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CATEGORY OF A∞-CATEGORIES

VOLODYMYR LYUBASHENKO

(communicated by James Stasheff)

Abstract
We define natural A∞-transformations and construct

A∞-category of A∞-functors. The notion of non-strict units
in an A∞-category is introduced. The 2-category of (unital)
A∞-categories, (unital) functors and transformations is de-
scribed.

The study of higher homotopy associativity conditions for topological spaces be-
gan with Stasheff’s article [Sta63, I]. In a sequel to this paper [Sta63, II] Stash-
eff defines also A∞-algebras and their homotopy-bar constructions. These alge-
bras and their applications to topology were actively studied, for instance, by
Smirnov [Smi80] and Kadeishvili [Kad80, Kad82]. We adopt some notations of
Getzler and Jones [GJ90], which reduce the number of signs in formulas. The notion
of an A∞-category is a natural generalization of A∞-algebras. It arose in connection
with Floer homology in Fukaya’s work [Fuk93, Fuk] and was related by Kontsevich
to mirror symmetry [Kon95]. See Keller [Kel01] for a survey on A∞-algebras and
categories.

In the present article we show that given two A∞-categories A and B, one can
construct a third A∞-category A∞(A, B) whose objects are A∞-functors f : A → B,
and morphisms are natural A∞-transformations between such functors. This result
was also obtained by Fukaya [Fuk] and by Kontsevich and Soibelman [KS], indepen-
dently and, apparently, earlier. We describe compositions between such categories
of A∞-functors, which would allow us to construct a 2-category of unital A∞-cat-
egories. The latter notion is our generalization of strictly unital A∞-categories (cf.
Keller [Kel01]). We also discuss unit elements in unital A∞-categories, unital nat-
ural A∞-transformations, and unital A∞-functors.

Plan of the article with comments and explanations. The first section de-
scribes some notation, sign conventions, composition convention, etc. used in the
article. The ground commutative ring k is not assumed to be a field. This is sug-
gested by the development of homological algebra in [Dri02]. Working over a ring
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k instead of a field has strong consequences. For instance, one may not hope for
Kadeishvili’s theorem on minimal models [Kad82] to hold for all A∞-algebras over
k.

In the second section we recall or give definitions of the main objects. A k-quiver
is such a graph that the set of arrows (morphisms) between two vertices (objects)
is a k-module (Definition 2.1). We view quivers as categories without multiplication
and units. Cocategories are k-quivers and k-coalgebras with a matrix type decom-
position into k-submodules, indexed by pairs of objects (Definition 2.2). A∞-cate-
gories are defined as a special kind of differential graded cocategories – the ones of
the form of the tensor cocategory TA of a k-quiver A (Definition 2.3). A∞-func-
tors are homomorphisms of cocategories that commute with the differential (Defi-
nition 2.4). A∞-transformations between A∞-functors are defined as coderivations
(Definition 2.6). They seem to make A∞-category theory closer to ordinary category
theory. Notice, however, that A∞-transformations are analogs of transformations
between ordinary functors, which do not satisfy the naturality condition. Natural
A∞-transformations are introduced in Definition 6.4. A∞-functors and A∞-trans-
formations are determined by their components.

In the third section we study tensor products of cocategories and homomorphisms
between them (Section 3.2). We concentrate on homomorphisms from the tensor
product of tensor cocategories to another tensor cocategory. Given k-quivers A and
B, we consider another k-quiver Coder(A, B), whose objects are the cocategory
homomorphisms TA → TB and morphisms are coderivations (Section 3.2). We
construct a cocategory homomorphism α : TA⊗T Coder(A, B) → TB (Corollary 3.3
to Proposition 3.1), based on a map θ : T Coder(A, B) → Homk(TA, TB) (3.0.1).
The homomorphism α is universal (Proposition 3.4), in other words, T Coder(A, B)
is the inner hom-object Hom(TA, TB) in the monoidal category generated by tensor
cocategories.

This universality is exploited in the fourth section in order to show that the cat-
egory of tensor cocategories is enriched in the monoidal category of graded cocate-
gories. That is: there exists an associative unital multiplication M : T Coder(A, B)⊗
T Coder(B, C) → T Coder(A,C), which is a cocategory homomorphism (Proposi-
tion 4.1). Its explicit description uses the map θ.

The fifth section extends the results of the third section to differential graded
tensor cocategories, that is, to A∞-categories. With two A∞-categories A, B is as-
sociated a third A∞-category A∞(A,B) (Proposition 5.1). Its objects are A∞-func-
tors A → B, and its morphisms are coderivations. To reduce the number of signs
in the theory we prefer to work with grading of a graded k-quiver or A∞-cate-
gory A shifted by 1: sA = A[1]. In this notation the quiver A∞(A, B) is a full
subquiver of the quiver s−1 Coder(sA, sB). The proof of Proposition 5.1 consists
of constructing a differential B in the tensor cocategory of A∞(A, B). The explicit
formula (5.1.3) for B uses the map θ. A cocategory homomorphism from a ten-
sor product of differential tensor cocategories to a single such cocategory is called
an A∞-functor in the generalized sense (Section 5.3). Restricting the cocategory
homomorphism of Corollary 3.3 we get a homomorphism of differential graded co-
categories TsA ⊗ TsA∞(A,B) → TsB = T (sB) (Corollary 5.4). Its universality



Homology, Homotopy and Applications, vol. 5(1), 2003 3

(Proposition 5.5) may be interpreted as TsA∞(A, B) being the inner hom-object
Hom(TsA, T sB) in the monoidal category generated by differential graded tensor
cocategories.

This universality is used in the sixth section to show that the category of A∞-cat-
egories is enriched in the monoidal category of differential graded cocategories.
Namely, the multiplication M of Proposition 4.1 restricted to M : TsA∞(A, B) ⊗
TsA∞(B,C) → TsA∞(A,C) is an A∞-functor, that is, it commutes with the dif-
ferential (equation (6.1.1)). By universality (Proposition 5.5) M corresponds to a
unique A∞-functor

A∞(A, ) : A∞(B, C) → A∞(A∞(A, B), A∞(A,C)).

We prove that it is strict and describe it in Proposition 6.2. Natural A∞-transforma-
tions are defined as cycles in the differential graded quiver of all A∞-transformations
(Definition 6.4).

Identifying cohomologous natural A∞-transformations (that is, considering co-
homology of the quiver of A∞-transformations) in the seventh section, we get a
non-2-unital 2-category A∞, whose objects are A∞-categories, 1-morphisms are
A∞-functors, and 2-morphisms are equivalence classes of natural A∞-transforma-
tions. Here non-2-unital means that unit 2-morphisms are missing in the 2-category
A∞. However, unit 1-morphisms are present – the identity A∞-functors. Before
constructing A∞ we construct a non-2-unital 2-category KA∞ enriched in K – the
homotopy category of differential graded complexes of k-modules (Proposition 7.1).
Morphisms of K are chain maps modulo homotopy. The notion of 2-category en-
riched in a symmetric monoidal category is discussed in Appendix A. The idea of
the construction is that the binary operation becomes strictly associative if homo-
topic chain maps are identified. Similarly with other identities in a 2-category. The
non-2-unital 2-category A∞ is obtained from KA∞ by taking the 0-th cohomology.

A∞-categories are analogs of non-unital categories – categories without unit
morphisms. We define a unital A∞-category C so that its cohomology H•(C) is
a unital category, and for any representative 1X ∈ C0(X,X) of the unit class
[1X ] ∈ H0(C(X, X)) the binary compositions with 1X are homotopic to identity as
chain maps C(X, Y ) → C(X,Y ) or C(Y,X) → C(Y, X) (Definition 7.3, Lemma 7.4).
We prove that for a unital A∞-category there exists a natural A∞-transformation
iC : idC → idC : C → C of the identity functor, whose square is equivalent to iC

(Proposition 7.5). It is called a unit transformation of C (Definition 7.6) and, in-
deed, it is a unit 2-morphism in the 2-category A∞. Moreover, f iC : f → f is a unit
2-morphism of an A∞-functor f : A → C (Corollary 7.9). The unit transformation
iC is determined uniquely up to an equivalence (Corollary 7.10). If C is unital, then
A∞(A, C) is unital as well (Proposition 7.7).

The full 2-subcategory KuA∞ (resp. uA∞) of KA∞ (resp. A∞), whose objects are
unital A∞-categories, and 1-morphisms are all A∞-functors, is 2-unital by Corol-
lary 7.11 (resp. Corollary 7.12). Since uA∞ is an ordinary 2-category, the meaning
of the statements ‘a natural A∞-transformation is invertible’ and ‘an A∞-functor is
an equivalence’ is clear (Corollary 7.12). We show in Proposition 7.15 that a natural
A∞-transformation is invertible if and only if its 0-th component is invertible mod-
ulo boundary (in the sense of Section 7.13). The binary composition with a cycle
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invertible modulo boundary is homotopy invertible (Lemma 7.14).
In the eighth section we discuss unital A∞-functors (between unital A∞-cat-

egories). Their first components map unit elements into unit elements modulo
boundary (Definition 8.1). For a unital functor f : A → B we have an equiva-
lence of natural A∞-transformations iAf ≡ f iB (Proposition 8.2). An A∞-functor
isomorphic to a unital A∞-functor is unital as well (8.2.4). Unital A∞-categories,
unital A∞-functors and equivalence classes of natural A∞-transformations form a
2-category Au

∞ ⊂ uA∞ (Definition 8.3), which is a close analog of the 2-category
of usual categories. The construction of Au

∞ is the main point of the article. It is
needed for developing a theory of free A∞-categories, since it is expected that their
universality properties are formulated in the language of 2-categories.

There is a forgetful 2-functor k : Au
∞ → K-Cat, which takes a unital A∞-category

into the same differential quiver equipped with the binary composition, viewed as
a K-category (Proposition 8.6). The 2-functor k reduces a unital A∞-functor to its
first component and a natural A∞-transformation to its 0-th component. It turns
out that many properties of an A∞-functor are determined by its first component
and many properties of a natural A∞-transformation are determined by its 0-th
component. For instance, if the first component of an A∞-functor φ is homotopy
invertible, then any natural A∞-transformation y : fφ → gφ is equivalent to tφ for
a unique (up to equivalence) natural A∞-transformation t : f → g (Cancellation
Lemma 8.7). If an A∞-functor φ : C → B to a unital A∞-category B has homotopy
invertible first component, and each object of B is “isomorphic modulo boundary” to
an object from φ(ObC), then φ is a unital equivalence, and C is unital (Theorem 8.8).
An equivalence between unital A∞-categories is always unital (Corollary 8.9), which
is not an immediate consequence of definitions.

As a first example of a unital A∞-category we list strictly unital A∞-categories
(Section 8.11), which is a well-known notion. Other examples of unital A∞-cate-
gories are obtained via Theorem 8.8. For instance, if an A∞-functor φ : C → B to
a strictly unital A∞-category B is invertible, then C is unital (Section 8.12). We
stress again that taking the 0-th cohomology of a unital A∞-category C we get a
k-linear category H0(C). This H0 can be viewed as a 2-functor (Section 8.13).

In Appendix A we define 2-categories enriched in a symmetric monoidal cate-
gory. Non-2-unital 2-categories are described in Definition Appendix A.2. 2-unital
(usual) 2-categories admit a concise Definition Appendix A.1 and an expanded Def-
inition Appendix A.3+Appendix A.2.

In Appendix B we prove that the cone of a homotopical isomorphism is con-
tractible.

1. Conventions

We fix a universe U [GV73, Sections 0,1], [Bou73]. Many classes and sets in this
paper will mean U -small sets, even if not explicitly mentioned.
k denotes a (U -small) unital associative commutative ring. By abuse of nota-

tion it denotes also a chain complex, whose 0-th component is k, and the other
components vanish. A k-module means a U -small k-module. The tensor product ⊗
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usually means ⊗k – the tensor product of graded k-modules. It turns the category
of graded k-modules into a closed monoidal category. We will use its standard sym-
metry c : x⊗ y 7→ (−)xyy⊗x = (−)deg x·deg yy⊗x. This paper contains many signs,
and everywhere we abbreviate the usual (−1)(deg x)(deg y) to (−)xy. Similarly, (−)x

means (−1)deg x, or, simply, (−1)x, if x is an integer.
It is easy to understand the line

A(X0, X1)⊗k A(X1, X2)⊗k · · · ⊗k A(Xn−1, Xn),

and it is much harder to understand the order in

A(Xn−1, Xn)⊗k · · · ⊗k A(X1, X2)⊗k A(X0, X1).

That is why we use the right operators: the composition of two maps (or morphisms)
f : X → Y and g : Y → Z is denoted by fg : X → Z. A map is written on elements
as f : x 7→ xf = (x)f . However, these conventions are not used systematically, and
f(x) might be used instead.

When f, g : X → Y are chain maps, f ∼ g means that they are homotopic. We
denote by K the category of differential graded k-modules, whose morphisms are
chain maps modulo homotopy. A complex of k-modules X is called contractible if
idX ∼ 0, in other words, if X is isomorphic to 0 in K.

If C is a Z-graded k-module, then its suspension sC = C[1] is the same k-module
with the shifted grading (sC)d = Cd+1. The “identity” map C → sC of degree −1
is also denoted by s. We follow the Getzler–Jones sign conventions [GJ90], which
include the idea to apply operations to complexes with shifted grading, and Koszul’s
rule:

(x⊗ y)(f ⊗ g) = (−)yfxf ⊗ yg = (−1)deg y·deg fxf ⊗ yg.

It takes its origin in Koszul’s note [Kos47]. The main notions of graded algebra
were given their modern names in H. Cartan’s note [Car48]. See Boardman [Boa66]
for operad-like approach to signs as opposed to closed symmetric monoidal cate-
gory picture of Mac Lane [Mac63] (standard sign commutation rule). Combined
together, these sign conventions make the number of signs in this paper tolerable.

If u : A → C, a 7→ au, is a chain map, its cone is the complex Cone(u) = C⊕A[1],
Conek(u) = Ck ⊕ Ak+1, with the differential (c, a)d = (cdC + au, adA[1]) = (cdC +
au,−adA).

2. A∞-categories, A∞-functors and A∞-transformations

2.1 Definition (Quiver). A graded k-quiver A consists of the following data: a
class of objects Ob A (a U -small set); a Z-graded k-module A(X, Y ) = HomA(X, Y )
for each pair of objects X, Y . A morphism of k-quivers f : A → B is given by a
map f : Ob A → Ob B, X 7→ Xf and by a k-linear map A(X,Y ) → B(Xf, Y f) for
each pair of objects X, Y of A.

To a given graded k-quiver A we associate another graded k-quiver – its ten-
sor coalgebra TA, which has the same class of objects as A. For each sequence
(X0, X1, X2, . . . , Xn) of objects of A there is the Z-graded k-module TnA =
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A(X0, X1)⊗k A(X1, X2)⊗k · · · ⊗k A(Xn−1, Xn). For the sequence (X0) with n = 0
it reduces to T 0A = k in degree 0. The graded k-module TA(X,Y ) = ⊕n>0TnA
is the sum of the above modules over all sequences with X0 = X, Xn = Y .
The quiver TA is equipped with the cut comultiplication ∆ : TA(X, Y ) →
⊕Z∈Ob ATA(X, Z)

⊗

k TA(Z, Y ), h1⊗h2⊗· · ·⊗hn 7→
∑n

k=0 h1⊗· · ·⊗hk
⊗

hk+1⊗
· · ·⊗hn, and the counit ε =

(

TA(X, Y )
pr0→ T 0A(X,Y ) → k

)

, where the last map
is idk if X = Y , or 0 if X 6= Y (and T 0A(X,Y ) = 0). For this article it is the main
example of the following notion:

2.2 Definition (Cocategory). A graded cocategory C is a graded k-quiver C,
equipped with a comultiplication – a k-linear map ∆Z

X,Y : C(X, Y ) → C(X, Z) ⊗k
C(Z, Y ) of degree 0 for all triples X, Y , Z of objects of C, and with a counit – a
k-linear map εX : C(X,X) → k of degree 0 for all objects X of C, such that the
usual associativity equations and two counit equation hold.

Associated to each graded cocategory C is a graded k-coalgebra
C = ⊕X,Y ∈Ob CC(X, Y ). Vice versa, to a graded k-coalgebra, decomposed like
that into k-submodules C(X, Y ), X, Y ∈ Ob C, for some U -small set Ob C, so that
∆(C(X, Y )) ⊂ ⊕Z∈Ob CC(X, Z) ⊗k C(Z, Y ) for all pairs X, Y of objects of C, and
ε(C(X,Y )) = 0 for X 6= Y , we associate a graded cocategory.

This interpretation allows one to define a cocategory homomorphism f : C → D
as a particular case of a coalgebra homomorphism: a map f : Ob C → Ob D, and
k-linear maps C(X, Y ) → D(Xf, Y f) for all pairs of objects X, Y of A, compatible
with comultiplication and counit. Given cocategory homomorphisms f, g : C → D
we say that a system of k-linear maps r : C(X, Y ) → D(Xf, Y g), X,Y ∈ Ob C is an
(f, g)-coderivation, if the equation r∆ = ∆(f ⊗ r + r ⊗ g) holds.

In particular, these definitions apply to the tensor coalgebras TsA = T (sA) of
(suspended) k-quivers sA. In this case cocategory homomorphisms and coderiva-
tions have a special form as we shall see below.

2.3 Definition (A∞-category, Kontsevich [Kon95]). An A∞-category A con-
sists of the following data: a graded k-quiver A; a differential b : TsA → TsA of
degree 1, which is a (1,1)-coderivation, such that (T 0sA)b = 0.

The definition of a (1,1)-coderivation b∆ = ∆(1 ⊗ b + b ⊗ 1) implies that a
k-quiver morphism b is determined by a system of k-linear maps b pr1 : TsA → sA
with components of degree 1

bn : sA(X0, X1)⊗ sA(X1, X2)⊗ · · · ⊗ sA(Xn−1, Xn) → sA(X0, Xn), n > 1,

via the formula

bkl = (b
∣

∣

T ksA) prl : T ksA → T lsA, bkl =
∑

r+n+t=k
r+1+t=l

1⊗r ⊗ bn ⊗ 1⊗t.

Notice that the last condition of the definition implies b0 = 0. In particular, bk0 = 0,
and k < l implies bkl = 0. Since b2 is a (1,1)-coderivation of degree 2, the equation
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b2 = 0 is equivalent to its particular case b2 pr1 = 0, that is, for all k > 0
∑

r+n+t=k

(1⊗r ⊗ bn ⊗ 1⊗t)br+1+t = 0 : T ksA → sA. (2.3.1)

Using another, more traditional, form of components of b:

mn =
(

A⊗n s⊗n

→ (sA)⊗n bn→ sA
s−1

→ A
)

we rewrite (2.3.1) as follows:
∑

r+n+t=k

(−)t+rn(1⊗r ⊗mn ⊗ 1⊗t)mr+1+t = 0 : T kA → A. (2.3.2)

Notice that this equation differs in sign from [Kel01], because we are using right
operators!

2.4 Definition (A∞-functor, e.g. Keller [Kel01]). An A∞-functor f : A → B
consists of the following data: A∞-categories A and B, a cocategory homomorphism
f : TsA → TsB of degree 0, which commutes with the differential b.

The definition of a cocategory homomorphism f∆ = ∆(f ⊗ f), fε = ε implies
that f is determined by a map f : Ob A → ObB, X 7→ Xf and a system of k-linear
maps f pr1 : TsA → sB with components of degree 0

fn : sA(X0, X1)⊗ sA(X1, X2)⊗ · · · ⊗ sA(Xn−1, Xn) → sB(X0f,Xnf),

n > 1, (note that f0 = 0) via the formula

fkl = (f
∣

∣

T ksA) prl : T ksA → T lsB, fkl =
∑

i1+···+il=k

fi1⊗fi2⊗· · ·⊗fil . (2.4.1)

In particular, f00 = id : k → k, and k < l implies fkl = 0. Since fb and bf
are both (f, f)-coderivations of degree 1, the equation fb = bf is equivalent to its
particular case fb pr1 = bf pr1, that is, for all k > 0

∑

l>0;i1+···+il=k

(fi1 ⊗fi2 ⊗· · ·⊗ fil)bl =
∑

r+n+t=k

(1⊗r⊗ bn⊗1⊗t)fr+1+t : T ksA → sB.

(2.4.2)
Using mn we rewrite (2.4.2) as follows:

l>0
∑

i1+···+il=k

(−)σ(fi1 ⊗ fi2 ⊗ · · · ⊗ fil)ml =

∑

r+n+t=k

(−)t+rn(1⊗r ⊗mn ⊗ 1⊗t)fr+1+t : T kA → B,

σ = (i2 − 1) + 2(i3 − 1) + · · ·+ (l − 2)(il−1 − 1) + (l − 1)(il − 1).

Notice that this equation differs in sign from [Kel01], because we are using right
operators.

2.5 Example. An A∞-category with one object is called an A∞-algebra (Stash-
eff [Sta63]). An A∞-functor between A∞-algebras is called an A∞-homomorphism
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(Kadeishvili [Kad82]). These notions are psychologically easier to deal with, than
the general case. The following notion of A∞-transformations also makes sense for
A∞-algebras, however, such a context seems too narrow for it, because an A∞-trans-
formation is an analog of a transformation between ordinary functors without the
naturality condition. Needless to say, in ordinary category theory there is no rea-
son to consider unnatural transformations. The reasons to do it for A∞-version are
given in Section 5.

2.6 Definition (A∞-transformation). An A∞-transformation r : f → g : A → B
of degree d (pre natural transformation in terms of [Fuk]) consists of the following
data: A∞-categories A and B; A∞-functors f, g : A → B; an (f, g)-coderivation
r : TsA → TsB of degree d.

The definition of an (f, g)-coderivation r∆ = ∆(f ⊗ r + r ⊗ g) implies that r
is determined by a system of k-linear maps r pr1 : TsA → sB with components of
degree d

rn : sA(X0, X1)⊗ sA(X1, X2)⊗ · · · ⊗ sA(Xn−1, Xn) → sB(X0f, Xng),

n > 0, via the formula

rkl = (r
∣

∣

T ksA) prl : T ksA → T lsB,

rkl =
∑

q+1+t=l
i1+···+iq+n+j1+···+jt=k

fi1 ⊗ · · · ⊗ fiq ⊗ rn ⊗ gj1 ⊗ · · · ⊗ gjt . (2.6.1)

Note that r0 is a system of k-linear maps Xr0 : k → sB(Xf,Xg), X ∈ Ob A. In
fact, the terms ‘A∞-transformation’ and ‘coderivation’ are synonyms.

In particular, r0l vanishes unless l = 1, and r01 = r0. The component rkl vanishes
unless 1 6 l 6 k + 1.

2.7 Examples. 1) The restriction of an A∞-transformation r to T 1 is

r
∣

∣

T 1sA = r1 ⊕ [(f1 ⊗ r0) + (r0 ⊗ g1)],

where r1 : sA(X, Y ) → sB(Xf, Y g),

f1 ⊗ r0 : sA(X, Y ) = sA(X, Y )⊗ k f1⊗r0→ sB(Xf, Y f)⊗ sB(Y f, Y g),

r0 ⊗ g1 : sA(X, Y ) = k⊗ sA(X, Y )
r0⊗g1→ sB(Xf, Xg)⊗ sB(Xg, Y g).

2) The restriction of an A∞-transformation r to T 2 is

r
∣

∣

T 2sA = r2 ⊕ [(f2 ⊗ r0) + (f1 ⊗ r1) + (r1 ⊗ g1) + (r0 ⊗ g2)]⊕
⊕ [(f1 ⊗ f1 ⊗ r0) + (f1 ⊗ r0 ⊗ g1) + (r0 ⊗ g1 ⊗ g1)],
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where r2 : sA(X,Y )⊗ sA(Y, Z) → sB(Xf, Zg),

f2 ⊗ r0 : sA(X, Y )⊗ sA(Y, Z)⊗ k→ sB(Xf, Zf)⊗ sB(Zf,Zg),

f1 ⊗ r1 : sA(X, Y )⊗ sA(Y, Z) → sB(Xf, Y f)⊗ sB(Y f, Zg),

r1 ⊗ g1 : sA(X,Y )⊗ sA(Y,Z) → sB(Xf, Y g)⊗ sB(Y g, Zg),

r0 ⊗ g2 : k⊗ sA(X,Y )⊗ sA(Y, Z) → sB(Xf, Xg)⊗ sB(Xg, Zg),
f1 ⊗ f1 ⊗ r0 : sA(X, Y )⊗ sA(Y, Z)⊗ k→ sB(Xf, Y f)⊗ sB(Y f, Zf)⊗ sB(Zf, Zg),

f1 ⊗ r0 ⊗ g1 : sA(X, Y )⊗ k⊗ sA(Y,Z) → sB(Xf, Y f)⊗ sB(Y f, Y g)⊗ sB(Y g, Zg),

r0 ⊗ g1 ⊗ g1 : k⊗ sA(X, Y )⊗ sA(Y, Z) → sB(Xf, Xg)⊗ sB(Xg, Y g)⊗ sB(Y g, Zg).

The k-module of (f, g)-coderivations r is
∏∞

n=0 Vn, where

Vn =
∏

X0,...,Xn∈Ob A

Homk
(

sA(X0, X1)⊗ · · · ⊗ sA(Xn−1, Xn), sB(X0f, Xng)
)

(2.7.1)
is the graded k-module of n-th components rn. It is equipped with the differential
d : Vn → Vn, given by the following formula

rnd = rnb1 − (−)rn
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)rn. (2.7.2)

3. Coderivations and cocategory homomorphisms

Let A, B be graded k-quivers, and let f0, f1, . . . , fn : TA → TB be cocategory
homomorphisms. Consider n coderivations r1, . . . , rn as in

f0 r1

→ f1 r2

→ . . . fn−1 rn

→ fn : TA → TB.

We construct the following system of k-linear maps from these data: θ = (r1⊗· · ·⊗
rn)θ : TA(X,Y ) → TB(Xf0, Y fn) of degree deg r1 + · · ·+ deg rn. Its components
θkl = θ

∣

∣

T kA prl : T kA → T lB are given by the following formula

θkl =
∑

f0
i01
⊗· · ·⊗f0

i0m0
⊗r1

j1⊗f1
i11
⊗· · ·⊗f1

i1m1
⊗· · ·⊗rn

jn
⊗fn

in
1
⊗· · ·⊗fn

in
mn

, (3.0.1)

where summation is taken over all terms with

m0+m1+· · ·+mn+n = l, i01+· · ·+i0m0
+j1+i11+· · ·+i1m1

+· · ·+jn+in1+· · ·+inmn
= k.

The component θkl vanishes unless n 6 l 6 k + n. If n = 0, we set ()θ = f0. If
n = 1, the formula gives (r1)θ = r1.

3.1 Proposition. For each n > 0 the map θ satisfies the equation

(r1 ⊗ r2 ⊗ · · · ⊗ rn)θ∆ = ∆
n

∑

k=0

(r1 ⊗ · · · ⊗ rk)θ ⊗ (rk+1 ⊗ · · · ⊗ rn)θ. (3.1.1)

Proof. Let us write down the required equation using
⊗

to separate the two copies
of TB in TB

⊗

TB, and ⊗ to denote the multiplication in TB. We have to prove
that for each n, x, y, z > 0
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(

T xA
(r1⊗···⊗rn)θx,y+z→ T y+zB

∆yz→ T yB
⊗

T zB
)

=
n

∑

k=0

∑

u+v=x

(

T xA
∆uv→ TuA

⊗

T vA
(r1⊗···⊗rk)θuy

N

(rk+1⊗···⊗rn)θvz→ T yB
⊗

T zB
)

.

Substituting (3.0.1) for θ in the above equation we come to an identity, which
is proved by inspection. Indeed, skipping all the intermediate steps, we get the
following equation:

n
∑

k=0

∑

m0+m1+···+mn+n=y+z
m0+m1+···+mk−1+k−1<y6m0+m1+···+mk+k

i01+···+i0m0
+j1+i11+···+i1m1

+···+jn+in
1 +···+in

mn
=x

f0
i01
⊗· · ·⊗f0

i0m0
⊗· · ·⊗rk

jk
⊗fk

ik
1
⊗· · ·⊗fk

ik
w

⊗

fk
ik
w+1

⊗· · ·⊗fk
ik
mk
⊗rk+1

jk+1
⊗· · ·⊗fn

in
1
⊗· · ·⊗fn

in
mn

=
n

∑

k=0

∑

u+v=x

∑

m0+m1+···+mk−1+k+w=y
i01+···+i0m0

+···+jk+ik
1+···+ik

w=u

∑

t+mk+1+···+mn+n−k=z
l1+···+lt+jk+1+···+in

1 +···+in
mn

=v

f0
i01
⊗· · ·⊗f0

i0m0
⊗· · ·⊗rk

jk
⊗fk

ik
1
⊗· · ·⊗fk

ik
w

⊗

fk
l1⊗· · ·⊗fk

lt⊗rk+1
jk+1

⊗· · ·⊗fn
in
1
⊗· · ·⊗fn

in
mn

.

In the left hand side w denotes the expression y − (m0 + m1 + · · · + mk−1 + k)
and lies in the interval 0 6 w 6 mk. Identifying mk in the left hand side with w + t
in the right hand side, we deduce that the both sides are equal.

3.2. Cocategory homomorphisms. Graded k-coalgebras form a symmetric
monoidal category. The tensor product C⊗kD of k-coalgebras C, D is equipped with
the comultiplication C⊗D

∆⊗∆→ C⊗C⊗D⊗D
1⊗c⊗1→ C⊗D⊗C⊗D, using the stan-

dard symmetry c of graded k-modules. Since graded cocategories are, in fact, graded
coalgebras with a special decomposition, they also form a symmetric monoidal cat-
egory gCoCat. If C and D are cocategories, then the class of objects of their tensor
product C⊗D is Ob C×Ob D, and C⊗D(X × U, Y ×W ) = C(X,Y )⊗k D(U,W ).

Let φ : TA ⊗ TC → TB be a cocategory homomorphism of degree 0. It is
determined uniquely by its composition with pr1, that is, by a family φ pr1 =
(φnm)n,m>0, φnm : TnA ⊗ TmC → B, φ00 = 0, with the same underlying map
of objects Ob A × Ob C → Ob B. Indeed, for given families of composable arrows

f0 p1

→ f1 p2

→ . . . fn−1 pn

→ fn of A and g0 t1→ g1 t2→ . . . gm−1 tm

→ gm of
C we have
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(p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)φ

=
∑

i1+···+ik=n
j1+···+jk=m

(−)σ(p1 ⊗ · · · ⊗ pi1 ⊗ t1 ⊗ · · · ⊗ tj1)φi1j1

⊗ (pi1+1 ⊗ · · · ⊗ pi1+i2 ⊗ tj1+1 ⊗ · · · ⊗ tj1+j2)φi2j2

⊗ · · · ⊗ (pi1+···+ik−1+1 ⊗ · · · ⊗ pi1+···+ik ⊗ tj1+···+jk−1+1 ⊗ · · · ⊗ tj1+···+jk)φikjk .
(3.2.1)

The sign depends on the parity of an integer

σ = (t1 + · · ·+ tj1)(pi1+1 + · · ·+ pi1+···+ik)+

(tj1+1 + · · ·+ tj1+j2)(pi1+i2+1 + · · ·+ pi1+···+ik)

+ · · ·+ (tj1+···+jk−2+1 + · · ·+ tj1+···+jk−1)(pi1+···+ik−1+1 + · · ·+ pi1+···+ik),
(3.2.2)

where each coderivation has to be replaced with its degree. Recall that in our
notation (Section 1) we abbreviate (−1)(deg t)(deg p) to (−)tp. By definition the ho-
momorphism φ satisfies the equation

TA⊗ TC
φ → TB

∆ → TB⊗ TB

TA⊗ TA⊗ TC⊗ TC

∆⊗∆
↓

1⊗c⊗1 → TA⊗ TC⊗ TA⊗ TC

φ⊗φ
↑

(3.2.3)

Introduce k-linear maps (t1⊗· · ·⊗ tm)χ : TA → TB by the formula a[(t1⊗· · ·⊗
tm)χ] = (a⊗ t1 ⊗ · · · ⊗ tm)φ, a ∈ TA. Then the above equation is equivalent to

(t1 ⊗ t2 ⊗ · · · ⊗ tm)χ∆ = ∆
m

∑

k=0

(t1 ⊗ · · · ⊗ tk)χ⊗ (tk+1 ⊗ · · · ⊗ tm)χ. (3.2.4)

for all m > 0.
When A, B are graded k-quivers, we define a new k-quiver Coder(A,B), whose

objects are cocategory homomorphisms f : TA → TB. These homomorphisms are
determined by a system f pr1 = (fn)n>1 of morphisms of k-quivers fn : TnA → B
of degree 0 with the same underlying map Ob A → Ob B, see (2.4.1). The k-module
of morphisms between f, g : TA → TB consists of (f, g)-coderivations:

[Coder(A,B)(f, g)]d = {r : TA → TB | r∆ = ∆(f⊗r+r⊗g), deg r = d}, d ∈ Z.

Such a coderivation r is determined by a system of k-linear maps r pr1 = (rn)n>0,
rn : TnA(X,Y ) → B(Xf, Y g) of degree d as in (2.6.1).

3.3 Corollary (to Proposition 3.1). A map α : TA ⊗ T Coder(A, B) → TB,
a⊗ r1 ⊗ · · · ⊗ rn 7→ a[(r1 ⊗ · · · ⊗ rn)θ], is a cocategory homomorphism of degree 0.

Proof. Equation (3.1.1) means that equation (3.2.4) holds for χ = θ, which is
equivalent to (3.2.3) for φ = α, C = Coder(A, B).
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3.4 Proposition. For any cocategory homomorphism φ : TA ⊗ TC1 ⊗ TC2 ⊗
· · · ⊗ TCq → TB of degree 0 there is a unique cocategory homomorphism ψ :
TC1 ⊗ TC2 ⊗ · · · ⊗ TCq → T Coder(A,B) of degree 0, such that

φ =
(

TA⊗ TC1 ⊗ TC2 ⊗ · · · ⊗ TCq 1⊗ψ→ TA⊗ T Coder(A, B)
α→ TB

)

.

Proof. Let us start with a simple case q = 1, C = C1. Each object g of C induces a
cocategory morphism gψ : a 7→ (a ⊗ g)φ. We set ψ0 = 0. Each element p ∈ C(g, h)
induces a coderivation (p)ψ1 = pψ : a 7→ (a ⊗ p)φ. Suppose that ψi are already
found for 0 6 i < n. Then we find ψn from the sought identity χ = ψθ. Namely, for

g0 p1

→ g1 p2

→ . . . gn−1 pn

→ gn we have to satisfy the identity

(p1⊗· · ·⊗pn)χ = (p1⊗· · ·⊗pn)ψn+
n

∑

l=2

∑

i1+···+il=n

[(p1⊗· · ·⊗pn).(ψi1⊗ψi2⊗· · ·⊗ψil)]θ,

which expresses ψ via its components ψk. Notice that the unknown ψn occurs only
in the singled out summand, corresponding to l = 1. The factors ψi in the sum
are already known, since i < n. So we define (p1 ⊗ · · · ⊗ pn)ψn : TA → TB as the
difference of (p1 ⊗ · · · ⊗ pn)χ and the sum in the right hand side. Assume that ψ is
a cocategory homomorphism up to the level n, that is,

(p1 ⊗ · · · ⊗ pm)ψ =
m

∑

l=1

∑

i1+···+il=m

(p1 ⊗ · · · ⊗ pm).(ψi1 ⊗ ψi2 ⊗ · · · ⊗ ψil) (3.4.1)

for all 0 6 m 6 n. Taking into account equations (3.1.1), we see that (3.2.4) is
equivalent to an equation of the form

(p1 ⊗ · · · ⊗ pn)ψn∆ = ∆[g0ψ ⊗ (p1 ⊗ · · · ⊗ pn)ψn + (p1 ⊗ · · · ⊗ pn)ψn ⊗ gnψ + µ].

Moreover, if (p1⊗· · ·⊗pn)ψn were a (g0ψ, gnψ)-coderivation, it would imply (3.2.4)
by Section 3.2. We deduce that, indeed, the above µ = 0, and (p1 ⊗ · · · ⊗ pn)ψn

is a (g0ψ, gnψ)-coderivation. Thus, we have found a unique (p1 ⊗ · · · ⊗ pn)ψn ∈
Coder(A, B) and (3.4.1) for m = n defines uniquely an element (p1 ⊗ · · · ⊗ pn)ψ ∈
T Coder(A,B).

The case q > 1 is similar to the case q = 1, however, the reasoning is slightly
obstructed by a big amount of indices. So we explain in detail the case q = 2 only,
and in the general case no new phenomena occur. Further we shall use the obtained
formulas in the case q = 2.

Let C = C1, D = C2. We consider a cocategory homomorphism φ : TA ⊗ TC ⊗
TD → TB, a 7→ a[(c⊗ d)χ]. We have to obtain from it a unique cocategory homo-
morphism ψ : TC⊗ TD → T Coder(A, B).

A pair of objects f ∈ Ob C, g ∈ Ob D induces a cocategory morphism (f, g)ψ :
a 7→ (a⊗1f⊗1g)φ. We set ψ00 = 0. An object f ∈ Ob C and an element t ∈ D(g0, g1)
induce an ((f, g0)ψ, (f, g1)ψ)-coderivation (f ⊗ t)ψ01 = (f ⊗ t)ψ : a 7→ (a⊗1f ⊗ t)φ.
An element p ∈ C(f0, f1) and an object g ∈ Ob D induce an ((f0, g)ψ, (f1, g)ψ)-
coderivation (p ⊗ g)ψ10 = (p ⊗ g)ψ : a 7→ (a ⊗ p ⊗ 1g)φ. Suppose that ψij are
already found for 0 6 i 6 n, 0 6 j 6 m, (i, j) 6= (n,m). Then we find ψnm from the

sought identity χ = ψθ. Namely, for f0 p1

→ f1 p2

→ . . . fn−1 pn

→ fn in C and
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g0 t1→ g1 t2→ . . . gm−1 tm

→ gm in D we have to satisfy the identity

(p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)χ = (p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)ψnm

+
k>1
∑

i1+···+ik=n
j1+···+jk=m

(−)σ[

(p1 ⊗ · · · ⊗ pi1 ⊗ t1 ⊗ · · · ⊗ tj1)ψi1j1

⊗ (pi1+1 ⊗ · · · ⊗ pi1+i2 ⊗ tj1+1 ⊗ · · · ⊗ tj1+j2)ψi2j2

⊗ · · · ⊗ (pi1+···+ik−1+1 ⊗ · · · ⊗ pi1+···+ik ⊗ tj1+···+jk−1+1 ⊗ · · · ⊗ tj1+···+jk)ψikjk

]

θ,
(3.4.2)

which is nothing else but (3.2.1). The sign is determined by (3.2.2). All terms of
the sum are already known. So we define a map (p1⊗ · · · ⊗ pn⊗ t1⊗ · · · ⊗ tm)ψnm :
TA → TB as the difference of the left hand side and the sum in the right hand side.
The fact that φ is a homomorphism is equivalent to the identity for the map χ for
all n,m > 0:

(p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)χ∆ = ∆
n

∑

k=0

m
∑

l=0

(−)(p
k+1+···+pn)(t1+···+tl)

(p1 ⊗ · · · ⊗ pk ⊗ t1 ⊗ · · · ⊗ tl)χ⊗ (pk+1 ⊗ · · · ⊗ pn ⊗ tl+1 ⊗ · · · ⊗ tm)χ, (3.4.3)

similarly to Section 3.2. From it we get an equation for (p1⊗· · ·⊗pn⊗t1⊗· · ·⊗tm)ψnm

(p1⊗· · ·⊗pn⊗t1⊗· · ·⊗tm)ψnm∆ = ∆
[

(f0, g0)ψ⊗(p1⊗· · ·⊗pn⊗t1⊗· · ·⊗tm)ψnm

+ (p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)ψnm ⊗ (fn, gm)ψ + µ
]

.

Notice that if ψ is indeed a homomorphism and ψnm is its component, then φ is a
homomorphism, hence, (3.4.3) holds. Thus, the above equation with µ = 0 implies
(3.4.3) (and it happens only for one value of µ). Since we know that (3.4.3) holds, it
implies µ = 0. Therefore, (p1⊗· · ·⊗pn⊗t1⊗· · ·⊗tm)ψnm is a ((f0, g0)ψ, (fn, gm)ψ)-
coderivation. Thus, we have found a unique (p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)ψnm ∈
Coder(A,B), and

(p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)ψ = (p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)ψnm

+
k>1
∑

i1+···+ik=n
j1+···+jk=m

(−)σ(p1 ⊗ · · · ⊗ pi1 ⊗ t1 ⊗ · · · ⊗ tj1)ψi1j1

⊗ (pi1+1 ⊗ · · · ⊗ pi1+i2 ⊗ tj1+1 ⊗ · · · ⊗ tj1+j2)ψi2j2

⊗ · · · ⊗ (pi1+···+ik−1+1 ⊗ · · · ⊗ pi1+···+ik ⊗ tj1+···+jk−1+1 ⊗ · · · ⊗ tj1+···+jk)ψikjk

defines uniquely an element of T Coder(A, B). The above formula implies that ψ is
a homomorphism.

A generalization to q > 2 is straightforward.

We interpret the above proposition as the existence of inner hom-objects
Hom(TA, TB) = T Coder(A, B) in the monoidal category of cocategories of the
form TC1 ⊗ TC2 ⊗ · · · ⊗ TCr.
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4. A category enriched in cocategories

Let us show that the category of tensor coalgebras of graded k-quivers is enriched
in gCoCat.

Let A, B, C be graded k-quivers. Consider the cocategory homomorphism given
by the upper right path in the diagram

TA⊗ T Coder(A, B)⊗ T Coder(B, C)
α⊗1→ TB⊗ T Coder(B,C)

=

TA⊗ T Coder(A,C)

1⊗M ↓
α → TC

α
↓

(4.0.1)

By Proposition 3.4 there is a graded cocategory morphism of degree 0

M : T Coder(A, B)⊗ T Coder(B,C) → T Coder(A,C).

Denote by 1 a graded 1-object-0-morphisms k-quiver, that is, Ob1 = {∗},
1(∗, ∗) = 0. Then T1 = k is a unit object of the monoidal category of graded
cocategories. Denote by r : TA ⊗ T1 → TA and l : T1 ⊗ TA → TA the corre-
sponding natural cocategory isomorphisms. By Proposition 3.4 there exists a unique
cocategory morphism ηA : T1→ T Coder(A, A), such that

r =
(

TA⊗ T1
1⊗ηA→ TA⊗ T Coder(A, A)

α→ TA
)

.

Namely, the object ∗ ∈ Ob1 goes to the identity homomorphism idA : A → A,
which acts as the identity map on objects, and has only one non-vanishing compo-
nent (idA)1 = id : A(X,Y ) → A(X, Y ).

4.1 Proposition (See also Kontsevich and Soibelman [KS]). The multipli-
cation M is associative and η is its two-sided unit:

T Coder(A, B)⊗ T Coder(B, C)⊗ T Coder(C, D)
M⊗1→ T Coder(A, C)⊗ T Coder(C, D)

T Coder(A, B)⊗ T Coder(B, D)

1⊗M
↓

M → T Coder(A, D)

M
↓

Proof. The cocategory homomorphism

TA⊗ T Coder(A, B)⊗ T Coder(B, C)⊗ T Coder(C,D)
α⊗1⊗1→ TB⊗T Coder(B,C)⊗T Coder(C,D)

α⊗1→ TC⊗T Coder(C, D)
α→ TD

can be written down as

(α⊗ 1⊗ 1)(1⊗M)α = (1⊗ 1⊗M)(α⊗ 1)α = (1⊗ 1⊗M)(1⊗M)α,

or as

(1⊗M ⊗ 1)(α⊗ 1)α = (1⊗M ⊗ 1)(1⊗M)α.

The uniqueness part of Proposition 3.4 implies that (1⊗M)M = (M ⊗ 1)M .
Similarly one proves that η is a unit for M .
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By (2.4.1) we find

gCoCat(T1, T Coder(A,B)) = Maps({∗},Ob Coder(A,B)) = gCoCat(TA, TB).

Thus we can interpret Proposition 4.1 as saying that the category of tensor coalge-
bras of graded k-quivers admits an enrichment in gCoCat.

Let us find explicit formulas for M . It is defined on objects as composition: if
f : A → B and g : B → C are cocategory morphisms, then (f, g)M = fg : A → C.
On coderivations M is specified by its composition with pr1 : T Coder(A, C) →
Coder(A,C). Let us write in this section (h, k) as a shorthand for Coder(A, C)(h, k),
the k-module of (h, k)-coderivations. The components of M are

Mnm = M
∣

∣

T n⊗T m pr1 : Tn Coder(A, B)⊗ Tm Coder(B, C) → Coder(A,C),

Mnm : (f0, f1)⊗ · · · ⊗ (fn−1, fn)⊗ (g0, g1)⊗ · · · ⊗ (gm−1, gm) → (f0g0, fngm),

where f0, . . . , fn : A → B and g0, . . . , gm : B → C are cocategory morphisms. We
have M00 = 0.

According to proof of Proposition 3.4 the component Mnm is determined recur-
sively from equation (3.4.2):

(p1 ⊗ · · · ⊗ pn)θ(t1 ⊗ · · · ⊗ tm)θ = (p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)Mnm

+
k>1
∑

i1+···+ik=n
j1+···+jk=m

(−)σ[

(p1 ⊗ · · · ⊗ pi1 ⊗ t1 ⊗ · · · ⊗ tj1)Mi1j1

⊗ (pi1+1 ⊗ · · · ⊗ pi1+i2 ⊗ tj1+1 ⊗ · · · ⊗ tj1+j2)Mi2j2

⊗ · · · ⊗ (pi1+···+ik−1+1⊗ · · · ⊗ pi1+···+ik ⊗ tj1+···+jk−1+1⊗ · · · ⊗ tj1+···+jk)Mikjk

]

θ.
(4.1.1)

Since (p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)Mnm is a coderivation, it is determined by its
composition with projection pr1. Composing (4.1.1) with pr1 we get

(p1⊗· · ·⊗pn)θ(t1⊗· · ·⊗ tm)θ pr1 = (p1⊗· · ·⊗pn⊗ t1⊗· · ·⊗ tm)Mnm pr1 . (4.1.2)

Therefore, if m = 0 and n is positive, Mn0 is given by the formula:

Mn0 : (f0, f1)⊗ · · · ⊗ (fn−1, fn)⊗ kg0 → (f0g0, fng0),

r1 ⊗ · · · ⊗ rn ⊗ 1 7→ (r1 ⊗ · · · ⊗ rn | g0)Mn0,

[(r1 ⊗ · · · ⊗ rn | g0)Mn0] pr1 = (r1 ⊗ · · · ⊗ rn)θg0 pr1,

where | separates the arguments in place of ⊗. If m = 1, then Mn1 is given by the
formula:

Mn1 : (f0, f1)⊗ · · · ⊗ (fn−1, fn)⊗ (g0, g1) → (f0g0, fng1),

r1 ⊗ · · · ⊗ rn ⊗ t1 7→ (r1 ⊗ · · · ⊗ rn ⊗ t1)Mn1,

[(r1 ⊗ · · · ⊗ rn ⊗ t1)Mn1] pr1 = (r1 ⊗ · · · ⊗ rn)θt1 pr1 .
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Explicitly we write

[(r1 ⊗ · · · ⊗ rn | g0)Mn0]k =
∑

l

(r1 ⊗ · · · ⊗ rn)θklg0
l , (4.1.3)

[(r1 ⊗ · · · ⊗ rn ⊗ t1)Mn1]k =
∑

l

(r1 ⊗ · · · ⊗ rn)θklt1l . (4.1.4)

Finally, Mnm = 0 for m > 1, since the left hand side of (4.1.2) vanishes.

4.2 Examples. 1) The component M01 is the composition: (f0 | t1)M01 = f0t1.
2) The component M10 is the composition: (r1 | g0)M10 = r1g0.
3) If r : f → g : A → B and p : h → k : B → C are A∞-transformations, then

(r ⊗ p)M11 : fh → gk : A → C has the following components:

[(r ⊗ p)M11]0 = r0p1,

[(r ⊗ p)M11]1 = r1p1 + (f1 ⊗ r0)p2 + (r0 ⊗ g1)p2, etc.

4) If f
r→ g

p→ h : A → B are A∞-transformations, and k : B → C is an
A∞-functor, then (r ⊗ p | k)M20 : fk → hk : A → C has the following components:

[(r ⊗ p | k)M20]0 = (r0 ⊗ p0)k2,

[(r ⊗ p | k)M20]1 = (r1 ⊗ p0)k2 + (r0 ⊗ p1)k2

+ (r0 ⊗ p0 ⊗ h1)k3 + (r0 ⊗ g1 ⊗ p0)k3 + (f1 ⊗ r0 ⊗ p0)k3, etc.

5) If f
r→ g

p→ h : A → B and t : k → l : B → C are A∞-transformations,
then (r ⊗ p⊗ t)M21 : fk → hl : A → C has the following components:

[(r ⊗ p⊗ t)M21]0 = (r0 ⊗ p0)t2,

[(r ⊗ p⊗ t)M21]1 = (r1 ⊗ p0)t2 + (r0 ⊗ p1)t2
+ (r0 ⊗ p0 ⊗ h1)t3 + (r0 ⊗ g1 ⊗ p0)t3 + (f1 ⊗ r0 ⊗ p0)t3, etc.

5. A∞-category of A∞-functors

Let us construct a new A∞-category A∞(A, B) out of given two A and B. Its
underlying graded k-quiver is a full subquiver of s−1 Coder(sA, sB). The objects of
A∞(A, B) are A∞-functors f : A → B. Given two such functors f, g : A → B we
define the graded k-module A∞(A,B)(f, g) as the space of all A∞-transformations
r : f → g, namely,

[A∞(A,B)(f, g)]d+1 =

{r : f → g | A∞-transformation r : TsA → TsB has degree d}.

In this section we use the notation (f, g) = sA∞(A, B)(f, g) = Coder(sA, sB)(f, g)
for the sake of brevity. The degree of r as an element of (f, g) will be exactly d:

(f, g)d = {r : f → g | A∞-transformation r : TsA → TsB has degree d}.

We will use only this (natural) degree of r in order to permute it with other things
by Koszul’s rule.
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Notice that even if A, B have one object (and are A∞-algebras), the quiver
A∞(A, B) has several objects. Thus theory of A∞-algebras leads to the theory of
A∞-categories.

5.1 Proposition (See also Fukaya [Fuk], Kontsevich and Soibelman [KS02,
KS] and Lefèvre-Hasegawa [LH02]). Let A, B be A∞-categories. Then there
exists a unique (1,1)-coderivation B : TsA∞(A, B) → TsA∞(A,B) of degree 1,
such that B0 = 0 and

(r1 ⊗ · · · ⊗ rn)θb = [(r1 ⊗ · · · ⊗ rn)B]θ + (−)r1+···+rn
b(r1 ⊗ · · · ⊗ rn)θ (5.1.1)

for all n > 0, r1 ⊗ · · · ⊗ rn ∈ (f0, f1)⊗ · · · ⊗ (fn−1, fn). It satisfies B2 = 0, thus, it
gives an A∞-structure of A∞(A, B).

Proof. For n = 0 (5.1.1) reads as f0b = (f0)B +bf0, hence, (f0)B = f0b−bf0 = 0.
In particular, we may set B0 = 0. Assume that the coderivation components Bj for
j < n are already found, so that (5.1.1) is satisfied up to n − 1 arguments. Let us
determine a k-linear map (r1 ⊗ · · · ⊗ rn)Bn : TsA → TsB from equation (5.1.1),
rewritten as follows:

(r1 ⊗ · · · ⊗ rn)Bn = (r1 ⊗ · · · ⊗ rn)θb− (−)r1+···+rn
b(r1 ⊗ · · · ⊗ rn)θ

−
j<n
∑

q+j+t=n

[(r1 ⊗ · · · ⊗ rn)(1⊗q ⊗Bj ⊗ 1⊗t)]θ. (5.1.2)

Let us show that (r1 ⊗ · · · ⊗ rn)Bn is a (f0, fn)-coderivation. Indeed,

(r1 ⊗ · · · ⊗ rn)Bn∆B = (r1 ⊗ · · · ⊗ rn)θb∆B − (−)r1+···+rn
b(r1 ⊗ · · · ⊗ rn)θ∆B

−
j<n
∑

q+j+t=n

[(r1 ⊗ · · · ⊗ rn)(1⊗q ⊗Bj ⊗ 1⊗t)]θ∆B

= (r1 ⊗ · · · ⊗ rn)θ∆B(1⊗ b + b⊗ 1)

− (−)r1+···+rn
b∆A

n
∑

k=0

(r1 ⊗ · · · ⊗ rk)θ ⊗ (rk+1 ⊗ · · · ⊗ rn)θ

−
j<n
∑

q+j+t=n

∆A{[(r1 ⊗ · · · ⊗ rn)(1⊗q ⊗Bj ⊗ 1⊗t)]∆A∞(A,B)(θ ⊗ θ)}
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= ∆A

{
n

∑

k=0

(r1 ⊗ · · · ⊗ rk)θ ⊗ (rk+1 ⊗ · · · ⊗ rn)θ(1⊗ b + b⊗ 1)

− (−)r1+···+rn
(1⊗ b + b⊗ 1)

n
∑

k=0

(r1 ⊗ · · · ⊗ rk)θ ⊗ (rk+1 ⊗ · · · ⊗ rn)θ

−
j<n
∑

k+v+j+t=n

[(r1 ⊗ · · · ⊗ rn)(1⊗k
⊗

1⊗v ⊗Bj ⊗ 1⊗t)](θ
⊗

θ)

−
j<n
∑

q+j+w+u=n

[(r1 ⊗ · · · ⊗ rn)(1⊗q ⊗Bj ⊗ 1⊗w
⊗

1⊗u)](θ
⊗

θ)
}

= ∆A

{
n

∑

k=0

(r1 ⊗ · · · ⊗ rk)θ ⊗ (rk+1 ⊗ · · · ⊗ rn)θb

−
n

∑

k=0

(−)rk+1+···+rn
(r1 ⊗ · · · ⊗ rk)θ ⊗ b(rk+1 ⊗ · · · ⊗ rn)θ

−
j<n
∑

k+v+j+t=n

(r1 ⊗ · · · ⊗ rk)θ ⊗ (rk+1 ⊗ · · · ⊗ rn)(1⊗v ⊗Bj ⊗ 1⊗t)θ

+
n

∑

k=0

(−)rk+1+···+rn
(r1 ⊗ · · · ⊗ rk)θb⊗ (rk+1 ⊗ · · · ⊗ rn)θ

−
n

∑

k=0

(−)r1+···+rn
b(r1 ⊗ · · · ⊗ rk)θ ⊗ (rk+1 ⊗ · · · ⊗ rn)θ

−
n

∑

k=0

(−)rk+1+···+rn
j<n
∑

q+j+w=k

(r1 ⊗ · · · ⊗ rk)(1⊗q ⊗Bj ⊗ 1⊗w)θ

⊗ (rk+1 ⊗ · · · ⊗ rn)θ
}

= ∆A
[

f0 ⊗ (r1 ⊗ · · · ⊗ rn)Bn + (r1 ⊗ · · · ⊗ rn)Bn ⊗ fn]

.

The last three sums cancel out for all k < n due to (5.1.2), and for k = n they
give (r1 ⊗ · · · ⊗ rn)Bn ⊗ fn due to the same equation. Similarly for the previous
three sums. Therefore, (5.1.2) is, indeed, a recursive definition of components Bn of
a coderivation B. The uniqueness of B is obvious.

Clearly, B2 : TsA∞(A, B) → TsA∞(A, B) is a (1,1)-coderivation of degree 2.
From (5.1.1) we find

[(r1 ⊗ · · · ⊗ rn)B2]θ = [(r1 ⊗ · · · ⊗ rn)B]θb− (−)r1+···+rn+1b[(r1 ⊗ · · · ⊗ rn)B]θ

= (r1 ⊗ · · · ⊗ rn)θb2 − (−)r1+···+rn
b[(r1 ⊗ · · · ⊗ rn)θ]b

− (−)r1+···+rn+1b[(r1 ⊗ · · · ⊗ rn)θ]b− b2(r1 ⊗ · · · ⊗ rn)θ = 0.

Composing this equation with pr1 : TsB → sB we get

0 = [(r1 ⊗ · · · ⊗ rn)B2]θ pr1 = (r1 ⊗ · · · ⊗ rn)[B2]n pr1 .
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Therefore, all components of the (f0, fn)-coderivation (r1 ⊗ · · · ⊗ rn)[B2]n vanish.
We deduce that the coderivations (r1 ⊗ · · · ⊗ rn)[B2]n vanish, hence, all [B2]n = 0.
Finally, B2 = 0.

Let us find explicitly the components of B, composing (5.1.1) with pr1 : TsB →
sB:

B1 : (f, g) → (f, g), r 7→ (r)B1 = [r, b] = rb− (−)rbr,

Bn : (f0, f1)⊗ · · · ⊗ (fn−1, fn) → (f0, fn), r1 ⊗ · · · ⊗ rn 7→ (r1 ⊗ · · · ⊗ rn)Bn,

for n > 1,

where the last transformation is defined by its composition with pr1:

[(r1 ⊗ · · · ⊗ rn)Bn] pr1 = [(r1 ⊗ · · · ⊗ rn)θ]bpr1 .

In the other terms, for n > 1

[(r1 ⊗ · · · ⊗ rn)Bn]k =
∑

l

(r1 ⊗ · · · ⊗ rn)θklbl. (5.1.3)

Since B2 = 0, we have, in particular,
∑

r+n+t=k

(1⊗r ⊗Bn ⊗ 1⊗t)Br+1+t = 0 : T ksA∞(A,B) → sA∞(A, B).

5.2 Examples. 1) When n = 1, r : f → g : A → B, we find the components of the
A∞-transformation (r)B1 : f → g : A → B as follows (see Examples 2.7):

[(r)B1]0 = r0b1,

[(r)B1]1 = r1b1 + (f1 ⊗ r0)b2 + (r0 ⊗ g1)b2 − (−)rb1r1,

[(r)B1]2 = r2b1 + (f2 ⊗ r0)b2 + (f1 ⊗ r1)b2 + (r1 ⊗ g1)b2 + (r0 ⊗ g2)b2

+ (f1 ⊗ f1 ⊗ r0)b3 + (f1 ⊗ r0 ⊗ g1)b3 + (r0 ⊗ g1 ⊗ g1)b3 − (−)rb2r1

− (−)r(1⊗ b1)r2 − (−)r(b1 ⊗ 1)r2.

2) When n = 2, f
r→ g

p→ h : A → B, we find the components of the
A∞-transformation (r ⊗ p)B2 : f → h : A → B as follows:

[(r ⊗ p)B2]0 = (r0 ⊗ p0)b2,

[(r ⊗ p)B2]1 = (r1 ⊗ p0)b2 + (r0 ⊗ p1)b2

+ (r0 ⊗ p0 ⊗ h1)b3 + (r0 ⊗ g1 ⊗ p0)b3 + (f1 ⊗ r0 ⊗ p0)b3,

[(r ⊗ p)B2]2 = (r2 ⊗ p0)b2 + (r1 ⊗ p1)b2 + (r0 ⊗ p2)b2 + (r1 ⊗ p0 ⊗ h1)b3

+ (r0 ⊗ p1 ⊗ h1)b3 + (r1 ⊗ g1 ⊗ p0)b3 + (r0 ⊗ g1 ⊗ p1)b3

+ (f1 ⊗ r1 ⊗ p0)b3 + (f1 ⊗ r0 ⊗ p1)b3 + (r0 ⊗ p0 ⊗ h2)b3

+ (r0 ⊗ g2 ⊗ p0)b3 + (f2 ⊗ r0 ⊗ p0)b3 + (r0 ⊗ p0 ⊗ h1 ⊗ h1)b4

+ (r0 ⊗ g1 ⊗ g1 ⊗ p0)b4 + (r0 ⊗ g1 ⊗ p0 ⊗ h1)b4

+ (f1 ⊗ r0 ⊗ p0 ⊗ h1)b4 + (f1 ⊗ r0 ⊗ g1 ⊗ p0)b4

+ (f1 ⊗ f1 ⊗ r0 ⊗ p0)b4.
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3) When n = 3, f
r→ g

p→ h
t→ k : A → B, we find the components of

the A∞-transformation (r ⊗ p⊗ t)B3 : f → k : A → B as follows:

[(r ⊗ p⊗ t)B3]0 = (r0 ⊗ p0 ⊗ t0)b3,

[(r ⊗ p⊗ t)B3]1 = (r1 ⊗ p0 ⊗ t0)b3 + (r0 ⊗ p1 ⊗ t0)b3 + (r0 ⊗ p0 ⊗ t1)b3

+ (r0 ⊗ p0 ⊗ t0 ⊗ k1)b4 + (r0 ⊗ p0 ⊗ h1 ⊗ t0)b4

+ (r0 ⊗ g1 ⊗ p0 ⊗ t0)b4 + (f1 ⊗ r0 ⊗ p0 ⊗ t0)b4.

5.3. Differentials. Let A, C1, C2, . . . , Cq, B be A∞-categories. Let φ : TsA ⊗
TsC1⊗TsC2⊗· · ·⊗TsCq → TsB, (a⊗c1⊗c2⊗· · ·⊗cq) 7→ a.(c1⊗c2⊗· · ·⊗cq)χ be
a cocategory homomorphism of degree 0. If the homomorphism φ commutes with
the differential:

φb =
(

∑

r+t=q

1⊗r ⊗ b⊗ 1⊗t)φ,

then φ is called an A∞-functor (in a generalized sense, extending Definition 2.4).
This condition is fulfilled if and only if χ commutes with the differential:

(c1 ⊗ c2 ⊗ · · · ⊗ cq)χb

=
q

∑

k=1

(−)ck+1+···+cq
(c1⊗· · ·⊗ ckb⊗· · ·⊗ cq)χ+(−)c1+···+cq

b(c1⊗ c2⊗· · ·⊗ cq)χ.

(5.3.1)

In particular, for q = 1 we get the equation

(c)χb = (cb)χ + (−)cb(c)χ.

5.4 Corollary (to Proposition 5.1). There is a unique A∞-category structure
for A∞(A,B), such that the action homomorphism α : TsA⊗TsA∞(A, B) → TsB
is an A∞-functor.

Proof. The homomorphism α : a⊗r1⊗· · ·⊗rn 7→ a[(r1⊗· · ·⊗rn)θ] of Corollary 3.3
uses χ = θ. Hence, α is an A∞-functor if and only if (r)θb = (rB)θ + (−)rb(r)θ for
r = r1 ⊗ · · · ⊗ rn, n > 0, that is, if and only if equations (5.1.1) hold.

5.5 Proposition. For any A∞-functor φ : TsA⊗TsC1⊗TsC2⊗· · ·⊗TsCq → TsB
there is a unique A∞-functor ψ : TsC1 ⊗ TsC2 ⊗ · · · ⊗ TsCq → TsA∞(A,B), such
that

φ =
(

TsA⊗TsC1⊗TsC2⊗· · ·⊗TsCq 1⊗ψ→ TsA⊗TsA∞(A, B)
α→ TsB

)

. (5.5.1)

Proof. If f i ∈ Ob Ci, then (5.3.1) implies that the cocategory homomorphism
(f1, f2, . . . , fq)ψ = (f1, f2, . . . , fq)χ of degree 0 commutes with the differential
b. Hence, it is an A∞-functor, that is, an object of A∞(A, B). By Proposition 3.4
there exists a unique cocategory homomorphism ψ : TsC1 ⊗ TsC2 ⊗ · · · ⊗ TsCq →
TsA∞(A,B), of degree 0, such that (5.5.1) holds. We have to prove that ψ commutes
with the differential.
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Using (5.1.1) and (5.3.1) we find for χ = ψθ the equation

(c1⊗c2⊗· · ·⊗cq)ψBθ = (c1⊗c2⊗· · ·⊗cq)ψθb−(−)c1+···+cq
b(c1⊗c2⊗· · ·⊗cq)ψθ

= (c1 ⊗ c2 ⊗ · · · ⊗ cq)
q

∑

k=1

(1⊗k−1 ⊗ b⊗ 1⊗q−k)ψθ. (5.5.2)

Notice that ψB and κ def=
∑q

k=1(1
⊗k−1⊗ b⊗1⊗q−k)ψ are both (ψ, ψ)-coderivations.

Let ci be an element of Tni
sCi = sCi(f i,−) ⊗ · · · ⊗ sCi(−, gi) for 1 6 i 6 q.

Composing (5.5.2) with pr1 : TsB → sB we get

(c1 ⊗ c2 ⊗ · · · ⊗ cq)[ψB]n1...nq pr1 = (c1 ⊗ c2 ⊗ · · · ⊗ cq)ψBθ pr1
= (c1 ⊗ c2 ⊗ · · · ⊗ cq)κθ pr1 = (c1 ⊗ c2 ⊗ · · · ⊗ cq)κn1...nq pr1 .

Since all components of ((f1, f2, . . . , fq)ψ, (g1, g2, . . . , gq)ψ)-coderivations (c1⊗c2⊗
· · ·⊗cq)[ψB]n1...nq and (c1⊗c2⊗· · ·⊗cq)κn1...nq coincide, these coderivations coincide
as well. Therefore, all the components of (ψ, ψ)-coderivations ψB and κ coincide.
We conclude that these coderivations coincide as well: ψB = κ =

∑q
k=1(1

⊗k−1 ⊗
b⊗ 1⊗q−k)ψ.

6. Enriched category of A∞-categories

6.1 Definition (Differential graded cocategory). A differential graded cocate-
gory C is a graded cocategory equipped with a (1,1)-coderivation b =

(

b : C(X,Y ) →
C(X,Y )

)

X,Y ∈Ob C of degree 1, such that b2 = 0.

As in Section 2.2 a differential graded cocategory can be identified with a differ-
ential graded k-coalgebra, decomposed in a special way. An example of a differential
graded cocategory is given by TsA, where A is an A∞-category.

Differential graded cocategories form a symmetric monoidal category dgCoCat. If
C and D are differential graded cocategories then their tensor product is the graded
cocategory C ⊗ D, equipped with the differential 1 ⊗ b + b ⊗ 1. We want to show
that the category of A∞-categories is enriched in dgCoCat.

Let A, B, C be A∞-categories. There is a graded cocategory morphism of
degree 0

M : TsA∞(A, B)⊗ TsA∞(B,C) → TsA∞(A, C),

defined in Section 4 via diagram (4.0.1). Since all cocategory morphisms α, α ⊗ 1
in this diagram commute with the differential by Corollary 5.4, the cocategory
morphism M also commutes with the differential:

(1⊗B + B ⊗ 1)M = MB (6.1.1)

by Proposition 5.5. Therefore, M is an A∞-functor. The unit ηA : T1 →
T Coder(sA, sA), 1 7→ idA also is an A∞-functor for trivial reasons. The set

dgCoCat(T1, T sA∞(A, B)) = Maps({∗},Ob A∞(A,B)) = dgCoCat(TsA, T sB)
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is the set of A∞-functors A → B. We summarize the above statements as follows:
the category of A∞-categories is enriched in dgCoCat. Moreover, it is enriched in the
monoidal subcategory of dgCoCat generated by TsC, where C are A∞-categories.

Let us apply Proposition 5.5 to the A∞-functor M . From that result we deduce
the existence of a unique A∞-functor

A∞(A, ) : A∞(B, C) → A∞(A∞(A, B), A∞(A,C)),

such that

M =
[

TsA∞(A,B)⊗ TsA∞(B, C)
1⊗A∞(A, )→

TsA∞(A,B)⊗ TsA∞(A∞(A, B), A∞(A,C))
α→ TsA∞(A,C)

]

. (6.1.2)

Let us find the components of A∞(A, ).

6.2 Proposition. The A∞-functor A∞(A, ) is strict. It maps an object of
A∞(B, C), an A∞-functor g : B → C, to the object of the target A∞-category
(1 ⊗ g)M : A∞(A,B) → A∞(A,C) (which is also an A∞-functor). The first com-
ponent A∞(A, )1 maps an element t of sA∞(B, C)(g, h), a (g, h)-coderivation
t : TsB → TsC, to the ((1⊗g)M, (1⊗h)M)-coderivation (1⊗t)M : TsA∞(A,B) →
TsA∞(A,C), an element of sA∞(A∞(A,B), A∞(A, C))((1⊗ g)M, (1⊗ h)M).

Proof. Clearly, A∞(A, ) gives the mapping of objects g 7→ (1⊗ g)M as described.
To prove that A∞(A, )1 : t 7→ (1⊗ t)M and A∞(A, )k = 0 for k > 1 it suffices to
substitute a cocategory homomorphism with those components into (6.1.2) and to
check this equation (see Proposition 3.4). Let

p1 ⊗ · · · ⊗ pn ∈ sA∞(A, B)(f0, f1)⊗ · · · ⊗ sA∞(A,B)(fn−1, fn),

t1 ⊗ · · · ⊗ tm ∈ sA∞(B,C)(g0, g1)⊗ · · · ⊗ sA∞(B, C)(gm−1, gm). (6.2.1)

The equation to check is

(p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)M = (p1 ⊗ · · · ⊗ pn).[(t1 ⊗ · · · ⊗ tm)A∞(A, )]θ,

that is,

(p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)M = (p1 ⊗ · · · ⊗ pn).[(1⊗ t1)M ⊗ · · · ⊗ (1⊗ tm)M ]θ.

The left hand side is a cocategory homomorphism. Let us prove that the right hand
side

(p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)L def= (p1 ⊗ · · · ⊗ pn).[(1⊗ t1)M ⊗ · · · ⊗ (1⊗ tm)M ]θ
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is also a cocategory homomorphism. Indeed,

(p1 ⊗ · · · ⊗ pn ⊗ t1 ⊗ · · · ⊗ tm)L∆

= (p1 ⊗ · · · ⊗ pn).[(1⊗ t1)M ⊗ · · · ⊗ (1⊗ tm)M ]θ∆

= (p1 ⊗ · · · ⊗ pn)∆
m

∑

k=0

[(1⊗ t1)M ⊗ · · · ⊗ (1⊗ tk)M ]θ

⊗ [(1⊗ tk+1)M ⊗ · · · ⊗ (1⊗ tm)M ]θ

=
n

∑

l=0

m
∑

k=0

(−)(p
l+1+···+pn)(t1+···+tk)(p1 ⊗ · · · ⊗ pl).[(1⊗ t1)M ⊗ · · · ⊗ (1⊗ tk)M ]θ

⊗ (pl+1 ⊗ · · · ⊗ pn).[(1⊗ tk+1)M

⊗ · · · ⊗ (1⊗ tm)M ]θ

= [(p1 ⊗ · · · ⊗ pn)∆⊗ (t1 ⊗ · · · ⊗ tm)∆](1⊗ c⊗ 1)(L⊗ L)

by Proposition 3.1.
Let us prove that the components of M and L coincide. For m = 0 and any n > 0

we have

(p1 ⊗ · · · ⊗ pn | g0)Ln0 = (p1 ⊗ · · · ⊗ pn).(1⊗ g0)M pr1 = (p1 ⊗ · · · ⊗ pn | g0)Mn0,

hence, Ln0 = Mn0. For m = 1 and any n > 0 we have

(p1 ⊗ · · · ⊗ pn ⊗ t1)Ln1 = (p1 ⊗ · · · ⊗ pn).(1⊗ t1)M pr1 = (p1 ⊗ · · · ⊗ pn ⊗ t1)Mn1,

hence, Ln1 = Mn1. For m > 1 and any n > 0 we have Lnm = 0 and Mnm = 0.
Therefore, L = M and the proposition is proved.

6.3 Corollary. For all m > 0 and all t1 ⊗ · · · ⊗ tm as in (6.2.1) we have

[(1⊗ t1)M ⊗ · · · ⊗ (1⊗ tm)M ]B̃m = [1⊗ (t1 ⊗ · · · ⊗ tm)Bm]M, (6.3.1)

where B̃ denotes the differential in TsA∞(A∞(A, B), A∞(A,C)).

Indeed, the general property of an A∞-functor A∞(A, )B̃ = BA∞(A, ) reduces
to the above formula, since A∞(A, ) is strict.

In the following definition we introduce A∞-analogs of natural transformations.

6.4 Definition (ω-globular set of A∞-categories). A natural A∞-transforma-
tion r : f → g : A → B (natural transformation in terms of [Fuk]) is an A∞-trans-
formation of degree −1 such that rb + br = 0 (that is, (r)B1 = 0). The ω-globular
set [Bat98] Aω of A∞-categories is defined as follows: objects (0-morphisms) are
A∞-categories A; 1-morphisms are A∞-functors f : A → B; 2-morphisms are natu-
ral A∞-transformations r : f → g : A → B; 3-morphisms λ : r → s : f → g : A → B
are (f, g)-coderivations of degree −2, such that r − s = [λ, b]; for n > 3 n-mor-
phisms λn : λn−1 → µn−1 : · · · : r → s : f → g : A → B are (f, g)-coderivations
of degree 1 − n, such that λn−1 − µn−1 = [λn, b] (notice that the both sides are
(f, g)-coderivations of degree 2− n).
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6.5 Remark. Let us notice that the A∞-functor A∞(A, ) from Proposition 6.2
defines a map of the ω-globular set Aω into itself. Indeed, objects B of Aω are
mapped into objects A∞(A, B), 1-morphisms g : B → C are mapped into 1-mor-
phisms (1⊗ g)M : A∞(A, B) → A∞(A, C) and the first component A∞(A, )1 maps
(g, h)-coderivations into ((1⊗ g)M, (1⊗h)M)-coderivations. Moreover, if the equa-
tion λn−1 − µn−1 = λnB1 holds for (g, h)-coderivations, then (1 ⊗ λn−1)M − (1 ⊗
µn−1)M = (1⊗ λn)MB̃1 by (6.3.1), so the sources and the targets are preserved.

It might be useful to turn the ω-globular set Aω into a weak non-unital ω-category
in the sense of some of the existing definitions of the latter. Plenty of such definitions
including [Bat98] are listed in Leinster’s survey [Lei02]. We do not try to proceed
in this direction. Instead we truncate the ω-globular set to a 2-globular set (that is,
we deal with 0-, 1- and 2-morphisms) and we make a 2-category out of it.

7. 2-categories of A∞-categories

Let K denote the category K(k -mod) = H0(C(k -mod)) of differential graded com-
plexes of k-modules, whose morphisms are chain maps modulo homotopy. Equipped
with the usual tensor product, the unit object k and the standard symmetry, K
becomes a k-linear closed monoidal symmetric category. The inner hom-object is
the usual Hom•

k(-, -). There is a notion of a category C enriched in K (K-categories,
K-functors, K-natural transformations), see Kelly [Kel82]: for all objects X, Y of C
C(X,Y ) is an object of K. There is a similar notion of a 2-category enriched in K, or
a K-2-category: it consist of a class of objects Ob C, a class of 1-morphisms C(X, Y )
for each pair of objects X, Y of A, an object of 2-morphisms C(X, Y )(f, g) ∈ Ob K
for each pair of 1-morphisms f, g ∈ C(X,Y ) and other data. We shall consider 1-uni-
tal, non-2-unital K-2-categories. They are equipped with the following operations:
associative composition of 1-morphisms, commuting left and right associative ac-
tions of 1-morphisms on 2-morphisms (these actions are morphisms in K), 1-units,
associative vertical composition of 2-morphisms (a morphism in K) compatible with
the left and right actions of 1-morphisms on 2-morphisms and such that the both
ways to obtain the horizontal composition coincide. Precise definitions are given in
Appendix A.

7.1 Proposition. The following data define a 1-unital, non-2-unital K-2-category
KA∞:

• objects are A∞-categories;
• 1-morphisms are A∞-functors;
• an object of 2-morphisms between f, g : A → B is (A∞(A, B)(f, g),m1) ∈

Ob K, m1 = sB1s−1;
• the composition of 1-morphisms is the composition of A∞-functors;
• unit 1-morphisms are identity A∞-functors;
• the right action of a 1-morphism k : B → C on 2-morphisms is the chain map

(A∞(A, B)(f, g), m1) → (A∞(A, C)(fk, gk),m1), rs−1 7→ (rs−1)·k = (rk)s−1,
where r is an (f, g)-coderivation;
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• the left action of a 1-morphism e : D → A on 2-morphisms is the chain map
(A∞(A, B)(f, g),m1) → (A∞(D, B)(ef, eg), m1), rs−1 7→ e · (rs−1) = (er)s−1,
where r is an (f, g)-coderivation;

• the vertical composition is the chain map m2 = (s⊗s)B2s−1 : A∞(A, B)(f, g)⊗
A∞(A, B)(g, h) → A∞(A, B)(f, h).

Proof. Clearly, the composition of 1-morphisms and the actions of 1-morphisms on
2-morphisms are associative. The right and the left actions are unital, and commute
with each other. The equation −(1⊗m1 + m1 ⊗ 1)m2 + m2m1 = 0 (see (2.3.2) for
k = 2) shows that m2 is a chain map. The equation

m3m1+(1⊗1⊗m1+1⊗m1⊗1+m1⊗1⊗1)m3−(m2⊗1)m2+(1⊗m2)m2 = 0 (7.1.1)

(see (2.3.2) for k = 3) shows that m2 is associative in K.
Let us check that the vertical composition is compatible with the actions of 1-mor-

phisms on 2-morphisms. Applying equation (6.1.1) to r⊗p⊗1 ∈ sA∞(A,B)(f, g)⊗
sA∞(A,B)(g, h)⊗ k ⊂ T 2sA∞(A,B)(f, h)⊗ T 0sA∞(B, C)(k, k) we find that

(r⊗p | k)M20B1+(rk⊗pk)B2 = [(r⊗p)(1⊗B1+B1⊗1) | k]M20+(r⊗p)B2k. (7.1.2)

One deduces that (rs−1 · k ⊗ ps−1 · k)m2 = (rs−1 ⊗ ps−1)m2 · k in K. Apply-
ing equation (6.1.1) to 1 ⊗ r ⊗ p ∈ k ⊗ sA∞(A, B)(f, g) ⊗ sA∞(A,B)(g, h) ⊂
T 0sA∞(D,A)(e, e)⊗ T 2sA∞(A, B)(f, h) we find that

(er ⊗ ep)B2 = (e | r ⊗ p)M02B1 + (er ⊗ ep)B2

= [e | (r ⊗ p)(1⊗B1 + B1 ⊗ 1)]M02 + e(r ⊗ p)B2 = e(r ⊗ p)B2 (7.1.3)

(notice that M02 = 0). Therefore, (e · rs−1 ⊗ e · ps−1)m2 = e · (rs−1 ⊗ ps−1)m2.
Now let us prove distributivity. Applying equation (6.1.1) to r ⊗ p ∈

sA∞(A, B)(f, g)⊗ sA∞(B, C)(h, k) we find that

(rh⊗ gp)B2 + (−)rp(fp⊗ rk)B2 + (r ⊗ p)M11B1 = (r ⊗ p)(1⊗B1 + B1 ⊗ 1)M11.

Thus, (rh⊗gp)B2 +(−)rp(fp⊗ rk)B2 = 0 in K. We deduce that modulo homotopy

(rs−1 · h⊗ g · ps−1)m2s = (rhs−1 ⊗ gps−1)(s⊗ s)B2 = (−)p+1(rh⊗ gp)B2

= (−)rp+p(fp⊗ rk)B2 = (−)rp+p(fps−1s⊗ rks−1s)B2

= (−)rp+p+r+1(f · ps−1 ⊗ rs−1 · k)m2s.

Therefore, (rs−1 · h ⊗ g · ps−1)m2 = (−)(r+1)(p+1)(f · ps−1 ⊗ rs−1 · k)m2 in K, as
stated.

The 0-th cohomology functor H0 = K(k, ) : K → k -mod, X 7→ H0(X) =
K(k, X) is lax monoidal symmetric, since the complex k concentrated in degree
0 is the unit object of K. It determines a functor H0 : K-Cat → k-Cat. To a
K-category C it assigns a k-linear category H0(C) with the same class of objects,
and for each pair X, Y of objects of C the k-module H0(C)(X, Y ) = H0(C(X,Y )).
The functor H0 : K-Cat → k-Cat is also lax monoidal symmetric. Therefore, there
is a functor K-Cat-Cat → Cat-Cat, again denoted H0 by abuse of notation, and the
corresponding functor K-2-Catnu → 2-Catnu. See Appendix A for the definition of
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1-unital, non-2-unital K- or k- 2-categories. To KA∞ the functor assigns a 1-unital,
non-2-unital k-linear 2-category A∞. Let us describe it in detail. Objects of A∞ are
A∞-categories, 1-morphisms are A∞-functors, and 2-morphisms are elements of

H0(A∞(A,B)(f, g),m1)
s

∼
→ H−1(sA∞(A, B)(f, g), B1),

that is, equivalence classes of natural A∞-transformations r : f → g : A → B.
Natural A∞-transformations r, t : f → g : A → B are equivalent, if they are
connected by a 3-morphism λ : r → t, that is, r − t = λB1. Both compositions of
1-morphisms with 2-morphisms Mor2(A, B) ×Mor1(B,C) → Mor2(A, C), (r, h) 7→
rh and Mor1(A, B) × Mor2(B, C) → Mor2(A, C), (f, p) 7→ fp are compositions of
k-linear maps TsA → TsB → TsC. The vertical composition m2 of 2-morphisms,
translated to H−1(sA∞) assigns the natural A∞-transformation r ·p = (r⊗p)B2 to
natural A∞-transformations r : f → g and p : g → h. Indeed, (rs−1 ⊗ ps−1)m2s =
(rs−1 ⊗ ps−1)(s⊗ s)B2 = (r ⊗ p)B2. Compatibility of these constructions with the
equivalence relation is obvious from the construction, and can be verified directly.

7.2 Remark. Let A be an A∞-category. It determines a map Aω → Aω, described
in Remark 6.5. This map restricts to a map A∞(A, ) : A∞ → A∞. It takes an
A∞-category B to the A∞-category A∞(A,B), an A∞-functor g : B → C to the
A∞-functor (1⊗g)M : A∞(A, B) → A∞(A, C), and an equivalence class of a natural
A∞-transformation t : g → h : A → B to the equivalence class of the natural
A∞-transformation (1⊗ t)M : (1⊗ g)M → (1⊗ h)M : A∞(A, B) → A∞(A, C), see
Remark 6.5. Let us prove that A∞(A, ) : A∞ → A∞ is a strict 2-functor. Indeed, it
preserves the composition of 1-morphisms, (1⊗f)M(1⊗g)M = (1⊗fg)M , and the
both compositions of 1-morphisms and 2-morphisms, (1⊗f)M(1⊗t)M = (1⊗ft)M ,
(1⊗ t)M(1⊗f)M = (1⊗ tf)M , due to associativity of M . The vertical composition
of 2-morphisms is preserved due to (6.3.1) for m = 2:

[(1⊗ t1)M ⊗ (1⊗ t2)M ]B̃2 = [1⊗ (t1 ⊗ t2)B2]M.

7.3 Definition (Unital A∞-categories). Let C be an A∞-category. It is called
unital if for each object X of C there is a unit element – a k-linear map X iC0 : k→
(sC)−1(X,X) such that X iC0 b1 = 0, (X iC0 ⊗ X iC0 )b2 − X iC0 ∈ Im b1, and for all pairs
X, Y of objects of C the chain maps (1⊗Y iC0 )b2, (X iC0 ⊗1)b2 : sC(X,Y ) → sC(X, Y )
are homotopy invertible.

In particular, an A∞-algebra C is unital if it has an element iC0 ∈ (sC)−1 such that
iC0 b1 = 0, (iC0 ⊗iC0 )b2−iC0 ∈ Im b1, and the chain maps (1⊗iC0 )b2, (iC0 ⊗1)b2 : sC → sC
are homotopy invertible. Our definition differs from a that of a homological unit (e.g.
[LH02]) by the last invertibility condition. It produces rather a homotopical unit:

7.4 Lemma. Let X iC0 be as in Definition 7.3 of a unital A∞-category C, then for
each pair X, Y of objects of C we have

(1⊗ Y iC0 )b2 ∼ 1 : sC(X, Y ) → sC(X, Y ),

(X iC0 ⊗ 1)b2 ∼ −1 : sC(X,Y ) → sC(X, Y ).
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Proof. For each object X of C there is a k-linear map Xv0 : k→ (sC)−2(X,X) such
that (X iC0 ⊗ X iC0 )b2 − X iC0 = Xv0b1. Hence,

(X iC0 ⊗ 1)b2(X iC0 ⊗ 1)b2 = (X iC0 ⊗ X iC0 ⊗ 1)(1⊗ b2)b2
(2.3.1)∼
k=3

−(X iC0 ⊗ X iC0 ⊗ 1)(b2 ⊗ 1)b2

= −[(X iC0 ⊗ X iC0 )b2 ⊗ 1]b2 = −(X iC0 ⊗ 1)b2 − (Xv0b1 ⊗ 1)b2

= −(X iC0 ⊗ 1)b2 + b1(Xv0 ⊗ 1)b2 + (Xv0 ⊗ 1)b2b1 ∼ −(X iC0 ⊗ 1)b2,

(1⊗ Y iC0 )b2(1⊗ Y iC0 )b2 = −(1⊗ Y iC0 ⊗ Y iC0 )(b2 ⊗ 1)b2
(2.3.1)∼
k=3

(1⊗ Y iC0 ⊗ Y iC0 )(1⊗ b2)b2

= [1⊗ (Y iC0 ⊗ Y iC0 )b2]b2 = (1⊗ Y iC0 )b2 + (1⊗ Y v0b1)b2

= (1⊗ Y iC0 )b2 − b1(1⊗ Y v0)b2 − (1⊗ Y v0)b2b1 ∼ (1⊗ Y iC0 )b2.

We see that −(X iC0⊗1)b2 and (1⊗Y iC0 )b2 are invertible idempotents in K. Therefore,
these maps are both homotopic to the identity map.

This lemma shows that a unital A∞-algebra may be defined as an A∞-algebra
C, such that the graded associative k-algebra H•(C,m1) has a unit 1 ∈ H0(C,m1)
and for some/any representative 1C ∈ C0 of the class 1 ∈ H0(C,m1) the chain maps
(id⊗1C)m2, (1C⊗ id)m2 : C → C are homotopic to idC. A unit element iC0 ∈ (sC)−1

corresponds to a unit 1C ∈ C0 via 1Cs = iC0 .

7.5 Proposition. Let C be a unital A∞-category. Then the collection X iC0 extends
to a natural A∞-transformation iC : idC → idC : C → C such that (iC ⊗ iC)B2 ≡ iC.

Proof. Let k-linear maps Xv0 : k → (sC)−2(X, X) satisfy the equations (X iC0 ⊗
X iC0 )b2−X iC0 = Xv0b1. We will prove that given X iC0 , Xv0 (with X iC0 b1 = 0) are 0-th
components of a natural A∞-transformation iC and a 3-morphism v as follows:

iC : idC → idC : C → C,

v : (iC ⊗ iC)B2 → iC : idC → idC : C → C.

That is, we will prove the existence of (1, 1)-coderivations iC, v : TsC → TsC of
degree −1 (resp. −2) such that

iCb + biC = 0,

(iC ⊗ iC)B2 − iC = vb− bv.

We already have the 0-th components iC0 , v0. Let us construct the other components
of iC and v by induction. Given a positive n, assume that we have already found
components iCm, vm of the sought iC, v for m < n, such that the equations

(iCb)m + (biC)m = 0 : sC(X0, X1)⊗ · · · ⊗ sC(Xm−1, Xm) → sC(X0, Xm), (7.5.1)

[(iC ⊗ iC)B2]m − iCm = (vb)m − (bv)m :

sC(X0, X1)⊗ · · · ⊗ sC(Xm−1, Xm) → sC(X0, Xm) (7.5.2)

are satisfied for all m < n. Here (f)m =
(

TmsC ⊂ → TsC
f→ TsC

pr1→ sC
)

for
an arbitrary morphism of quivers f : TsC → TsC.
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Introduce (1, 1)-coderivations ĩ, v : TsC → TsC of degree −1 and −2 by
their components (iC0 , iC1 , . . . ,iCn−1, 0, 0, . . . ) (resp. (v0, v1, . . . , vn−1, 0, 0, . . . )). De-
fine (1, 1)-coderivations λ = ĩb+ b̃i of degree 0 and ν = (̃i⊗ ĩ)B2− ĩ− ṽB1 of degree
−1. Then equations (7.5.1), (7.5.2) imply that λm = 0, νm = 0 for m < n. The
identity λb− bλ = 0 implies that

λnd = λnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)λn = 0.

The n-th component of the identity

νB1 = (̃i⊗ ĩ)B2B1− ĩB1 = −(̃i⊗ ĩ)(1⊗B1+B1⊗1)B2−λ = −(̃i⊗λ)B2+(λ⊗ ĩ)B2−λ

gives

νnd = νnb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)νn = −(iC0 ⊗ λn)b2 + (λn ⊗ iC0 )b2 − λn

= −λn(iC0 ⊗ 1)b2 + λn(1⊗ iC0 )b2 − λn = −λnu′.

Here the chain map

u′ = (X0 i
C
0 ⊗ 1)b2 − (1⊗ Xn iC0 )b2 + 1 : sC(X0, Xn) → sC(X0, Xn)

is homotopic to −1 by Lemma 7.4. Hence, the map

u = Hom(N, u′) : Hom•(N, sC(X0, Xn)) → Hom•(N, sC(X0, Xn)), λn 7→ λnu′

is also homotopic to −1 for each complex of k-modules N , in particular, for N =
sC(X0, X1)⊗k · · · ⊗k sC(Xn−1, Xn). Therefore, the complex Cone(u) is contractible
by Lemma Appendix B.1. Since −λnd = 0 and νnd + λnu = 0, the element

(νn, λn) ∈ Hom−1
k (N, sC(X0, Xn))⊕Hom0

k(N, sC(X0, Xn)) = Cone−1(u)

is a cycle. Due to acyclicity of Cone(u) this element is a boundary of some element

(vn, iCn) ∈ Hom−2
k (N, sC(X0, Xn))⊕Hom−1

k (N, sC(X0, Xn)) = Cone−2(u),

that is, vnd+ iCnu = νn and −iCnd = λn. These equations can be rewritten as follows:

−iCnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)iCn = (̃ib)n + (b̃i)n,

vnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)vn − (iC0 ⊗ iCn)b2 − (iCn ⊗ iC0 )b2 + iCn

= [(̃i⊗ ĩ)B2]n − (ṽb)n + (bṽ)n.

In other words, (1, 1)-coderivations with components (iC0 , . . . , iCn−1, i
C
n, 0, . . . ),

(v0, . . . , vn−1, vn, 0, . . . ) satisfy equations (7.5.1), (7.5.2) for m 6 n. The con-
struction of iC, v goes on inductively.

7.6 Definition. A unit transformation of an A∞-category C is a natural A∞-trans-
formation iC : idC → idC : C → C such that (iC ⊗ iC)B2 ≡ iC, and for each pair X,
Y of objects of C the chain maps (1 ⊗ Y iC0 )b2, (X iC0 ⊗ 1)b2 : sC(X,Y ) → sC(X, Y )
are homotopy invertible.
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We have shown in Proposition 7.5 that an A∞-category C is unital if and only if
it has a unit transformation. Similar (although not identical to our) definitions of
units and unital A∞-categories are proposed by Kontsevich and Soibelman [KS02]
and Lefèvre-Hasegawa [LH02].

7.7 Proposition. Let A, C be A∞-categories. If C is unital, then A∞(A,C) is unital
as well.

Proof. We claim that

(1⊗ iC)M : (1⊗ idC)M → (1⊗ idC)M : A∞(A,C) → A∞(A, C)

is a unit of A∞(A,C). Indeed, (1⊗ idC)M = idA∞(A,C), and there is a 3-morphism
v : (iC ⊗ iC)B2 → iC : idC → idC : C → C. Hence, (iC ⊗ iC)B2 = iC + vB1, and by
(6.3.1)

[(1⊗ iC)M ⊗ (1⊗ iC)M ]B̃2 = [1⊗ (iC ⊗ iC)B2]M

= (1⊗ iC)M + (1⊗ vB1)M = (1⊗ iC)M + (1⊗ v)MB̃1 ≡ (1⊗ iC)M.

Let f : A → C be an A∞-functor. The 0-th component of (1 ⊗ iC)M is f [(1 ⊗
iC)M ]0 : k → sA∞(A, C)(f, f), 1 7→ f iC. It remains to prove that for each pair of
A∞-functors f, g : A → C the maps
(

1⊗ g[(1⊗ iC)M ]0
)

B2 : sA∞(A,C)(f, g) → sA∞(A, C)(f, g), r 7→ (r ⊗ giC)B2,
(

f [(1⊗ iC)M ]0 ⊗ 1
)

B2 : sA∞(A,C)(f, g) → sA∞(A,C)(f, g), r 7→ r(f iC ⊗ 1)B2,

are homotopy invertible.
Let us define a decreasing filtration of the complex (sA∞(A, C)(f, g), B1). For

n ∈ Z>0, we set

Φn = {r ∈ sA∞(A, C)(f, g) | ∀l < n rl = 0}
= {r ∈ sA∞(A, C)(f, g) | ∀l < n (T lsA)r = 0}.

Clearly, Φn is stable under B1 = [ , b], and we have

sA∞(A,C)(f, g) = Φ0 ⊃ Φ1 ⊃ · · · ⊃ Φn ⊃ Φn+1 ⊃ . . . .

Due to (5.1.3) and (3.0.1) the chain maps a = (1⊗giC)B2, c = (f iC⊗1)B2 preserve
the subcomplex Φn. By Definition 2.6 sA∞(A, C)(f, g) =

∏∞
n=0 Vn, where Vn is

the k-module (2.7.1) of n-th components rn of (f, g)-coderivations r. The filtration
consists of k-submodules Φn = 0× · · · × 0×

∏∞
m=n Vm.

The graded complex associated with this filtration is ⊕∞n=0Vn, and the differential
d : Vn → Vn induced by B1 is given by formula (2.7.2). The associated endomor-
phisms gr a, gr c of ⊕∞n=0Vn are given by the formulas

(rn) gr a = (rn ⊗ giC0 )b2 =
∏

X0,...,Xn∈Ob A

(X0,...,Xnrn ⊗ XngiC0 )b2,

(rn) gr c = rn(f iC0 ⊗ 1)b2 =
∏

X0,...,Xn∈Ob A

X0,...,Xnrn(X0f iC0 ⊗ 1)b2,
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rn ∈ Vn, as formulas (3.0.1), (5.1.3) show. Due to Lemma 7.4 for each pair X, Y of
objects of C the chain maps (1 ⊗ Y iC0 )b2, −(X iC0 ⊗ 1)b2 : sC(X, Y ) → sC(X, Y ) are
homotopic to the identity map, that is, (1 ⊗ Y iC0 )b2 = 1 + hd + dh, (X iC0 ⊗ 1)b2 =
−1 + h′d + dh′ for some k-linear maps h, h′ : sC(X,Y ) → sC(X,Y ) of degree −1.
Let us choose such homotopies X0,Xnh, X0,Xnh′ : sC(X0f, Xng) → sC(X0f, Xng)
for each pair X0, Xn of objects of A. Denote by H, H ′ :

∏∞
n=0 Vn →

∏∞
n=0 Vn

the diagonal maps X0,...,Xnrn 7→ X0,...,XnrnX0,Xnh, X0,...,Xnrn 7→ X0,...,XnrnX0,Xnh′.
Then gr a = 1+Hd+dH, gr c = −1+H ′d+dH ′. The chain maps a−HB1−B1H, c−
H ′B1−B1H ′, being restricted to maps ⊕∞m=0Vm →

∏∞
m=0 Vm give upper triangular

N×N matrices which, in turn, determine the whole map. Thus, a−HB1−B1H =
1 + N , c−H ′B1 −B1H ′ = −1 + N ′, where the N× N matrices N , N ′ are strictly
upper triangular. Therefore, 1 + N and −1 + N ′ are invertible (since their inverse
maps

∑∞
i=0(−N)i and −

∑∞
i=0(N

′)i make sense). Hence, a = (1 ⊗ giC)B2 and
c = (f iC ⊗ 1)B2 are invertible in K.

7.8 Corollary. Let f, g : A → C be A∞-functors. If C is unital, then

(1⊗ giC)B2 ∼ 1 : sA∞(A, C)(f, g) → sA∞(A, C)(f, g), and

(f iC ⊗ 1)B2 ∼ −1 : sA∞(A, C)(f, g) → sA∞(A, C)(f, g).

Proof. Follows from Proposition 7.7 and Lemma 7.4.

7.9 Corollary. Let r : f → g : A → C be a natural A∞-transformation. If C is
unital, then

(r ⊗ giC)B2 ≡ r, (f iC ⊗ r)B2 ≡ r.

Proof. By Corollary 7.8 there are homotopies h, h′ : sA∞(A, C)(f, g) →
sA∞(A, C)(f, g), which give

(r ⊗ giC)B2 = r(1⊗ giC)B2 = r + rB1h + rhB1 = r + (rh)B1 ≡ r,

(f iC ⊗ r)B2 = −r(f iC ⊗ 1)B2 = r + rB1h′ + rh′B1 = r + (rh′)B1 ≡ r.

7.10 Corollary. The unit transformation of a unital category is determined
uniquely up to equivalence.

Indeed, take f = idC and notice that any two unit transformations iC and ′iC of
C satisfy ′iC ≡ ′iC · iC ≡ iC.

7.11 Corollary. The full K-2-subcategory KuA∞ of non-2-unital K-2-category
KA∞, whose objects are unital A∞-categories and the other data are as in KA∞,
is a 1-2-unital K-2-category. The unit 2-endomorphism of an A∞-functor f : A → C
is the homotopy class of the chain map

1f : k→ (A∞(A,C)(f, f),m1), 1 7→ (f iC)s−1.

Proof. The composition

A∞(A,C)(f, g)
1⊗1g→ A∞(A, C)(f, g)⊗A∞(A, C)(g, g)

m2→ A∞(A, C)(f, g),

rs−1 7→ rs−1 ⊗ (giC)s−1 7→ (rs−1 ⊗ (giC)s−1)(s⊗ s)B2s−1 = (r ⊗ giC)B2s−1,
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is homotopic to the identity map by Corollary 7.8. Similarly, the composition

A∞(A,C)(f, g)
1f⊗1→ A∞(A,C)(f, f)⊗A∞(A, C)(f, g)

m2→ A∞(A, C)(f, g),

rs−1 7→ (f iC)s−1 ⊗ rs−1 7→ (−)r−1(f iC ⊗ r)B2s−1 = −r(f iC ⊗ 1)B2s−1,

is homotopic to the identity map.

7.12 Corollary. The full 2-subcategory uA∞ of non-2-unital 2-category A∞, which
consists of unital A∞-categories, all A∞-functors between them, and equivalence
classes of all natural A∞-transformations is a (usual 1-2-unital) 2-category. The unit
2-endomorphism of an A∞-functor f : A → C is f iC. In this 2-category the notions of
an isomorphism between A∞-functors, an equivalence between A∞-categories, etc.
make sense. For instance, r : f → g : A → B is an isomorphism if there is a natural
A∞-transformation p : g → f , such that (r ⊗ p)B2 ≡ f iB and (p⊗ r)B2 ≡ giB. An
A∞-functor f : A → B is an equivalence if there exists an A∞-functor g : B → A
and isomorphisms idA → fg and idB → gf .

Proof. Follows from Corollary 7.9 or 7.11.

7.13. Invertible transformations. Let B, C be A∞-categories, and let f, g :
Ob C → Ob B be maps. Assume that B is unital and that for each object X of C
there are k-linear maps

Xr0 : k→ (sB)−1(Xf, Xg), Xp0 : k→ (sB)−1(Xg,Xf),

Xw0 : k→ (sB)−2(Xf,Xf), Xv0 : k→ (sB)−2(Xg, Xg),

such that

Xr0b1 = 0, Xp0b1 = 0,

(Xr0 ⊗ Xp0)b2 − Xf iB0 = Xw0b1, (7.13.1)

(Xp0 ⊗ Xr0)b2 − XgiB0 = Xv0b1.

7.14 Lemma. Let the above assumptions hold. Then for all objects X of C and Y
of B the chain maps

(r0 ⊗ 1)b2 : sB(Xg, Y ) → sB(Xf, Y ) and (p0 ⊗ 1)b2 : sB(Xf, Y ) → sB(Xg, Y ),

(1⊗ r0)b2 : sB(Y,Xf) → sB(Y, Xg) and (1⊗ p0)b2 : sB(Y,Xg) → sB(Y, Xf)

are homotopy inverse to each other.

Proof. We have

(r0 ⊗ 1)b2(p0 ⊗ 1)b2 = (p0 ⊗ r0 ⊗ 1)(1⊗ b2)b2

= −(p0 ⊗ r0 ⊗ 1)[(b2 ⊗ 1)b2 + b3b1 + (1⊗ 1⊗ b1)b3] (7.14.1)

= −(XgiB0 ⊗ 1)b2 − (v0b1 ⊗ 1)b2 − (p0 ⊗ r0 ⊗ 1)b3b1 − b1(p0 ⊗ r0 ⊗ 1)b3

∼ 1 + b1(v0 ⊗ 1)b2 + (v0 ⊗ 1)b2b1 ∼ 1 : sB(Xg, Y ) → sB(Xg, Y ).

For symmetry reasons also

(p0 ⊗ 1)b2(r0 ⊗ 1)b2 ∼ 1 : sB(Xf, Y ) → sB(Xf, Y ).
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Therefore, (r0 ⊗ 1)b2 and (p0 ⊗ 1)b2 are homotopy inverse to each other.
Similarly, (1⊗ r0)b2 and (1⊗ p0)b2 are homotopy inverse to each other.

7.15 Proposition. Let r : f → g : C → B be a natural A∞-transformation,
where B is unital, and let p0, v0, w0 be as in Section 7.13 so that equations (7.13.1)
hold. Then p0, w0 extend to a natural A∞-transformation p : g → f : C → B, a
3-morphism w, and there is a 3-morphism t as follows:

w : (r ⊗ p)B2 → f iB : f → f : C → B, (7.15.1)

t : (p⊗ r)B2 → giB : g → g : C → B. (7.15.2)

In particular, r is invertible and p = r−1 in A∞.

Proof. Let us drop equation (7.15.2) and prove the existence of p and w, satisfying
(7.15.1). We have to satisfy the equations

pb + bp = 0, (7.15.3)

(r ⊗ p)B2 − f iB = [w, b]. (7.15.4)

Let us construct the components of p and w by induction. Given a positive n, assume
that we have already found components pm, wm of the sought p, w for m < n, such
that the equations

(pb)m + (bp)m = 0 : sC(X0, X1)⊗ · · · ⊗ sC(Xm−1, Xm) → sB(X0g, Xmf), (7.15.5)

[(r ⊗ p)B2]m − (f iB)m = (wb)m − (bw)m :

sC(X0, X1)⊗ · · · ⊗ sC(Xm−1, Xm) → sB(X0f, Xmf) (7.15.6)

are satisfied for all m < n. Introduce a (g, f)-coderivation p̃ : TsC → TsB of
degree −1 by its components (p0, p1, . . . , pn−1, 0, 0, . . . ) and an (f, f)-coderivation
w̃ : TsC → TsB of degree −2 by its components (w0, w1, . . . , wn−1, 0, 0, . . . ). Define
a (g, f)-coderivation λ = p̃b + bp̃ of degree 0 and an (f, f)-coderivation ν = (r ⊗
p̃)B2−f iB−[w̃, b] of degree −1. Then equations (7.15.3), (7.15.4) imply that λm = 0,
νm = 0 for m < n. The identity λb− bλ = 0 implies that

λnd = λnb1 −
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)λn = 0.

The identity

[ν, b] = νB1 = (r ⊗ p̃)B2B1 − (f iB)B1 − w̃B1B1 = −(r ⊗ p̃)(1⊗B1 + B1 ⊗ 1)B2

= −(r ⊗ p̃B1)B2 = −(r ⊗ λ)B2

implies that

νnb1 +
∑

q+1+t=n

(1⊗q ⊗ b1 ⊗ 1⊗t)νn = −(r0 ⊗ λn)b2,

that is, νnd = −λnu. Here the map u = Hom(N, (r0⊗ 1)b2) for N = sC(X0, X1)⊗k
· · ·⊗ksC(Xn−1, Xn) is homotopy invertible, and the complex Cone(u) is contractible
by Lemma Appendix B.1. Hence, the cycle

(νn, λn) ∈ Hom−1
k (N, sB(X0f, Xnf))⊕Hom0

k(N, sB(X0g,Xnf)) = Cone−1(u)



Homology, Homotopy and Applications, vol. 5(1), 2003 33

is the boundary of some element

(wn, pn) ∈ Hom−2
k (N, sB(X0f, Xnf))⊕Hom−1

k (N, sB(X0g, Xnf)) = Cone−2(u),

that is, wnd+pnu = νn and −pnd = λn. In other words, equations (7.15.5), (7.15.6)
are satisfied for m = n, and we prove the statement by induction.

For similar reasons using Lemma 7.14 there exists a natural A∞-transformation
q : g → f : C → B with q0 = p0 and a 3-morphism

v : (q ⊗ r)B2 → giB : g → g : C → B

with given v0. Since r has a left inverse and a right inverse, it is invertible in A∞
and p is equivalent to q. Hence, (p⊗r)B2 is equivalent to (q⊗r)B2, and there exists
t of (7.15.2).

8. Unital A∞-functors

8.1 Definition. Let A, B be unital A∞-categories. An A∞-functor f : A → B is
called unital if for all objects X of A we have X iA0 f1 − Xf iB0 ∈ Im b1.

For instance, an A∞-homomorphism f : A → B of A∞-algebras is unital if
the cycles iA0 f1, iB0 ∈ (sB)−1 are cohomologous in (sB, b1). We may say that a
unital A∞-functor (or A∞-homomorphism) preserves the cohomology classes of unit
elements.

8.2 Proposition. Let A, B be unital A∞-categories. An A∞-functor f : A → B is
unital if and only if iAf ≡ f iB.

Proof. If iAf = f iB + vB1, then X iA0 f1 = X(iAf)0 = X(f iB + vB1)0 = Xf iB0 +
Xv0b1, hence, f is unital.

Assume now that f is unital. We want to find a 3-morphism

v : iAf → f iB : f → f : A → B,

that is, an (f, f)-coderivation v of degree −2 such that

vB1 = iAf − f iB. (8.2.1)

We subject it to an additional condition described below. Consider 3-morphisms

x : (iA ⊗ iA)B2 → iA : idA → idA : A → A,

y : (iB ⊗ iB)B2 → iB : idB → idB : B → B,

so that

xB1 = (iA ⊗ iA)B2 − iA, yB1 = (iB ⊗ iB)B2 − iB.

The following equations between (f, f)-coderivations of degree −2 are due to (7.1.2),
(7.1.3):

(xf)B1 = (iA ⊗ iA)B2f − iAf = (iAf ⊗ iAf)B2 + (iA ⊗ iA | f)M20B1 − iAf,

(fy)B1 = f(iB ⊗ iB)B2 − f iB = (f iB ⊗ f iB)B2 − f iB.
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Combining them with (8.2.1) we find that

(xf)B1 − (iA ⊗ iA | f)M20B1 + vB1

= (iAf ⊗ iAf)B2 − f iB

= (iAf ⊗ vB1)B2 + (iAf ⊗ f iB)B2 − f iB

= −(iAf ⊗ v)B2B1 + (vB1 ⊗ f iB)B2 + (f iB ⊗ f iB)B2 − f iB

= −(iAf ⊗ v)B2B1 + (v ⊗ f iB)B2B1 + (fy)B1.

Now we may formulate the problem: we are looking for v as above and an (f, f)-
coderivation w of degree −3, such that

wB1 = xf − (iA ⊗ iA | f)M20 + v + (iAf ⊗ v)B2 − (v ⊗ f iB)B2 − fy,

in other terms, a 4-morphism

w : xf − (iA ⊗ iA | f)M20 + v → fy − (iAf ⊗ v)B2 + (v ⊗ f iB)B2 :

(iAf ⊗ iAf)B2 → f iB : f → f : A → B.

Using the chain map

u = (1⊗f iB)B2−1−(iAf⊗1)B2 : (sA∞(A, B)(f, f), B1) → (sA∞(A, B)(f, f), B1),

we may rewrite our system of equations as follows:

−vB1 = f iB − iAf,

wB1 + vu = xf − (iA ⊗ iA | f)M20 − fy. (8.2.2)

In other words, we look for an element

(w, v) ∈ [sA∞(A, B)(f, f)]−3 ⊕ [sA∞(A,B)(f, f)]−2 = Cone−3(u),

whose boundary is

(xf − (iA ⊗ iA | f)M20 − fy, f iB − iAf)

∈ [sA∞(A, B)(f, f)]−2 ⊕ [sA∞(A, B)(f, f)]−1 = Cone−2(u).

Let us prove that u is homotopy invertible. Since

X iA0 f1 = Xf iB0 + Xzb1 : k→ (sB)−1(Xf,Xf),

for some Xz, the cycles Xr0 = X iA0 f1 and Xp0 = Xf iB0 satisfy conditions (7.13.1)
for g = f : Ob A → Ob B, that is,

(X iA0 f1 ⊗ Xf iB0 )b2 − Xf iB0 = (Xf iB0 ⊗ Xf iB0 )b2 − Xf iB0 + (Xz ⊗ Xf iB0 )b2b1 ∈ Im b1,

(Xf iB0 ⊗ X iA0 f1)b2 − Xf iB0 = (Xf iB0 ⊗ Xf iB0 )b2 − Xf iB0 − (Xf iB0 ⊗ Xz)b2b1 ∈ Im b1.

Hence, the natural A∞-transformation r = iAf : f → f : A → B is invertible by
Proposition 7.15. In detail, there exists a natural A∞-transformation p : f → f :
A → B and 3-morphisms q, t such that

(iAf ⊗ p)B2 − f iB = qB1, (p⊗ iAf)B2 − f iB = tB1. (8.2.3)
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These equations are interpreted as equations (7.13.1) for the following data. Let
C = 1 be a 1-object-0-morphisms A∞-category, Ob C = {∗}, C(∗, ∗) = 0. Consider
a map Ob C → Ob A∞(A, B), ∗ 7→ f , and elements iAf, p ∈ [sA∞(A, B)(f, f)]−1,
q, t ∈ [sA∞(A, B)(f, f)]−2. Equations (7.13.1) for these data are precisely (8.2.3),
since f i

A∞(A,B)
0 = f iB. By Lemma 7.14 we deduce that

(iAf ⊗ 1)B2 : (sA∞(A, B)(f, f), B1) → (sA∞(A, B)(f, f), B1),

is homotopy invertible. Since the map (1⊗ f iB)B2 − 1 is homotopic to 0 by Corol-
lary 7.8, we deduce that u is homotopy invertible. Therefore, Cone(u) is contractible
by Lemma Appendix B.1.

To prove the existence of (w, v) satisfying (8.2.2) it suffices to show that (xf −
(iA ⊗ iA | f)M20 − fy, f iB − iAf) ∈ Cone−2(u) is a cycle. And indeed,

[xf − (iA ⊗ iA | f)M20 − fy]B1 + (f iB − iAf)u

= (xB1)f − (iA ⊗ iA | f)M20B1 − f(yB1)

+ [(f iB − iAf)⊗ f iB]B2 − f iB + iAf + [iAf ⊗ (f iB − iAf)]B2

= (iA ⊗ iA)B2f − iAf − (iA ⊗ iA | f)M20B1 − f(iB ⊗ iB)B2 + f iB

+ (f iB ⊗ f iB)B2 − (iAf ⊗ f iB)B2 − f iB + iAf + (iAf ⊗ f iB)B2

− (iAf ⊗ iAf)B2

= −[(iA ⊗ iA)(1⊗B1 + B1 ⊗ 1) | f ]M20 = 0

due to (7.1.2) and (7.1.3). Clearly, (f iB− iAf)B1 = 0, so the proposition is proven.

Clearly, the composition of unital functors is unital. If B, C are unital A∞-cate-
gories, r : f → g : B → C is an isomorphism of A∞-functors and f is unital, then g
is unital as well. Indeed, distributivity law in A∞ implies

B

f

r⇓
→

g→
iBg⇓

g
→

C =
(

B
idB

iB⇓
→

idB
→ B

f

r⇓
→

g
→ C

)

= B

f

iBf⇓≡f iC
→

f →
r⇓
g
→

C

=
(

B
f

r⇓
→

g
→ C

idC

iC⇓
→

idC
→ C

)

= B

f

r⇓
→

g→
giC⇓

g
→

C,

or r · (iBg) = iB ◦h r = (iBf) · r = (f iC) · r = r ◦h iC = r · (giC), (8.2.4)

where · and ◦h denote the vertical and the horizontal compositions of 2-morphisms,
hence, iBg ≡ giC.

8.3 Definition. The 2-category Au
∞ is a 2-subcategory of uA∞, whose class of

objects consists of all unital A∞-categories, 1-morphisms are all unital A∞-functors,
and 2-morphisms are equivalence classes of all natural A∞-transformations between
such functors.
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8.4 Proposition. Let A be an A∞-category. The strict 2-functor A∞(A, ) maps
a unital A∞-category C to the unital A∞-category A∞(A, C), and a unital functor
to a unital functor. Its restrictions A∞(A, ) : uA∞ → uA∞, A∞(A, ) : Au

∞ → Au
∞

preserve 1-units and 2-units, thus, they are 2-functors in the usual sense.

Proof. Proposition 7.7 shows that A∞(A, C) is unital, if C is unital. If g : B → C is
a unital A∞-functor between unital A∞-categories B and C, then iBg ≡ giC implies

(1⊗ iB)M(1⊗ g)M = (1⊗ iBg)M ≡ (1⊗ giC)M = (1⊗ g)M(1⊗ iC)M, (8.4.1)

hence, (1⊗ g)M is unital. The fact, that A∞(A, ) preserves 1-units and 2-units is
already proven in Proposition 7.7.

8.5. Categories modulo homotopy. K-categories form a 2-category K-Cat.
We consider also non-unital K-categories. They form a 2-category K-Catnu without
2-units (but with 1-units – identity functors).

8.6 Proposition. There is a strict 2-functor k : A∞ → K-Catnu of non-2-unital
2-categories, which assigns to an A∞-category C the K-category kC with the same
class of objects Ob kC = Ob C, the same graded k-module of morphisms kC(X, Y ) =
C(X, Y ), equipped with the differential m1. Composition in kC is given by (the ho-
motopy equivalence class of) m2 : C(X, Y )⊗C(Y,Z) → C(X, Z). To an A∞-functor
f : A → B is assigned kf : kA → kB such that Ob kf = f : Ob A → Ob B, and for
each pair of objects X, Y of A we have kf = sf1s−1 : A(X, Y ) → B(Xf, Y f). To
a natural A∞-transformation r : f → g : A → B is assigned kr = r0s−1 : kf → kg,
that is, for each object X of A the component Xkr is the homotopy equivalence class
of chain map Xr0s−1 : k→ B(Xf, Xg). Unital A∞-categories and unital A∞-func-
tors are mapped by k to unital K-categories and unital K-functors. The restriction
k : Au

∞ → K-Cat is a 2-functor, which preserves 1-units and 2-units.

Proof. The identity (7.1.1) shows that m2 is associative in K. The identity

(kf ⊗ kf)m2 + (s⊗ s)f2s−1m1 + (1⊗m1 + m1 ⊗ 1)(s⊗ s)f2s−1 + m2kf = 0

shows that kf preserves the multiplication in K.
The map Xkr is a chain map since Xr0s−1m1 = Xr0b1s−1 = 0. If r ≡ p : f →

g : A → B, then Xr0 = Xp0 + Xv0b1 for some Xv0 ∈ (sB)−2(Xf, Xg), therefore,
Xr0s−1 = Xp0s−1+(Xv0s−1)m1 and chain maps Xr0s−1 and Xp0s−1 are homotopic
to each other, that is, kr = kp. The identity

0 = s[(f1 ⊗ Y r0)b2 + (Xr0 ⊗ g1)b2 + r1b1 + b1r1]s−1

= (kf⊗Y kr)m2−(Xkr⊗kg)m2+sr1s−1m1+m1sr1s−1 : A(X,Y ) → B(Xf, Y g)

shows that the following diagram commutes in K for all objects X, Y of A

A(X,Y )
kf → B(Xf, Y f)

B(Xg, Y g)

kg↓
(Xkr⊗1)m2→ B(Xf, Y g)

(1⊗Y kr)m2↓
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Thus kr is, indeed, a K-natural transformation.
One checks easily that the composition of functors is preserved, and the both

compositions of 1-morphisms and 2-morphisms are preserved. The vertical compo-
sition of 2-morphisms is preserved due to the property

Xk[(r ⊗ p)B2] = X [(r ⊗ p)B2]0s−1 = (Xr0 ⊗ Xp0)b2s−1 = (Xkr ⊗ Xkp)m2.

Let B be a unital category. Then kB is a unital K-category. Indeed, for each object
X of B consider the corresponding element 1X = X iB0 s−1 = XkiB : k→ B0(X,X).
Then for each pair X, Y of objects of C the following equations hold in K

(1⊗ 1Y )m2 = s(1⊗ 1Y s)b2s−1 = s(1⊗ Y iB0 )b2s−1 = ss−1

= 1 : B(X,Y ) → B(X,Y ),

(1X ⊗ 1)m2 = −s(1Xs⊗ 1)b2s−1 = −s(X iB0 ⊗ 1)b2s−1

= ss−1 = 1 : B(X,Y ) → B(X, Y ).

That is, 1X is the unit endomorphism of X.
If f : A → C is unital then, applying k to the equivalence iAf ≡ f iC, we find

that (1idkA)kf = (kf)1idkC = 1kf , that is, kf is unital (it maps units into units).

8.7 Lemma (Cancellation). Let φ : C → B be an A∞-functor, such that for
all objects X, Y of C the chain map φ1 : (sC(X, Y ), b1) → (sB(Xφ, Y φ), b1) is
invertible in K. Let f, g : A → C be A∞-functors. Let y : fφ → gφ : A → B
be a natural A∞-transformation. Then there is a unique up to equivalence natural
A∞-transformation t : f → g : A → C such that y ≡ tφ.

Proof. First we prove the existence. We are looking for a 2-morphism t : f → g :
A → C and a 3-morphism v : y → tφ : fφ → gφ : A → B. We have to satisfy the
equations

tb + bt = 0, y − tφ = vb− bv.

Let us construct the components of t and v by induction. Given a non-negative
integer n, assume that we have already found components tm, vm of the sought t,
v for m < n, such that the equations

(tb)m + (bt)m = 0 : sA(X0, X1)⊗ · · · ⊗ sA(Xm−1, Xm) → sC(X0f,Xmg), (8.7.1)

ym − (tφ)m = (vb− bv)m : sA(X0, X1)⊗ · · · ⊗ sA(Xm−1, Xm) → sB(X0fφ, Xmgφ),
(8.7.2)

are satisfied for all m < n. Introduce an (f, g)-coderivation t̃ : TsA → TsC of
degree −1 by its components (t0, . . . , tn−1, 0, 0, . . . ) and an (fφ, gφ)-coderivation
ṽ : TsA → TsB of degree −2 by its components (v0, . . . , vn−1, 0, 0, . . . ). Define
an (f, g)-coderivation λ = t̃b + bt̃ of degree 0 and an (fφ, gφ)-coderivation ν =
y − t̃φ − ṽb + bṽ of degree −1. Then equations (8.7.1), (8.7.2) imply that λm = 0,
νm = 0 for m < n. The identity λb− bλ = 0 implies that

λnd = λnb1 −
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)λn = 0. (8.7.3)
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The identity

νb + bν = −t̃φb− bt̃φ = −λφ

implies that

νnd = νnb1 +
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)νn = −λnφ1. (8.7.4)

Denote N = sA(X0, X1)⊗k · · · ⊗k sA(Xn−1, Xn), and consider the chain map

u = Hom(N, φ1) : Hom•(N, sC(X0f, Xng)) → Hom•(N, sC(X0fφ, Xngφ)).

Since φ1 is homotopy invertible, the map u is homotopy invertible as well. Therefore,
the complex Cone(u) is acyclic. Moreover, it is contractible by Lemma Appendix
B.1. Equations (8.7.3) and (8.7.4) in the form −λnd = 0, νnd + λnφ1 = 0 imply
that

(νn, λn) ∈ Hom−1
k (N, sB(X0fφ,Xngφ))⊕Hom0

k(N, sC(X0f,Xng)) = Cone−1(u)

is a boundary of some element

(vn, tn) ∈ Hom−2
k (N, sB(X0fφ, Xngφ))⊕Hom−1

k (N, sC(X0f,Xng)) = Cone−2(u),

that is, vnd + tnu = νn and −tnd = λn. In other words, equations (8.7.1), (8.7.2)
are satisfied for m = n, and we prove the existence of t with the required properties
by induction.

Now we prove the uniqueness of t. Assume that we have 2-morphisms t, t′ : f →
g : A → C and 3-morphisms v : y → tφ : fφ → gφ : A → B, v′ : y → t′φ : fφ →
gφ : A → B. We look for a 3-morphism w and a 4-morphism x:

w : t → t′ : f → g : A → C,

x : v′ → v + wφ : y → t′φ : fφ → gφ : A → B.

They have to satisfy equations

t− t′ = wb− bw, v′ − v − wφ = xb + bx.

Let us construct the components of w and x by induction. Given a non-negative
integer n, assume that we have already found components wm and xm of the sought
w, x for m < n, such that the equations

tm − t′m = (wb− bw)m : sA(X0, X1)

⊗ · · · ⊗ sA(Xm−1, Xm) → sC(X0f,Xmg), (8.7.5)

v′m − vm − (wφ)m = (xb + bx)m : sA(X0, X1)

⊗ · · · ⊗ sA(Xm−1, Xm) → sB(X0fφ, Xmgφ), (8.7.6)

are satisfied for all m < n. Introduce an (f, g)-coderivation w̃ : TsA → TsC of
degree −2 by its components (w0, . . . , wn−1, 0, 0, . . . ) and an (fφ, gφ)-coderivation
x̃ : TsA → TsB of degree −3 by its components (x0, . . . , xn−1, 0, 0, . . . ). Define an
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(f, g)-coderivation λ = t′ − t + w̃b + bw̃ of degree −1 and an (fφ, gφ)-coderivation
ν = v′ − v − w̃φ− x̃b− bx̃ of degree −2. Then equations (8.7.5), (8.7.6) imply that
λm = 0, νm = 0 for m < n. The identity λb + bλ = 0 implies that

λnd = λnb1 +
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)λn = 0.

The identity

νb− bν = v′B1 − vB1 − w̃φb + bw̃φ = y − t′φ− y + tφ− w̃bφ + bw̃φ = −λφ

implies that

νnd = νnb1 −
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)νn = −λnφ1.

Hence,

(νn, λn) ∈ Hom−2
k (N, sB(X0fφ, Xngφ))⊕Hom−1

k (N, sC(X0f, Xng)) = Cone−2(u)

is a cycle, therefore, it is a boundary of an element

(xn, wn) ∈ Hom−3
k (N, sB(X0fφ, Xngφ))⊕Hom−2

k (N, sC(X0f,Xng)) = Cone−3(u),

that is, xnd+wnφ1 = νn and −wnd = λn. In other words, equations (8.7.5), (8.7.6),
are satisfied for m = n, and we prove the uniqueness of t, using induction.

A version of the following theorem is proved by Fukaya [Fuk, Theorem 8.6] with a
different notion of unitality and under the additional assumption that the k-modules
B(W,Z), C(X, Y ) are free.

8.8 Theorem. Let C be an A∞-category and let B be a unital A∞-category. Let
φ : C → B be an A∞-functor such that for all objects X, Y of C the chain map
φ1 : (sC(X, Y ), b1) → (sB(Xφ, Y φ), b1) is invertible in K. Let h : Ob B → Ob C be
a mapping. Assume that for each object U of B the k-linear maps

Ur0 : k→ (sB)−1(U,Uhφ), Up0 : k→ (sB)−1(Uhφ,U),

Uw0 : k→ (sB)−2(U,Uhφ), Uv0 : k→ (sB)−2(Uhφ,U)

are given such that

Ur0b1 = 0, Up0b1 = 0,

(Ur0 ⊗ Up0)b2 − U iB0 = Uw0b1, (8.8.1)

(Up0 ⊗ Ur0)b2 − UhφiB0 = Uv0b1.

Then there is an A∞-functor ψ : B → C such that Obψ = h, there are natural
A∞-transformations r : idB → ψφ, p : ψφ → idB such that their 0-th components
are the given Ur0, Up0. Moreover, r and p are inverse to each other in the sense that

(r ⊗ p)B2 ≡ iB, (p⊗ r)B2 ≡ ψφiB.

There exist unique up to equivalence natural A∞-transformations t : idC → φψ,
q : φψ → idC such that tφ ≡ φr : φ → φψφ and qφ ≡ φp : φψφ → φ.
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Finally, C is unital with the unit

iC = (t⊗ q)B2 : idC → idC : C → C,

φ and ψ are unital A∞-equivalences, quasi-inverse to each other via mutually inverse
isomorphisms r and p, t and q (in particular, (q ⊗ t)B2 ≡ φψiC).

Proof. We have to satisfy the equations

ψb = bψ, rb + br = 0.

We already know the map Ob ψ and the component r0. Let us construct the re-
maining components of ψ and r by induction. Given a positive integer n, assume
that we have already found components ψm, rm of the sought ψ, r for m < n, such
that the equations

(ψb)m + (bψ)m = 0 : sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm) → sC(X0h,Xmh),
(8.8.2)

(rb + br)m = 0 : sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm) → sB(X0, Xmhφ) (8.8.3)

are satisfied for all m < n. Introduce a cocategory homomorphism ψ̃ : TsB → TsC
of degree 0 by its components (ψ1, . . . , ψn−1, 0, 0, . . . ) and a (idB, ψ̃φ)-coderivation
r̃ : TsB → TsB of degree −1 by its components (r0, r1, . . . , rn−1, 0, 0, . . . ). Define a
(ψ̃, ψ̃)-coderivation λ = ψ̃b− bψ̃ of degree 1 and a map ν = −r̃b− br̃ + (r̃ ⊗ λφ)θ :
TsB → TsB of degree 0. The commutator r̃b + br̃ has the following property:

(r̃b + br̃)∆ = ∆
[

1⊗ (r̃b + br̃) + (r̃b + br̃)⊗ ψ̃φ + r̃ ⊗ λφ
]

.

By Proposition 3.1 the map (r̃ ⊗ λφ)θ has a similar property

(r̃ ⊗ λφ)θ∆ = ∆
[

1⊗ (r̃ ⊗ λφ)θ + (r̃ ⊗ λφ)θ ⊗ ψ̃φ + r̃ ⊗ λφ
]

.

Taking the difference we find that ν is an (idB, ψ̃φ)-coderivation. Equations (8.8.2),
(8.8.3) imply that λm = 0, νm = 0 for m < n (the image of (r̃ ⊗ λφ)θ is contained
in T>2sB).

The identity λb + bλ = 0 implies that

λnd = λnb1 +
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)λn = 0. (8.8.4)

The identity

νb− bν = (r̃ ⊗ λφ)θb− b(r̃ ⊗ λφ)θ

implies that

νnb1 −
∑

α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)νn = −(r0 ⊗ λnφ1)b2 = −λnφ1(r0 ⊗ 1)b2. (8.8.5)

Set N = sB(X0, X1)⊗k · · · ⊗k sB(Xn−1, Xn), and introduce a chain map

u = Hom(N, φ1(r0 ⊗ 1)b2) : Hom•(N, sC(X0h,Xnh)) → Hom•(N, sB(X0, Xnhφ)).

Since φ1 and (r0 ⊗ 1)b2 are homotopy invertible by Lemma 7.14, the map u is
homotopy invertible as well. Therefore, the complex Cone(u) is contractible by
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Lemma Appendix B.1. Equations (8.8.4) and (8.8.5) in the form −λnd = 0, νnd +
λnu = 0 imply that

(νn, λn) ∈ Hom0
k(N, sB(X0, Xnhφ))⊕Hom1

k(N, sC(X0h,Xnh)) = Cone0(u)

is a cycle. Hence, it is a boundary of some element

(rn, ψn) ∈ Hom−1
k (N, sB(X0, Xnhφ))⊕Hom0

k(N, sC(X0h,Xnh)) = Cone−1(u),

that is, rnd + ψnφ1(r0 ⊗ 1)b2 = νn and −ψnd = λn. In other words, equations
(8.8.2), (8.8.3) are satisfied for m = n, and we prove the existence of ψ and r by
induction.

Since r0 and p0 are homotopy inverse to each other in the sense of (8.8.1), we find
by Proposition 7.15 that there exists a natural A∞-transformation p : ψφ → idB

such that r and p are inverse to each other.
The existence of t, q such that tφ ≡ φr and qφ ≡ φp follows by Lemma 8.7. Let

us prove that iC = (t⊗ q)B2 is a unit of C. Due to Lemma 7.14 the maps (r0⊗ 1)b2,
(1⊗ r0)b2, (p0⊗ 1)b2, (1⊗ p0)b2 are homotopy invertible. Let f denote a homotopy
inverse map of φ1 : sC(X,Y ) → sB(Xφ, Y φ). The identity tφ ≡ φr implies that
Xt0φ1 = Xφr0 + κb1. Hence,

(Xφr0 ⊗ 1)b2 ∼ (Xt0φ1 ⊗ 1)b2 ∼ f(Xt0 ⊗ 1)b2φ1.

Therefore, (Xt0 ⊗ 1)b2 ∼ φ1(Xφr0 ⊗ 1)b2f is homotopy invertible. Similarly,

(1⊗ Y φr0)b2 ∼ (1⊗ Y t0φ1)b2 ∼ f(1⊗ Y t0)b2φ1

implies that (1⊗Y t0)b2 ∼ φ1(1⊗Y φr0)b2f is homotopy invertible. Similarly, (Xq0⊗
1)b2 and (1⊗ Y q0)b2 are homotopy invertible.

The computation made in (7.14.1) shows that the product of the above homotopy
invertible maps

(q0 ⊗ 1)b2(t0 ⊗ 1)b2 ∼ −(t0 ⊗ q0 ⊗ 1)(b2 ⊗ 1)b2 = −(iC0 ⊗ 1)b2

is the map we are studying. Similarly,

(1⊗ t0)b2(1⊗ q0)b2 ∼ (1⊗ t0 ⊗ q0)(1⊗ b2)b2 = (1⊗ iC0 )b2.

We conclude that both (iC0 ⊗ 1)b2 and (1⊗ iC0 )b2 are homotopy invertible.
Let us prove that (iC ⊗ iC)B2 ≡ iC. Due to Proposition 7.1 we have

iCφ = (t⊗ q)B2φ ≡ (tφ⊗ qφ)B2 ≡ (φr ⊗ φp)B2 = φ(r ⊗ p)B2 ≡ φiB. (8.8.6)

Using Proposition 7.1 again we get

(iC ⊗ iC)B2φ ≡ (iCφ⊗ iCφ)B2 ≡ (φiB ⊗ φiB)B2 = φ(iB ⊗ iB)B2 ≡ φiB ≡ iCφ.

By Lemma 8.7 we deduce that (iC ⊗ iC)B2 ≡ iC, therefore, iC is a unit of C.
Let us prove that t and q are inverse to each other. By definition, (t⊗ q)B2 = iC.

Due to Proposition 7.1

(q ⊗ t)B2φ ≡ (qφ⊗ tφ)B2 ≡ (φp⊗ φr)B2 = φ(p⊗ r)B2 ≡ φψφiB ≡ φψiCφ.

By Lemma 8.7 (q ⊗ t)B2 ≡ φψiC. Hence, t and q are inverse to each other, as well
as r and p. Therefore, φ and ψ are equivalences, quasi-inverse to each other.
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Relation (8.8.6) shows that φ is unital. Let us prove that ψ is unital. We know
that ψφ is isomorphic to the identity functor. Thus, ψφ is unital by (8.2.4). Hence,
iBψφ ≡ ψφiB ≡ ψiCφ. By Lemma 8.7 we have iBψ ≡ ψiC, and ψ is unital. The
theorem is proven.

8.9 Corollary. Let C, B be unital A∞-categories, and let φ : C → B be an equiv-
alence. Then φ is unital.

Proof. Since φ is an equivalence, kφ is an equivalence as well. Hence, φ1 is invertible
in K. There exists an A∞-functor ψ : B → C quasi-inverse to φ, and mutually
inverse isomorphisms r : idB → ψφ, p : ψφ → idB. In particular, the assumptions
of Theorem 8.8 are satisfied by φ, Ob ψ : Ob B → Ob C, r0 and p0. The theorem
implies that φ is unital.

8.10 Corollary. Let C be an A∞-algebra and let B be a unital A∞-algebra (viewed
as A∞-categories with one object). Let φ : C → B be an A∞-homomorphism such
that φ1 : (sC, b1) → (sB, b1) is homotopy invertible. Then C and φ are unital, and
φ is an A∞-equivalence.

Existence of φ with the above property might be taken as an equivalence relation
on the class of unital A∞-algebras.

8.11. Strictly unital A∞-categories. A strict unit of an object X of an
A∞-category A is an element 1X ∈ A0(X, X), such that (f ⊗ 1X)m2 = f ,
(1X ⊗ g)m2 = g, whenever these make sense, and (· · · ⊗ 1X ⊗ . . . )mn = 0 if n 6= 2
(see e.g. [FOOO, Fuk, Kel01]). We may write it as a map 1X : k → A(X, X),
1 7→ 1X . Assume that A has a strict unit for each object X. For example, a
differential graded category A has strict units. Then we introduce a coderiva-
tion iA : idA → idA : A → A, whose components are iA0 : k → sA(X,X),
1 7→ 1Xs = X iA0 , and iAk = 0 for k > 0. The conditions on 1X imply that
(1⊗ iA0 )b2 = 1 : sA(Y, X) → sA(Y, X) and (iA0 ⊗1)b2 = −1 : sA(X, Z) → sA(X, Z).
One deduces that iA is a natural A∞-transformation. If an A∞-category A has two
such transformations – strict units i and i′, then they must coincide because of the
above equations. We call A strictly unital if it has a strict unit iA. Naturally, a
strictly unital A∞-category is unital.

For any A∞-functor f : C → A the natural A∞-transformation 1fs = f iA : f →
f : C → A has the components X(f iA)0 = Xf iA0 : k→ sA(Xf, Xf) and (f iA)k = 0
for k > 0. It is the unit 2-endomorphism of f .

If A∞-category B is strictly unital, then so is C = A∞(A, B) for an arbitrary
A∞-category A. Indeed, for an arbitrary A∞-functor f : A → B there is a unit
2-endomorphism 1fs = f iB : f → f . We set iC0 : k→ [sA∞(A, B)]−1(f, f), 1 7→ 1fs,
and iCk = 0 for k > 0. For any element r ∈ C(g, f) we have (r⊗ 1fs)B2 = r. For any
element p ∈ C(f, h) we have p(1fs ⊗ 1)B2 = p((f iB)0 ⊗ 1)b2 = −p. We have also
iCB1 = 0 and (· · · ⊗ iC ⊗ . . . )Bn = 0 if n > 2, due to (5.1.3). Therefore, iC satisfies
the required conditions.

Another approach to iC uses the A∞-functor M : TsA∞(A,B)⊗TsA∞(B, B) →
TsA∞(A,B) = C. We have (1⊗ idB)M = idC by (4.1.3), and the natural A∞-trans-
formations (1⊗iB)M and iC of idC coincide. Indeed, [(1⊗iB)M ]0 : k→ (sC)−1(f, f),
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1 7→ (f | iB)M01 = f iB = f iC0 . For all n > 0 we have [(1⊗ iB)M ]n : r1⊗ · · · ⊗ rn 7→
(r1 ⊗ · · · ⊗ rn ⊗ iB)Mn1. By (4.1.4) the components

[(r1 ⊗ · · · ⊗ rn ⊗ iB)Mn1]k =
∑

l

(r1 ⊗ · · · ⊗ rn)θkliBl = (r1 ⊗ · · · ⊗ rn)θk0iB0

vanish for n > 0.

8.12. Other examples of unital A∞-categories. More examples of unital
categories might be obtained via Theorem 8.8. An A∞-category with a homo-
topy unit in the sense of Fukaya, Oh, Ohta and Ono [FOOO, Definition 20.1]
clarified by Fukaya [Fuk, Definition 5.11] is also a unital category in our sense.
Indeed, these authors enlarge given A∞-category C to a strictly unital A∞-cat-
egory B by adding extra elements to C(X,X), so that the natural embedding
(C(X, Y ),m1) ↪→ (B(X, Y ),m1) were a homotopy equivalence. Setting r0 = p0 = iB0
we view the above situation as a particular case of Theorem 8.8.

If an A∞-functor φ : C → B to a unital A∞-category B is invertible, then C is
unital. Indeed, since there exists an A∞-functor ψ : B → C such that φψ = idC and
ψφ = idB, then the map φ1 is invertible with inverse ψ1. The remaining data are
Obψ : Ob B → Ob C and Xr0 = Xp0 = X iB0 : k→ sB(X, X). Since (iB⊗iB)B2 ≡ iB

we have (X iB0 ⊗X iB0 )b2−X iB0 ∈ Im b1 and conditions (8.8.1) are satisfied. The data
constructed in Theorem 8.8 will be precisely ψ : B → C and r = p = iB. Since φ is
unital by Theorem 8.8, we may choose iC = φiBψ as a unit of C.

If a unital A∞-category C is equivalent to a strictly unital A∞-category B via
an A∞-functor φ : C → B, then (1 ⊗ φ)M : A∞(A,C) → A∞(A, C) is also an
equivalence for an arbitrary A∞-category A as Proposition 8.4 shows. Thus, a unital
A∞-category A∞(A,C) is equivalent to a strictly unital A∞-category A∞(A, B). In
particular, if φ is invertible, then (1⊗ φ)M is invertible as well.

8.13. Cohomology of A∞-categories. Using a lax monoidal functor from K
to some monoidal category we get another 2-functor, which can be composed with
k. For instance, there is a cohomology functor H• : K → Z -grad -k -mod, which
induces a 2-functor H• : K-Cat → Z -grad -k-Cat. In practice we will use the 0-th
cohomology functor H0 : K → k -mod, the corresponding 2-functor H0 : K-Cat →
k-Cat, and the composite 2-functor

Au
∞

k→ K-Cat
H0

→ k-Cat,

which is also denoted by H0. It takes a unital A∞-category C into a k-linear category
H0(C) with the same class of objects Ob H0(C) = Ob C. Its morphism space between
objects X and Y is H0(C)(X,Y ) = H0(C(X, Y ),m1), the 0-th cohomology with
respect to the differential m1 = sb1s−1. The composition in H0(C) is induced by
m2, and the units by iC0 s−1.

For example, the homotopy category K(A) of complexes of objects of an abelian
category A is the 0-th cohomology H0(C(A)) of the differential graded category of
complexes C(A).
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Appendix A. Enriched 2-categories

Recall that U is a fixed universe. Let V = (V,⊗, c,1) be a symmetric monoidal
U -category (that is, all V(X, Y ) are U -small sets). In this article we shall use
(V,⊗, c,1) = (k -mod,⊗k, σ, k), where σ is the permutation isomorphism, or
(V,⊗, c,1) = (K,⊗k, c, k), where K is the category of differential graded k-modules,
whose morphisms are chain maps modulo homotopy, and c is its standard symmetry.
There is a notion of a category C enriched in V (V-categories, V-functors, V-natural
transformations), see Kelly [Kel82], summarized e.g. in [KL01]: for all objects X,
Y of C C(X,Y ) is an object of V. Denote by V-Cat the category, whose objects
are V-categories and morphisms are V-functors. Since V is symmetric, the category
V-Cat is symmetric monoidal with the tensor product A ⊗ B of V-categories A, B
defined via Ob(A⊗B) = Ob A×Ob B, A⊗B(X×Y, U ×V ) = A(X, U)⊗B(Y, V ).
Thus, we may consider the 1-category V-Cat-Cat of V-Cat-categories and V-Cat-
functors. We may interpret it in the same way, as Cat-Cat is interpreted as the
category of 2-categories. So we say that objects of V-Cat-Cat are V-2-categories A,
as defined below. To restore the definition of a usual 2-category, it suffices to take
V = (U -Sets,×,∅).

Appendix A.1 Definition (V-2-category). A 1-unital 2-unital V-2-category A
consists of

• a class of objects Ob A;

• for any pair of objects A, B ∈ ObA a V-category A(A, B);

• for any object A ∈ Ob A a V-functor 1→ A(A, A), 1 7→ idA;

• for any triple A, B, C of objects of A a V-functor

A(A,B)⊗ A(B,C) → A(A,C), (f, g) 7→ fg,

such that the following V-functors are equal (modulo the associativity isomorphism
in V): f id = f = id f , f(gh) = (fg)h.

Here the unit V-category 1 has the set of objects Ob1 = {1}, and 1(1, 1) = 1 is
the unit object of V. The above definition has an equivalent unpacked form, namely,
Definition Appendix A.3. We also need generalizations of the above V-2-categories
– 1-unital non-2-unital V-2-categories, which contain unit 1-morphisms, but do not
contain unit 2-morphisms. An expanded definition of the latter follows. It seems
that it does not have a concise version.

Appendix A.2 Definition (Non-2-unital V-2-category). A 1-unital non-2-
unital V-2-category A consists of

• a class of objects Ob A;

• a class of 1-morphisms A(A, B) for any pair A, B of objects of A;

• an object of 2-morphisms A(A, B)(f, g) ∈ Ob V for any pair of 1-morphisms
f, g ∈ A(A, B);

• a strictly associative composition of 1-morphisms A(A, B) × A(B,C) →
A(A, C), (f, g) 7→ fg;
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• a strict two-sided unit 1-morphism idA ∈ A(A,A) for each object A of A;

• a right action of a 1-morphism k : B → C on 2-morphisms ·k : A(A,B)(f, g) →
A(A, C)(fk, gk) ∈ Mor V;

• a left action of a 1-morphism e : D → A on 2-morphisms e· : A(A, B)(f, g) →
A(D,B)(ef, eg) ∈ Mor V;

• a vertical composition of 2-morphisms m2 : A(A, B)(f, g) ⊗ A(A,B)(g, h) →
A(A, B)(f, h) ∈ Mor V,

such that

• m2 is associative (in monoidal category V);

• the right and the left actions

(a) commute with each other:

(e·)(·k) = (·k)(e·), for D
e→ A

f→
g
→ B

k→ C,

(b) are associative:

(·k)(·k′) = ·(kk′), for A
f→
g
→ B

k→ C
k′→ D,

(e′·)(e·) = (e′e)·, for C
e′→ D

e→ A
f→
g
→ B,

(c) and unital: (· idB) = id, (idA ·) = id;

• the right and the left actions of 1-morphisms on 2-morphisms preserve the
vertical composition:

A(A, B)(f, g)⊗ A(A, B)(g, h)
m2→ A(A, B)(f, h)

=

A(A,C)(fk, gk)⊗ A(A, C)(gk, hk)

(·k)⊗(·k)↓
m2→ A(A,C)(fk, hk)

·k↓ for A
f→
g→
h
→ B

k→ C,

A(A, B)(f, g)⊗ A(A,B)(g, h)
m2→ A(A, B)(f, h)

=

A(D, B)(ef, eg)⊗ A(D, B)(eg, eh)

(e·)⊗(e·)↓
m2→ A(D,B)(ef, eh)

e·↓ for D
e→ A

f→
g→
h
→ B;

• the distributivity law holds:

A(B, C)(h, k)⊗ A(A,B)(f, g)

A(A, B)(f, g)⊗ A(B, C)(h, k) A(A, C)(fh, fk)⊗ A(A, C)(fk, gk)

A(A,C)(fh, gh)⊗ A(A,C)(gh, gk) A(A, C)(fh, gk)

=

(f ·)⊗(·k)

��

c
33

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

(·h)⊗(g·)
��

m2

��m2
//
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for A
f→
g
→ B

h→
k
→ C.

The following definition is equivalent to Definition Appendix A.1.

Appendix A.3 Definition (2-unital V-2-category). A 1-unital 2-unital V-2-
category A consists of the same data as in Definition Appendix A.2 plus a morphism
1f : 1→ A(A, B)(f, f) for any 1-morphism f , which is a two-sided unit with respect
to m2, such that homomorphisms ·k, e· preserve the units 1−.

Appendix B. Contractibility

One can avoid using the following lemma in this article. However, it might be used
in order to replace inductive constructions with recurrent formulas.

Appendix B.1 Lemma. Let a chain map u : A → C be homotopically invertible.
Then Cone(u) is contractible.

Proof. The homotopy category K = K(k -mod) is triangulated and it has a distin-

guished triangle A
u→ C

p→ Cone(u)
q→ A[1]

u[1]→ (e.g. [Gri87, Corol-
laire 5.13]). Since up = 0, qu[1] = 0 (e.g. [Gri87, Proposition 2.8]), and u is invert-
ible in K, we deduce that p = 0 and q = 0 in K. Since K(Cone(u), ) is a homological
functor (e.g. [Gri87, Proposition 2.10]), we have K(Cone(u), Cone(u)) = 0, that is,
Cone(u) ' 0 in K.

Let us construct an explicit homotopy between idCone(u) and 0Cone(u). There
exists a chain map v : C → A homotopically inverse to u. That is, there are maps
h′ : A → A, h′′ : C → C of degree −1 such that uv = 1 + h′dA + dAh′ : A → A,
vu = 1+h′′dC+dCh′′ : C → C. Using the notation at the end of Section 1 we define a
map h : Cone(u) → Cone(u) of degree −1 by the formula (c, a)h = (−ch′′, cv+ah′),
(c, a) ∈ Ck ⊕Ak+1 = Conek(u). Let us compute the boundary of h:

(c, a)(hd + dh) = (−ch′′, cv + ah′)d + (cdC + au,−adA)h

= (−ch′′dC + cvu + ah′u,−cvdA − ah′dA)

+ (−cdCh′′ − auh′′, cdCv + auv − adAh′)

= (c + ah′u− auh′′, a).

Hence, hd + dh = 1 − f : Cone(u) → Cone(u), where the map f : Cone(u) →
Cone(u) is defined via (c, a)f = (auh′′ − ah′u, 0). We conclude that f is a chain
map homotopic to the identity map. A sequence of equivalences idCone(u) ∼ f =
idCone(u) f ∼ f2 = 0 proves that Cone(u) is contractible. It gives also an explicit
homotopy – the map h = h+hf : Cone(u) → Cone(u) of degree −1, which satisfies
idCone(u) = hd+dh. This homotopy might be used to replace inductive constructions
in this paper with recurrent formulas.
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