrm{Opext}^{2}(B, M)\right)$.

It is easy to check that $(*)$ holds. In fact the class $\left\langle\left(\partial_{1}+\partial_{1}^{\prime}\right) \odot 0\right\rangle \in H H^{3}\left(B_{1} \otimes\right.$ $\left.B_{2},\left(B_{1} \otimes M_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right)\right)$ corresponds to the class of the crossed module

$$
\partial:\left(\left(V_{1}+V_{1}^{\prime}\right) \otimes B_{2}\right) \oplus\left(B_{1} \otimes M_{2}\right) \rightarrow\left(A_{1} \times_{B_{1}} A_{1}^{\prime}\right) \otimes B_{2}
$$

with $\partial\left(\left(v_{1}+v_{1}^{\prime}\right) \otimes b_{2}\right)=\left(\partial_{1} v_{1}, \partial_{1}^{\prime} v_{1}^{\prime}\right) \otimes b_{2}$ and $\partial\left(b_{1} \otimes m_{2}\right)=0$. Here $\left(V_{1}+V_{1}^{\prime}\right)$ and $\left(A_{1} \times{ }_{B_{1}} A_{1}^{\prime}\right)$ are defined as in section 4 below.

We can describe the \odot-product in terms of classical cohomology products

$$
H H^{n}\left(B_{1}, M_{1}\right) \otimes H H^{m}\left(B_{2}, M_{2}\right) \rightarrow H H^{n+m}\left(B_{1} \otimes B_{2}, M_{1} \otimes M_{2}\right)
$$

(cf. [10], Chapter X). Given $f \in H H^{3}\left(B_{1}, M_{1}\right)$ we denote by $f \otimes 1_{B_{2}} \in H H^{3}\left(B_{1} \otimes\right.$ $\left.B_{2}, M_{1} \otimes B_{2}\right)$ the tensor product of f with $1_{B_{2}} \in H H^{0}\left(B_{2}, B_{2}\right)$ given by the map

$$
H H^{3}\left(B_{1}, M_{1}\right) \otimes H H^{0}\left(B_{2}, B_{2}\right) \rightarrow H H^{3}\left(B_{1} \otimes B_{2}, M_{1} \otimes B_{2}\right)
$$

In similar way we define for an element $g \in H H^{3}\left(B_{2}, M_{2}\right)$ the element $1_{B_{1}} \otimes g \in$ $H H^{3}\left(B_{1} \otimes B_{2}, B_{1} \otimes M_{2}\right)$.

Proposition 5.4. Let ∂_{1} and ∂_{2} be crossed modules with cokernel B_{i} and kernel $M_{i}, i=1,2$. There is an equivalence of crossed modules

$$
\partial_{1} \odot \partial_{2}=i_{1}\left(1_{B_{1}} \otimes \partial_{2}\right)+i_{2}\left(\partial_{1} \otimes 1_{B_{2}}\right)
$$

where

$$
i_{1}: H H^{3}\left(B_{1} \otimes B_{2}, B_{1} \otimes M_{2}\right) \rightarrow H H^{3}\left(B_{1} \otimes B_{2},\left(B_{1} \otimes M_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right)\right)
$$

and
$i_{2}: H H^{3}\left(B_{1} \otimes B_{2}, M_{1} \otimes B_{2}\right) \rightarrow H H^{3}\left(B_{1} \otimes B_{2},\left(B_{1} \otimes M_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right)\right)$
are induced by the inclusions $i_{1}: B_{1} \otimes M_{2} \rightarrow\left(B_{1} \otimes M_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right)$ and i_{2} : $M_{1} \otimes B_{2} \rightarrow\left(B_{1} \otimes M_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right)$.

Proof. The crossed module $i_{1}\left(1_{B_{1}} \otimes \partial_{2}\right)$ corresponds by definition to the crossed module

$$
p_{1}:\left(B_{1} \otimes V_{2}\right) \oplus\left(M_{1} \otimes B_{2}\right) \rightarrow B_{1} \otimes A_{2}
$$

with $p_{1}\left(b_{1} \otimes v_{2}\right)=b_{1} \otimes \partial_{2} v_{2}$ and $p_{1}\left(m_{1} \otimes b_{2}\right)=0$. The crossed module $i_{2}\left(\partial_{1} \otimes 1_{B_{2}}\right)$ corresponds to

$$
p_{2}:\left(B_{1} \otimes M_{2}\right) \oplus\left(V_{1} \otimes B_{2}\right) \rightarrow A_{1} \otimes B_{2}
$$

with $p_{2}\left(v_{1} \otimes b_{2}\right)=\partial_{1} v_{1} \otimes b_{2}$ and $p_{2}\left(b_{1} \otimes m_{2}\right)=0$.
By definition of Baer Sum it is easy to check that $i_{1}\left(1_{B_{1}} \otimes \partial_{2}\right)+i_{2}\left(\partial_{1} \otimes 1_{B_{2}}\right)$ is isomorphic to the crossed module $\partial_{1} \odot \partial_{2}$.

Now let A and B be DG-algebras with differentials d_{A} and d_{B} of degree -1 . Consider the tensor product $A \otimes B$ which is a DG-algebra with differential defined as follows.

$$
d_{A \otimes B}\left(x_{i} \otimes y_{j}\right)=d_{A} x_{i} \otimes y_{j}+(-1)^{i} x_{i} \otimes d_{B} y_{j}
$$

for $x_{i} \in A_{i}$ and $y_{j} \in B_{j}$.
Theorem 5.5. The characteristic class $\langle A \otimes B\rangle \in H H^{3}\left(H_{*}(A \otimes B), \overline{H_{*}(A \otimes B)}[-1]\right)$ can be computed as

$$
\langle A \otimes B\rangle=\left(\phi_{1}\right)_{*}(1 \otimes\langle B\rangle)+\left(\phi_{2}\right)_{*}(\langle A\rangle \otimes 1)
$$

where

$$
\begin{aligned}
& \phi_{1}: H_{*}(A) \otimes \overline{H_{*}(B)}[-1] \rightarrow \overline{H_{*}(A \otimes B)}[-1] \\
& \phi_{2}: \overline{H_{*}(A)}[-1] \otimes H_{*}(B) \rightarrow \overline{H_{*}(A \otimes B)}[-1]
\end{aligned}
$$

are defined by $\phi_{1}\left(a \otimes s^{-1}(b)\right)=(-1)^{|a|} s^{-1}(a \otimes b)$ and $\phi_{2}\left(s^{-1}(a) \otimes b\right)=s^{-1}(a \otimes b)$.
Proof. Let $\partial_{A}, \partial_{B}$ and $\partial_{A \otimes B}$ be the crossed modules induced by A, B and $A \otimes B$. There exists a morphism of crossed modules $\Upsilon: \partial_{A} \odot \partial_{B} \rightarrow \partial_{A \otimes B}$ defined as follows.

$$
\begin{array}{cc}
\frac{\left(\operatorname{coker}\left(d_{A}\right)[-1] \otimes \operatorname{ker}\left(d_{B}\right)\right) \oplus\left(\operatorname{ker}\left(d_{A}\right) \otimes \operatorname{coker}\left(d_{B}\right)[-1]\right)}{\operatorname{Im}\left(d_{2}\right)} \stackrel{\partial}{\longrightarrow} \operatorname{ker}\left(d_{A}\right) \otimes \operatorname{ker}\left(d_{B}\right) \\
\Upsilon_{1} \downarrow & \\
\downarrow & \downarrow \Upsilon_{0} \\
\operatorname{coker}\left(d_{A \otimes B}\right)[-1] \xrightarrow{\partial_{A \otimes B}} & \operatorname{ker}\left(d_{A \otimes B}\right)
\end{array}
$$

The top row in the diagram corresponds to the \odot-product $\partial_{A} \odot \partial_{B}$ and the bottom row corresponds to the crossed module $\partial_{A \otimes B}$. The map $\Upsilon_{0}: \operatorname{ker}\left(d_{A}\right) \otimes \operatorname{ker}\left(d_{B}\right) \rightarrow$ $\operatorname{ker}\left(d_{A \otimes B}\right)$ is defined by

$$
\Upsilon_{0}\left(x_{i} \otimes y_{j}\right)=x_{i} \otimes y_{j} \quad x_{i} \in\left(\operatorname{ker}\left(d_{A}\right)\right)_{i}, y_{j} \in\left(\operatorname{ker}\left(d_{B}\right)\right)_{j}
$$

The map Υ_{1} is defined as follows. For $s^{-1}\left(\overline{x_{i}}\right) \in\left(\operatorname{coker}\left(d_{A}\right)[-1]\right)_{i}$ and $y_{j} \in$ $\left(\operatorname{ker}\left(d_{B}\right)\right)_{j}$ we define $\Upsilon_{1}\left(s^{-1}\left(\overline{x_{i}}\right) \otimes y_{j}\right)$ to be the element

$$
s^{-1}\left(\overline{x_{i} \otimes y_{j}}\right) \in\left(\operatorname{coker}\left(d_{A \otimes B}\right)[-1]\right)_{i+j}
$$

For $x_{i} \in\left(\operatorname{ker}\left(d_{A}\right)\right)_{i}$ and $s^{-1}\left(\overline{y_{j}}\right) \in\left(\operatorname{coker}\left(d_{B}\right][-1]\right)_{j}$ we define

$$
\Upsilon_{1}\left(x_{i} \otimes s^{-1}\left(\overline{y_{j}}\right)\right)=(-1)^{i} s^{-1}\left(\overline{x_{i} \otimes y_{j}}\right) \in\left(\operatorname{coker}\left(d_{A \otimes B}\right)[-1]\right)_{i+j}
$$

We check that the map Υ_{1} is well defined. Suppose $\overline{x_{i}}=\overline{0} \in\left(\operatorname{coker}\left(d_{A}\right)\right)_{i}$ i.e. $x_{i}=d_{A} a_{i+1}$ for some $a_{i+1} \in A_{i+1}$. Then

$$
\Upsilon_{1}\left(s^{-1}\left(\overline{x_{i}}\right) \otimes y_{j}\right)=s^{-1}\left(\overline{d_{A} a_{i+1} \otimes y_{j}}\right)=s^{-1}\left(\overline{d_{A \otimes B}\left(a_{i+1} \otimes y_{j}\right)}\right)=0
$$

The same argument for $\overline{y_{j}}=\overline{0} \in\left(\operatorname{coker}\left(d_{B}\right)\right)_{j}$. For $z=\left(d_{A} x_{i} \otimes y_{j}-x_{i} \otimes d_{B} y_{j}\right) \in$ $\operatorname{Im}\left(d_{2}\right)$ we have $\Upsilon_{1}(z)=d_{A \otimes B}\left((-1)^{i} x_{i} \otimes y_{j}\right)$. Thus Υ_{1} is well defined.

It is easy to check that the diagram above is a morphism of crossed modules. Moreover $\Upsilon: \partial_{A} \odot \partial_{B} \rightarrow \partial_{A \otimes B}$ induces an isomorphism
$\Upsilon_{*}: \pi_{0}\left(\partial_{A} \odot \partial_{B}\right)=\pi_{0}\left(\partial_{A}\right) \otimes \pi_{0}\left(\partial_{B}\right)=H_{*}(A) \otimes H_{*}(B) \rightarrow \pi_{0}\left(\partial_{A \otimes B}\right)=H_{*}(A \otimes B)$ and an epimorphism

$$
\begin{gathered}
\Upsilon_{*}: \pi_{1}\left(\partial_{A} \odot \partial_{B}\right)=\left(\overline{H_{*}(A)}[-1] \otimes H_{*}(B)\right) \oplus\left(H_{*}(A) \otimes \overline{H_{*}(B)}[-1]\right) \rightarrow \pi_{1}\left(\partial_{A \otimes B}\right)= \\
\overline{H_{*}(A \otimes B)}[-1]
\end{gathered}
$$

The crossed module $\partial_{A} \odot \partial_{B}$ induces an element $\langle A\rangle \odot\langle B\rangle=\left\langle\partial_{A} \odot \partial_{B}\right\rangle \in$ $H H^{3}\left(H_{*}(A \otimes B), \pi_{1}\left(\partial_{A} \odot \partial_{B}\right)\right)$ which is mapped by Υ to the characteristic class $\langle A \otimes B\rangle \in H H^{3}\left(H_{*}(A \otimes B), \overline{H_{*}(A \otimes B)}[-1]\right)$ of the chain algebra $A \otimes B$, i.e.

$$
\langle A \otimes B\rangle=\Upsilon_{*}(\langle A\rangle \odot\langle B\rangle)
$$

where the homomorphism

$$
\Upsilon_{*}: H H^{3}\left(H_{*}(A \otimes B), \pi_{1}\left(\partial_{A} \odot \partial_{B}\right)\right) \rightarrow H H^{3}\left(H_{*}(A \otimes B), \overline{H_{*}(A \otimes B)}[-1]\right)
$$

is the homomorphism induced by the map $\Upsilon_{*}: \pi_{1}\left(\partial_{A} \odot \partial_{B}\right) \rightarrow \pi_{1}\left(\partial_{A \otimes B}\right)$.
By 5.4 we have $\langle A\rangle \odot\langle B\rangle=i_{1}(1 \otimes\langle B\rangle)+i_{2}(\langle A\rangle \otimes 1)$ and therefore

$$
\langle A \otimes B\rangle=\left(\phi_{1}\right)_{*}(1 \otimes\langle B\rangle)+\left(\phi_{2}\right)_{*}(\langle A\rangle \otimes 1)
$$

with $\left(\phi_{1}\right)_{*}=\left(\Upsilon i_{1}\right)_{*}$ and $\left(\phi_{2}\right)_{*}=\left(\Upsilon i_{2}\right)_{*}$.

For cochain algebras one can prove the following analogous result.
Theorem 5.6. Let A and B be $D G$-algebras with differentials of degree 1. Then the characteristic class $\langle A \otimes B\rangle \in H H^{3}\left(H^{*}(A \otimes B), \overline{H^{*}(A \otimes B)}[1]\right)$ of the tensor algebra $A \otimes B$ can be computed from $\langle A\rangle$ and $\langle B\rangle$ as

$$
\langle A \otimes B\rangle=\left(\phi_{1}\right)_{*}(1 \otimes\langle B\rangle)+\left(\phi_{2}\right)_{*}(\langle A\rangle \otimes 1)
$$

where
$\phi_{1}: H^{*}(A) \otimes \overline{H^{*}(B)}[1] \rightarrow \overline{H^{*}(A \otimes B)}[1] \quad \phi_{2}: \overline{H^{*}(A)}[1] \otimes H^{*}(B) \rightarrow \overline{H^{*}(A \otimes B)}[1]$ are the maps defined by $\phi_{1}(a \otimes s(b))=(-1)^{|a|} s(a \otimes b)$ and $\phi_{2}(s(a) \otimes b)=s(a \otimes b)$.

References

[1] H.-J. Baues, Combinatorial homotopy and 4-dimensional complexes, De Gruyter Expositions in Mathematics, 1991.
[2] H.-J. Baues, Secondary cohomology and the Steenrod square, Preprint.
[3] H.-J. Baues, W.Dreckmann, The cohomology of homotopy categories and the general linear group, K-Theory, 3(1989), 307-338.
[4] H.-J. Baues, E.G. Minian, Track extensions of categories and cohomology, Preprint.
[5] H.-J. Baues, G. Wirsching, Cohomology of small categories, J.Pure Appl. Algebra, 38(1985), 187-211.
[6] A.J.Berrick, A.A.Davydov, Splitting of Gysin extensions, Preprint.
[7] J. Huebschmann, Crossed n-fold extensions of groups and cohomology, Comment. Math. Helvetici, 55(1980), 302-314.
[8] M. Jibladze and T. Pirashvili, Cohomology of algebraic theories, Journal of Algebra, 137(1991), 253-296.
[9] J.-L. Loday, Cyclic Homology, Springer-Verlag, 1992.
[10] S. Mac Lane, Homology, Springer-Verlag, 1963.
[11] S. Mac Lane and J.H.C. Whitehead, On the 3-type of a complex, Proc. N.A.S., 36(1950), 41-48.
[12] J.H.C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc., 55(1949), 453-496.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at
ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2002/n2a3/v4n2a3.(dvi,ps,pdf)

Hans-Joachim Baues baues@mpim-bonn.mpg.de
Max-Planck-Institut für Mathematik,
Vivatsgasse 7, 53111 Bonn,
Germany
Elias Gabriel Minian gminian@mpim-bonn.mpg.de
Max-Planck-Institut für Mathematik,
Vivatsgasse 7, 53111 Bonn,
Germany

[^0]: Received November 3, 2000, revised August 21, 2001; published on July 12, 2002. 2000 Mathematics Subject Classification: 18G99.
 Key words and phrases: Hochschild cohomology, Massey products, crossed module.
 (c) 2002, Hans-Joachim Baues and Elias Gabriel Minian. Permission to copy for private use granted.

