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Abstract
We introduce a fibre homotopy relation for maps in a cate-

gory of cofibrant objects equipped with a choice of cylinder ob-
jects. Weak fibrations are defined to be those morphisms having
the weak right lifting property with respect to weak equivalen-
ces. We prove a version of Dold’s fibre homotopy equivalence
theorem and give a number of examples of weak fibrations. If
the category of cofibrant objects comes from a model category,
we compare fibrations and weak fibrations, and we compare
our fibre homotopy relation, which is defined in terms of left
homotopies and cylinders, with the fibre homotopy relation de-
fined in terms of right homotopies and path objects. We also
dualize our notion of weak fibration in a category of cofibrant
objects to a notion of weak cofibration in a category of fibrant
objects, and give examples of these weak cofibrations. A sec-
tion is devoted to the case of chain complexes in an abelian
category.

0. Introduction

The fibre homotopy equivalence theorem of Dold [Dol63, Theorem 6.1] in Top
has been generalized by various authors. Besides the original work by Dold, the
book [DKP70] of tom Dieck-Kamps-Puppe gives an exposition on weak fibrations
(h-Faserungen in Top). Some of the generalizations consider maps which are si-
multaneously over a given space and under a given space. Booth [Boo93] also
obtains versions of Dold’s theorem, using suitably defined generalizations of the
covering homotopy property. In other cases the fibre homotopy equivalences were
studied in a categorical setting, as for example in the paper [HKK96] by Hardie-
Kamps-Kieboom and the book [KP97] of Kamps-Porter. Homotopy structure can
be imposed on an appropriate category in several ways. In [HKK96] and [KP97]

Received July 20, 2003, revised September 6, 2003; published on September 29, 2003.
2000 Mathematics Subject Classification: 18G55, 55R99, 18D99.
Key words and phrases: category of cofibrant objects, fibre homotopy, mapping cylinder, model
category, weak fibration.
c© 2003, R. W. Kieboom, G. Sonck, T. Van der Linden and P. J. Witbooi. Permission to copy for
private use granted.



Homology, Homotopy and Applications, vol. 5(1), 2003 346

the basic assumption is that the category has some cylinder functor. In the arti-
cle [Kam72], Kamps uses cylinder functors to define a notion of weak fibration.
A model category structure, a concept due to Quillen [Qui67], is another way of
introducing a homotopy relation in a category. In fact in a model category there are
two dual ways of defining homotopy of maps: left homotopies, defined in terms of
cylinder objects, and right homotopies, defined in terms of cocylinder objects. These
two methods feature in categories of cofibrant objects and, respectively, categories
of fibrant objects. Of these two notions, the latter was introduced by K. S. Brown
[Bro73] in 1973 and dualized into the former by Kamps and Porter (see [KP97]).
We consider a notion of weak fibration in the context of a category of cofibrant
objects with a cylinder object choice, i.e., a chosen cylinder object for every object
of the category. Our weak fibrations, and their properties, depend on this cylinder
object choice. In case this choice comes from a cylinder functor satisfying certain
Kan filler conditions, our fibre homotopy relation coincides with the one used in
[KP97]. This makes it possible to compare our weak fibrations with Kamps’s.

The aim of this article is to study fibre homotopies and weak fibrations in a cat-
egory of cofibrant objects and, dually, relative homotopies and weak cofibrations in
a category of fibrant objects. The presentation is as follows. In Section 1 we recall
the axioms of a category of cofibrant objects and introduce the notion of cylinder
object choice. The definition of fibre homotopy from [KP97] is adapted to our con-
text. Based on one of the equivalent formulations—due to Kieboom [Kie87]—of the
concept of weak fibration in the topological case, for a category of cofibrant objects
we define the concept of weak fibration in terms of the so-called weak right lifting
property. Depending on properties of the cylinder object choice, we give alterna-
tive characterisations of the notion of weak fibration and we show that the class of
weak fibrations is closed with respect to composition. We show that weak fibrations
are preserved by pullback if the pullback exists, and that in case the category of
cofibrant objects comes from a model category, every fibration between cofibrant
objects is a weak fibration. In Section 2 we look at fibre homotopy equivalences. We
prove a version of Dold’s fibre homotopy equivalence theorem, as well as a theorem
regarding stability under fibre homotopy dominance of weak fibrations. Section 3
treats some examples of categories of cofibrant objects and their weak fibrations.
In Section 4, we show that, when working over a fibration in a model category, the
fibre homotopy relation as defined in Section 1 is equivalent to the right homotopy
relation over the given fibration, Theorem 4.4. In Section 5 we consider the dual
situation: weak cofibrations in a category of fibrant objects equipped with a suitable
cocylinder functor. We dualize the theorems and notions from the preceding sec-
tions. Section 6 is devoted to some examples of categories of fibrant objects and their
weak cofibrations. Finally, in Section 7, we describe the weak fibrations and weak
cofibrations that arise when considering model structures on the category of chain
complexes in an abelian category, which were recently introduced by Christensen
and Hovey [CH02].

For the basics on categories of cofibrant objects, cylinders and Kan conditions we
refer to the book [KP97] of Kamps and Porter. The foundational work on model
categories appears in the book [Qui67] of Quillen. Hovey’s book [Hov99] provides
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an excellent introduction to model categories. There is also the introductory paper
[DS95] by Dwyer and Spalinski, and Baues’s book [Bau89] that cover most of
the necessary material. The book [Jam84] of James has a fairly comprehensive
treatment of fibrewise topology and homotopy theory.
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1. Fibre homotopy and weak fibrations

For the definition of model category we refer to [Hov99], which uses a slightly
different definition from Quillen’s original one. A model category is denoted

(M,fib, cof ,we),

where fib is the class of fibrations, cof is the class of cofibrations and we is the class
of weak equivalences. A cofibrant object is an object for which the unique morphism
from an initial object to it is a cofibration. Dually, an object is fibrant if the unique
morphism to a terminal object is a fibration. From now on, morphisms of a category
C will also be called maps in C.

We recall the axioms of a category of cofibrant objects.

Definition 1.1. Consider a triple (C, cof ,we), where C is a category with binary
coproducts and an initial object e, and where cof and we are two classes of maps of
C. Maps in cof , we and cof ∩we are respectively called cofibrations, weak equivalences
and trivial cofibrations.

Let X be an object of C and let ∇X = 1X +1X : XtX −→ X denote the folding
map (codiagonal morphism). A cylinder object (X× I, e0, e1, σ) on X consists of an
object X × I of C and maps

e0, e1 : X −→ X × I, σ : X × I −→ X

such that the sum e0 +e1 : XtX −→ X×I is a cofibration, σ is a weak equivalence
and σ ◦ (e0 + e1) = ∇X .

A triple (C, cof ,we) is called a category of cofibrant objects if the following axioms
hold.

C1 Any isomorphism is a weak equivalence. For two maps f and g in C such that
g ◦ f exists, if any two out of three maps f , g and g ◦ f are weak equivalences,
then so is the third.

C2 Any isomorphism is a cofibration and the class cof is closed under composition.
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C3 Given any pair of maps i : A −→ X, u : A −→ B with i ∈ cof the pushout

A
u //

i

²²

B

ı

²²

X
u

// X tA B

exists and ı is a cofibration. If i is trivial, so is ı.
C4 For any object X of C there is a cylinder object (X × I, e0, e1, σ).
C5 For any object X of C the unique map e −→ X is a cofibration.

Note that for any cylinder object (X×I, e0, e1, σ) on an object X of C, the maps
e0 and e1 are trivial cofibrations. We say that e0, e1 are cylinder cofibrations and
that σ is a cylinder retraction.

Note that for any model category (M,fib, cof ,we), the full subcategory Mc of all
cofibrant objects, together with the classes cof ∩Mc and we ∩Mc of cofibrations,
resp. weak equivalences between cofibrant objects, forms a category of cofibrant
objects (Mc, cof ∩ Mc,we ∩ Mc). Hovey’s notion of cylinder object in a model
category (see Definition 1.2.4 of [Hov99]) is essentially the same as the one defined
above. (The notion of cylinder object used in [DS95] is weaker, in the sense that they
only require σ to be a weak equivalence. When also e0+e1 is a cofibration, they speak
of a good cylinder object.) Consequently, the cylinder objects of (Mc, cof ∩Mc,we∩
Mc) are exactly the cylinder objects on cofibrant objects of (M,fib, cof ,we).

In order to define our notion of fibre homotopy in a category of cofibrant objects
(C, cof ,we), we require that a cylinder object is chosen for each object X ∈ |C|:
Definition 1.2. If (C, cof ,we) is a category of cofibrant objects, then a cylinder
object choice I is a family

(X × I, e0(X), e1(X), σ(X))X∈|C|,

where for each object X of C, (X × I, e0(X), e1(X), σ(X)) is a cylinder object on
X.

Example 1.3. Let C be a category. A cylinder or cylinder functor

I = ((·)× I, e0, e1, σ)

on C is a functor
(·)× I : C −→ C

together with natural transformations

e0, e1 : 1C =⇒ (·)× I, σ : (·)× I =⇒ 1C

such that σe0 = σe1 = 11C . Let (C, cof ,we) be a category of cofibrant objects. A
cylinder ((·) × I, e0, e1, σ) on C is called suitable if (X × I, e0(X), e1(X), σ(X)) is
a cylinder object on X for all X ∈ |C|. Let (M,fib, cof ,we) be a model category.
A cylinder ((·)× I, e0, e1, σ) on M is called suitable if (X × I, e0(X), e1(X), σ(X))
is a cylinder object (in the sense of [Hov99]) on X for all X ∈ |M|. If I is a
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suitable cylinder on (C, cof ,we), then I evidently induces a cylinder object choice on
(C, cof ,we). Furthermore, note that if (C, cof ,we) is a category of cofibrant objects
generated by a cylinder I—see [KP97], Definition II.1.5—then I is automatically
suitable.

Recall that in a category with a cylinder functor there is a notion of homotopy
over a certain object—cf. [KP97], Definition I.6.1(b). The following definition intro-
duces a similar concept for categories of cofibrant objects equipped with a cylinder
object choice.

Definition 1.4. Let (C, cof ,we) be a category of cofibrant objects equipped with
a cylinder object choice I = (X × I, e0(X), e1(X), σ(X))X∈|C|, and let p : E −→ B
be a map in C. Suppose further that we have a commutative diagram as follows:

X
f

//

g
//

p◦f=p◦g
ÃÃ

BB
BB

BB
BB

E

p
~~}}

}}
}}

}}

B.

Then we say that f is homotopic to g over p (with respect to I), and we write
f 'p g, if there is a map H : X × I −→ E such that





H ◦ e0(X) = f
H ◦ e1(X) = g
p ◦H = p ◦ f ◦ σ(X) = p ◦ g ◦ σ(X).

The map H is said to be a fibre homotopy (over p) from f to g.
If f : X −→ E and p : E −→ B are maps in C, then being fibre homotopic over

p is a relation on the set [f ]p of all maps f : X −→ E such that p ◦ f = p ◦ f .

It is important to keep in mind that the notion of fibre homotopy depends on
the cylinder object choice I on (C, cof ,we).

Example 1.5. Choosing cof and we to be all functions and fib to be all isomorphisms
between sets, defines a model structure (Set,fib, cof ,we) on Set. On the induced
category of cofibrant objects (Set, cof ,we), we consider the following two cylinder
object choices: I maps a set X to the cylinder object (X, 1X , 1X , 1X); I′ maps a
set X to the cylinder object (X tX, in0(X), in1(X),∇X), where in0(X) and in1(X)
denote the two canonical injections of X into the coproduct X tX.

Now let f , g and p be maps such as in Definition 1.4 above. Then f 'p g with
respect to I if and only if f equals g, but unless p is an injection, f can be fibre
homotopic to g over p with respect to I′ without f and g being equal. In the
extremal case of B being a terminal object of Set, we even have that f 'p g with
respect to I′ for any two maps f and g from X to E.

However note that if p is a fibration, then the fibre homotopy relations with
respect to I and I′ do coincide. That this holds true in general is proved in Theorem
4.4.

Proposition 1.6. Let p : E −→ B and f, g : X −→ E be maps of C such that
f 'p g. Then f ∈ we if and only if g ∈ we.
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Proof. This follows immediately from C1 and the fact that for each cylinder object
(X×I, e0, e1, σ) on X, the cylinder cofibrations e0 and e1 are weak equivalences.

Proposition 1.7. Let (C, cof ,we) be a category of cofibrant objects equipped with
a cylinder object choice I = (X × I, e0(X), e1(X), σ(X))X∈|C| and let p : E −→ B
be a map in C. Then the following properties hold:

1. For each map f : X −→ E in C, we have that f 'p f .
2. Suppose that we have the following commutative diagram.

X
f

//

g
//

ÃÃ
@@

@@
@@

@@
E

p

²²

h // E′

p′~~}}
}}

}}
}

B

If f 'p g then h ◦ f 'p′ h ◦ g.

Proof. We give a proof of (2): if H : X × I −→ E is a fibre homotopy over p from
f to g, then h ◦H is a fibre homotopy over p′ from h ◦ f to h ◦ g.

From now on, unless mentioned otherwise, we will suppose that we work in a
category of cofibrant objects (C, cof ,we) equipped with a cylinder object choice

I = (X × I, e0(X), e1(X), σ(X))X∈|C|.

Definition 1.8. (cf. [Kie87]) Suppose that i : A −→ X and p : E −→ B are maps
in C. We say that p has the weak right lifting property (WRLP) with respect to i if
whenever we have a commutative square as below,

A

i

²²

f
// E

p

²²

X g
// B

(A)

there exists a map h : X −→ E such that p ◦ h = g and h ◦ i 'p f . A map
p : E −→ B in C is said to be a weak fibration if it has the WRLP with respect to
all weak equivalences i : A −→ X.

The following result (cf. [Dol63, 5.13]) follows easily from Definition 1.8, since
for any cylinder object (X × I, e0, e1, σ) on an object X, the map e0 : X −→ X × I
is a weak equivalence.

Proposition 1.9. Consider a commutative square

X
f

//

e0(X)

²²

E

p

²²

X × I
H

// B

in which p is a weak fibration. Then there is a homotopy H : X× I −→ E such that
p ◦H = H and H ◦ e0(X) 'p f .
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These two lifting properties, i.e. the WRLP and the homotopy lifting property
from Proposition 1.9, will not be equivalent in an arbitrary category of cofibrant
objects. Yet we will be able to prove them to be equivalent in case the category
of cofibrant objects comes from a model category, and if moreover it is equipped
with a cylinder I that is generating and satisfies the Kan filler conditions DNE(2)
and E(3); see Proposition 2.9. This means that under these assumptions, our notion
of weak fibration coincides with Kamps’s notion of h-Faserung, as defined in the
article [Kam72].

The following construction, known as the mapping cylinder factorisation (see
[KP97], page 9), simplifies some arguments regarding composition of weak fibra-
tions and their behaviour with respect to pullbacks.

Definition 1.10. Let f : X −→ Y a map in C. A mapping cylinder of f is a triple
(Mf , πf , jf ) (sometimes denoted shortly Mf ) with Mf ∈ |C|, and πf : X×I −→ Mf

and jf : Y −→ Mf maps in C, such that the diagram

X
f

//

e0(X)

²²

Y

jf

²²

X × I πf

// Mf

is a pushout in C.
If f : X −→ Y is a map in C, then a mapping cylinder of f always exists by C3.

Being a mapping cylinder of f depends on the cylinder object choice I. The map
jf is a trivial cofibration since e0(X) is. We shall refer to the map kf = πf ◦ e1(X) :
X −→ Mf as the mapping cylinder cofibration. If f ∈ we, then kf is a trivial
cofibration.

Definition 1.11. Let f : X −→ Y be a map in C and (Mf , πf , jf ) a mapping
cylinder of f . Due to pushout properties there is a unique map qf : Mf −→ Y , which
we call the mapping cylinder projection, such that qf ◦jf = 1Y and qf ◦πf = f◦σ(X).
Thus we obtain a factorisation f = qf ◦ kf of f as a cofibration followed by a weak
equivalence.

Proposition 1.12. Let p : E −→ B and i : A −→ X be any maps in C, then the
following conditions are equivalent:

1. the map p has the WRLP with respect to i,

2. given the diagram of solid arrows below, then for any mapping cylinder

(Mi, πi, ji)

for i there exists a map H : Mi −→ E such that diagram B below commutes,

3. given the diagram of solid arrows below, there exists a mapping cylinder

(Mi, πi, ji)
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for i and a map H : Mi −→ E such that diagram B below commutes.

A
f

//

i

²²

ki
!!

E

p

²²

Mi

qi
}}

H

==

X g
// B

(B)

Proof. Suppose that f : A −→ E and g : X −→ B are any maps such that
p ◦ f = g ◦ i. If we have H as in condition (3), then a map h as in Definition 1.8 is
defined by h = H ◦ ji. Indeed, p ◦ h = g, and H ◦ πi is a fibre homotopy h ◦ i 'p f .
Thus condition (1) follows.

Condition (2) obviously implies condition (3).
Now suppose that condition (1) holds and take a mapping cylinder (Mi, πi, ji)

for i. Then there is a map h : X −→ E and a fibre homotopy F : A× I −→ E over
p from h ◦ i to f . In the commutative diagram of solid arrows below, we have in
particular the pushout square that defines Mi.

X
h

$$
ji ##FF

FF
FF

FF
F

A
ÄÄÄ???

i

<<yyyyyyyyy

e0(A)
""EE

EE
EE

EE
E Mi H // E

A× I
F

::

πi

;;xxxxxxxx

The universal property of pushouts yields a unique map H : Mi −→ E such that
H ◦ πi = F and H ◦ ji = h. Now

H ◦ ki = H ◦ πi ◦ e0(A) = F ◦ e0(A) = f,

i.e., the upper middle triangle in B commutes.
We now prove that the lower right triangle in B commutes. The universal prop-

erty of pushouts yields a unique map k : Mi −→ B satisfying the conditions

k ◦ πi = p ◦ F and k ◦ ji = g.

Now we show that both of the maps g ◦ qi and p ◦H can fulfill the role of k:

g ◦ qi ◦ πi = p ◦ h ◦ i ◦ σ(A)

and g ◦ qi ◦ ji = g; p ◦H ◦ πi = p ◦F and p ◦H ◦ ji = p ◦ h = g. Thus it follows that
p ◦H = k = g ◦ qi, and condition (2) follows.

Proposition 1.13. Suppose that we have a pullback square as below. Let i : A −→
X be a map such that p has the WRLP with respect to i. Then p′ has the WRLP
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with respect to i.

E′

p′

²²

f
// E

p

²²

B′
g

// B

(C)

Proof. Let f1 and g1 be maps such that the following square, on the left below,
is commutative. Since p has the WRLP with respect to i, there exists a mapping
cylinder Mi of i and a map h : Mi −→ E such that the diagram, on the right hand
side below, is commutative.

A

i

²²

f1 // E′

p′

²²

X g1
// B′

A
f1 //

ki

²²

E′ f
// E

p

²²

Mi

h

66nnnnnnnnnnnnnnn
g1◦qi

// B′
g

// B

Since we have a pullback square C, there exists a map h′ : Mi −→ E′ such that
p′ ◦ h′ = g1 ◦ qi (i.e., the lower right triangle in the following diagram commutes)
and f ◦ h′ = h.

A

ki

²²

f1 // E′

p′

²²

Mi g1◦qi

//

h′

==||||||||
B′

Furthermore, the universal property of pullbacks yields a unique map f : X −→ E′

such that p′ ◦ f = g1 ◦ i and f ◦ f = f ◦ f1. Obviously then f1 = f . But also the
map h′ ◦ ki fulfils the conditions defining f . Thus h′ ◦ ki = f1. Therefore, also the
upper left triangle in the last diagram is commutative. The result follows.

Corollary 1.14. If, in the pullback square C, the map p is a weak fibration, then
p′ is a weak fibration.

In homotopy theory, we often need that the fibre homotopy relation over a map
p : E −→ B yields an equivalence relation on the set [f ]p for each map f : X −→ E,
and that it is stable under precomposition. Therefore we restrict the class of cylinder
object choices in the following way:

Definition 1.15. Let (C, cof ,we) be a category of cofibrant objects. Then a cylinder
object choice I is called nice if, for each map p : E −→ B in C, we have the following
properties.

1. For each map f : X −→ E in C, the relation 'p is an equivalence relation on
[f ]p.
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2. Suppose that we have the following commutative diagram.

E′ h //

ÃÃ
AA

AA
AA

AA
X

f
//

g
//

²²

E

p
~~~~

~~
~~

~~

B

If f 'p g, then f ◦ h 'p g ◦ h.

The following proposition gives an interesting situation in which a category of
cofibrant objects can be equipped with a nice cylinder object choice. Namely, this is
the case for a cylinder object choice induced by a suitable cylinder I which satisfies
the so-called Kan filler condition DNE(2, 1, 1) (see [KP97], p. 27). In [Kam72],
[HKK96] and [KP97], homotopy theory is discussed in the context of a category
equipped with a cylinder I. For the resulting homotopy relation to have suitable
properties, such a cylinder must satisfy certain conditions. The Kan filler condition
DNE(2, 1, 1) is a sufficient condition for the homotopy relation over a certain object
to be an equivalence relation. It is fulfilled in many cases; see Section 3.

Proposition 1.16. Let (C, cof ,we) be a category of cofibrant objects equipped with
a suitable cylinder I = ((·) × I, e0, e1, σ) which satisfies the Kan filler condition
DNE(2, 1, 1). Then the cylinder object choice induced by I is nice.

Proof. Condition 1. in Definition 1.15 is just Proposition I.6.2 in the book [KP97] of
Kamps and Porter. The second condition follows from the functoriality of (·)×I.

For the remaining part of this section, we suppose that the category of cofibrant
objects (C, cof ,we) is equipped with a nice cylinder object choice.

Proposition 1.17. Let p : E −→ B be a map in C, then the following conditions
are equivalent:

1. p has the WRLP with respect to all i ∈ we,

2. p has the WRLP with respect to all i ∈ cof ∩ we.

Proof. Suppose that we have a commutative square such as A above, where i is
a weak equivalence, and suppose that condition (2) holds. The mapping cylinder
factorisation of i : A −→ X yields a commutative square

A
f

//

ki

²²

E

p

²²

Mi g◦qi

// B,

where the mapping cylinder cofibration ki is trivial. We get a map h : Mi −→ E such
that p◦h = g◦qi and h◦ki 'p f . Put h = h◦ji : X −→ E, then p◦h = g◦qi◦ji = g.
Now we only need a fibre homotopy H : h ◦ i 'p h ◦ ki to prove that h ◦ i 'p f .
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Clearly, the triangle

A
h◦i //

h◦ki

//

g◦i
ÂÂ

@@
@@

@@
@ E

p
ÄÄ~~

~~
~~

~

B

commutes. Put H = h ◦ πi : A× I −→ E to get




H ◦ e0(A) = h ◦ πi ◦ e0(A) = h ◦ ji ◦ i = h ◦ i

H ◦ e1(A) = h ◦ πi ◦ e1(A) = h ◦ ki

p ◦H = p ◦ h ◦ πi = g ◦ qi ◦ πi = g ◦ i ◦ σ(A).

Thus condition (1) holds.

This gives us the following characterisation of weak fibrations.

Proposition 1.18. Let p : E −→ B be a map in C. The following conditions are
equivalent:

1. p is a weak fibration,
2. p has the WRLP with respect to all trivial cofibrations.

The following two corollaries will make clear why the name weak fibration is
well-chosen: in case the category of cofibrant objects (C, cof ,we) arises from a model
category, a map of C which is a fibration in the model category is always a weak
fibration in the category of cofibrant objects.

Corollary 1.19. Let (M,fib, cof ,we) be a model category and (Mc, cof ∩Mc,we∩
Mc) the associated category of cofibrant objects. Let (Mc, cof ∩Mc,we ∩Mc) be
equipped with a nice cylinder object choice I. If p : E −→ B is a map of Mc such
that p ∈ fib, then p is a weak fibration.

Proof. p, considered as a map in M, has the right lifting property with respect to
all maps in cof ∩ we. Thus it also has the right lifting property, and a fortiori the
WRLP, with respect to all trivial cofibrations of Mc. But then p is a weak fibration
by Proposition 1.18.

Corollary 1.20. Let (M,fib, cof ,we) be a model category equipped with a suitable
cylinder I satisfying DNE(2, 1, 1). Let (Mc, cof ∩Mc,we ∩Mc) be the associated
category of cofibrant objects. If p : E −→ B is a map of Mc such that p ∈ fib, then
p is a weak fibration.

Proof. We only need to show that restricting the functor (·)× I : M−→M to Mc

also corestricts it to Mc. Indeed, for X a cofibrant object of M, X × I is cofibrant
in M as well: the unique map ∅ −→ X×I is a cofibration, since it can be factorised
as

∅ // X tX
e0+e1 // X × I.

The left map is a cofibration since X tX is cofibrant due to C3, and the right map
is a cofibration since (X × I, e0(X), e1(X), σ(X)) is a cylinder object of (Mc, cof ∩
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Mc,we ∩Mc). Using techniques from [KP97], one shows that this restriction also
satisfies DNE(2, 1, 1). Hence it induces a nice cylinder object choice on (Mc, cof ∩
Mc,we ∩Mc).

Proposition 1.21. Suppose that q : D −→ E and p : E −→ B are weak fibrations.
Then p ◦ q is a weak fibration.

Proof. Consider a commutative diagram of solid arrows

A
f

//

i

²²

D

p◦q
²²

X g
//

h

>>

B,

where i is a weak equivalence. We must construct an arrow h : X −→ D such that
p ◦ q ◦ h = g and h ◦ i 'p◦q f . Now p being a weak fibration implies that there is a
mapping cylinder Mi for i and a map H : Mi −→ E such that the diagram below
commutes.

A
q◦f

//

i

²²

ki

CC

!!CC
E

p

²²

Mi

qi
{{

}}{{

H||

==||

X g
// B

The construction of a mapping cylinder Mki for ki gives rise to a commutative
diagram

A
e1 //

kki

!!DD
DD

DD
DD

ki

ÁÁ

A× I

πki

²²

A
e0oo

ki

²²

f
//D

q

²²

Mki

qki

²²

Mi

jkioo
H

//E

Mi

yyyyyyyy

yyyyyyyy

The mapping cylinder cofibration ki is a weak equivalence; hence, q being a weak
fibration implies that there is a map K : Mki −→ D such that the diagram

A
f

//

ki

²²

kki

FF

""FF

D

q

²²

Mki

qki
yy

||yy

Kzz

==zz

Mi
H

// E

commutes. Put h = K ◦jki ◦ji : X −→ D. We now show that h is indeed the needed
map.
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The equality p ◦ q ◦ h = g follows by straightforward calculation. One also easily
verifies that K ◦ jki ◦ πi is a fibre homotopy

K ◦ jki
◦ πi ◦ e0 'p◦q K ◦ jki

◦ πi ◦ e1

and that K ◦ πki
is a fibre homotopy K ◦ πki

◦ e0 'p◦q K ◦ πki
◦ e1. It follows that

h ◦ i = K ◦ jki ◦ ji ◦ i = K ◦ jki ◦ πi ◦ e0 'p◦q
K ◦ jki

◦ πi ◦ e1 = K ◦ jki
◦ ki = K ◦ πki

◦ e0 'p◦q
K ◦ πki ◦ e1 = K ◦ kki = f,

which proves the assertion.

2. Fibre homotopy equivalence

Throughout this section, unless mentioned otherwise, we assume that we work
in a category of cofibrant objects (C, cof ,we) equipped with a nice cylinder object
choice I = (X × I, e0(X), e1(X), σ(X))X∈|C|.

Definition 2.1. Suppose that we have a commutative triangle D. Note that f can
be regarded as a morphism, in the category C/B of objects over B, from p to p′.

E

p
ÂÂ

@@
@@

@@
@

f
// E′

p′~~}}
}}

}}
}

B

(D)

A morphism g : p′ −→ p is said to be a fibre homotopy inverse for f : p −→ p′ if
g ◦ f 'p 1E and f ◦ g 'p′ 1E′ . The map f is said to be a fibre homotopy equivalence
(between p and p′) if a fibre homotopy inverse for f does exist. The maps p and p′

are called fibre homotopy equivalent if a fibre homotopy equivalence f : p −→ p′

exists.

Proposition 2.2. Let B be a C-object. The relation on |C/B | of being fibre homotopy
equivalent is an equivalence relation.

The following theorem is a categorical version of the fibre homotopy equivalence
theorem [Dol63, Theorem 6.1] of Dold.

Theorem 2.3. Suppose that in the commutative triangle of diagram D, p and p′

are weak fibrations. If f : E −→ E′ is a weak equivalence then f : p −→ p′ is a fibre
homotopy equivalence.

Proof. Given diagram D, we consider the following commutative square.

E

f

²²

E

p

²²

E′
p′

// B
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Since p is a weak fibration and f a weak equivalence, there exists a map g : E′ −→ E
such that p ◦ g = p′ and g ◦ f 'p 1E . So it suffices to show that f ◦ g 'p′ 1E′ .
Now Proposition 1.6 implies that g ◦ f is a weak equivalence. Furthermore, f is
a weak equivalence, and consequently, g is a weak equivalence. For the following
commutative square, there exists a map k : E −→ E′ such that p′ ◦ k = p and
k ◦ g 'p′ 1E′ .

E′

g

²²

E′

p′

²²

E p
// B

But then,

f ◦ g 'p′ (k ◦ g) ◦ f ◦ g = k ◦ (g ◦ f) ◦ g 'p′ k ◦ 1E ◦ g = k ◦ g 'p′ 1E′ ,

and this completes the proof of the theorem.

The relative simplicity of the proof of Theorem 2.3, and also of Theorem 2.4
below, is the result of the particular choice of the equivalences in [Kie87], to model
our categorical definition of weak fibration.

Weak fibrations are stable under fibre homotopy dominance, as states the follow-
ing theorem:

Theorem 2.4. Suppose that we have a commutative diagram as below, where g ◦
f 'p 1E.

E

p
ÃÃ

AA
AA

AA
AA

f
// E′

p′

²²

g
// E

p
~~}}

}}
}}

}}

B

If p′ is a weak fibration then p is a weak fibration.

Proof. Suppose that we have a commutative diagram of solid arrows

A

i

²²

h // E

p

²²

f
//
E′

p′~~}}
}}

}}
}g

oo

X
k

// B

where i is a weak equivalence. p′ being a weak fibration yields a map l′ : X −→ E′

such that p′ ◦ l′ = k and l′ ◦ i 'p′ f ◦ h. Put l = g ◦ l′ : X −→ E. Then

p ◦ l = p ◦ g ◦ l′ = p′ ◦ l′ = k

and
l ◦ i = g ◦ l′ ◦ i 'p g ◦ f ◦ h 'p 1E ◦ h = h.

Thus p has the WRLP with respect to i.
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In case the category of cofibrant objects comes from a model category, the pre-
vious proposition implies that a map between cofibrant objects is a weak fibration
exactly when it is fibre homotopy equivalent to a fibration (which must of course
also be a map between cofibrant objects). This is a categorical version of a result
in [DKP70]. In the book of James [Jam84], weak fibrations are defined as maps
of topological spaces which are fibre homotopy equivalent to fibrations.

Theorem 2.5. Let (M,fib, cof ,we) be a model category and (Mc, cof ∩Mc,we ∩
Mc) the associated category of cofibrant objects. Then a map in Mc is a weak
fibration if and only if it is fibre homotopy equivalent to a fibration.

Proof. Let E, E′ and B be cofibrant objects of M. If a map p : E −→ B is fibre
homotopy equivalent to a fibration p′ : E′ −→ B, then in particular it is dominated
by it. But by Corollary 1.19, p′ is a weak fibration, and so the assumptions of
Theorem 2.4 hold. Hence p is a weak fibration.

Now we prove the converse. Suppose that p : E −→ B is a weak fibration in
(Mc, cof ∩Mc,we ∩Mc). Then p can be factorized in M as a trivial cofibration
f : E −→ E′ followed by a fibration p′ : E′ −→ B. Since f is a cofibration and E
is cofibrant, it follows that E′ is cofibrant. Now Corollary 1.19 implies that p′ is a
weak fibration; thus, Dold’s Theorem 2.3 applies, and the weak equivalence f is a
fibre homotopy equivalence between p and p′.

The next proposition is a categorical version of [Kie87], Theorem 2, and at the
same time of [DKP70], Satz 6.26: a characterisation of those weak fibrations that
are also weak equivalences. It brings into consideration a notion of closed category
of cofibrant objects, after Quillen’s notion of closed model category (see [Qui67], I.5
and [Bro73], I.6). This would be a category of cofibrant objects such that the class
of weak equivalences (and possibly also the class of cofibrations) is closed under
retracts.

Definition 2.6. (cf. [DKP70], Definition 6.24) A map p : E −→ B of C is called
shrinkable (schrumpfbar) when there exists a map s : B −→ E such that p ◦ s = 1B

and s ◦ p 'p 1E .

Proposition 2.7. Let p : E −→ B be a map of C.
1. p is a weak fibration and a weak equivalence,
2. p is shrinkable,
3. p has the WRLP with respect to all maps i : A −→ X in C.

The implications (1) ⇒ (2) ⇔ (3) always hold and (1) ⇐ (2) holds as soon as
the class we of weak equivalences is closed under retracts (see [Qui67], I.5 and
[Bro73], I.6).

Proof. First suppose that (1) holds, and consider the commutative triangle

E
p

//

p
ÃÃ

AA
AA

AA
AA

B

1B
~~}}

}}
}}

}}

B.
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Both p and 1B are weak fibrations and p is a weak equivalence; thus, Dold’s Theorem
2.3 implies that p is a fibre homotopy equivalence between p and 1B . We get a map
s : B −→ E such that p ◦ s = 1B and s ◦ p 'p 1E , and p is shrinkable.

Now suppose that p is shrinkable and consider a commutative square as in A
above. Put h = s ◦ g : X −→ E. Then p ◦ h = p ◦ s ◦ g = g and

h ◦ i = s ◦ g ◦ i = s ◦ p ◦ f 'p 1E ◦ f = f :

condition (3) holds.
Next suppose that (3) holds. Then p has the WRLP with respect to itself. Thus,

for the commutative square of unbroken arrows

E

p

²²

E

p

²²

B

s

>>

B,

there exists a map s : B −→ E such that p ◦ s = 1B and s ◦ p 'p 1E . This already
proves that (2) and (3) are equivalent.

Finally suppose that (2) and (3) hold. To prove (1) we only need to show that
p is a weak equivalence. There is a map s : B −→ E such that p ◦ s = 1B and
s ◦ p 'p 1E . The diagram

B
s //

s

²²

E

s◦p
²²

p
// B

s

²²

E E E

shows s as a retract of s◦p. But 1E is a weak equivalence, so Proposition 1.6 implies
that s ◦ p is a weak equivalence. By hypothesis then also s is a weak equivalence.
Thus, p is a weak equivalence.

Corollary 2.8. Let (C, cof ,we) be a category of cofibrant objects such that we is
closed under retracts. If, in the pullback square C, p is a weak fibration and weak
equivalence, then p′ is a weak fibration and weak equivalence.

Proof. This is an immediate consequence of Proposition 2.7 and Proposition 1.13.

To end this section we prove that sometimes our notion of weak fibration coincides
with Kamps’s notion of h-Faserung, defined in the article [Kam72]. That these
notions do not always coincide will be shown in Example 6.4.

Proposition 2.9. Let (Mc, cof ∩Mc,we ∩Mc) be a category of cofibrant objects
coming from a model category (M,fib, cof ,we), such that its cylinder I is generating
and satisfies DNE(2) and E(3) (see [KP97]). Then the converse of Proposition 1.9
holds: any map p : E −→ B of Mc which has the WRLP with respect to all maps
e0(X) : X −→ X × I is a weak fibration.

Proof. Let p : E −→ B be a map of Mc which has the WRLP with respect to all
maps e0(X) : X −→ X × I. Then p is a h-Faserung as in [Kam72], Definition 1.7.
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Because of Proposition 1.17, we only need to prove it has the WRLP with respect
to all trivial cofibrations of Mc. Now consider (in the category Mc) a commutative
square A in which i is a trivial cofibration. Then p is also a map of M; thus it can
be factored into a trivial cofibration ı : E −→ P followed by a fibration p : P −→ B.
Now ı being a cofibration implies that P is a cofibrant object of M, and therefore ı
and p are maps of Mc. As maps of M, p has the right lifting property with respect
to i. Let h : X −→ P denote a lifting in the square

A
ı◦f

//

i

²²

P

p

²²

X g
//

h

>>

B.

The Mc-morphism p is a fibration of M, hence (by Corollary 1.19) a weak fibration
of Mc. But then Proposition 1.9 implies that p has the WRLP with respect to all
maps e0(X) : X −→ X× I, and p is a h-Faserung in the sense of Kamps, [Kam72].

We get the commutative diagram of solid arrows

E
ı //

p
ÃÃ

AA
AA

AA
AA

Peı
oo

p
~~}}

}}
}}

}}

B.

The cylinder I is generating, which means that in particular ı is a homotopy equiva-
lence (h-Äquivalenz ) in the sense of [Kam72], Definition 1.5. Thus Kamps’s version
of Dold’s theorem ([Kam72], Satz 6.1) applies and gives a fibre homotopy inverse
ı̃ : P −→ E. Note that in this category of cofibrant objects his notion of fibre
homotopy equivalence and ours coincide, so we can write ı̃◦ ı 'p 1E and ı◦ ı̃ 'p 1P .

Put h = ı̃ ◦ h : X −→ E, then h is a weak lifting for the square A: p ◦ h =
p ◦ ı̃ ◦ h = p ◦ h = g and

h ◦ i = ı̃ ◦ h ◦ i = ı̃ ◦ ı ◦ f 'p 1E ◦ f = f.

This proves that p is weak fibration.

3. Examples of weak fibrations

Example 3.1. For the topological case we first consider the structure of category
of cofibrant objects on Top induced by the model structure, originally described by
Strøm in [Str72]; see for instance Example 3.6 of [DS95]. Its cofibrations (usually
called Hurewicz-cofibrations) are closed continuous maps which have the homotopy
extension property and its weak equivalences are homotopy equivalences. The stan-
dard cylinder

(·)× I : Top −→ Top : X 7−→ X × [0, 1] ,

which maps a space to a product with the unit interval [0, 1], together with the
obvious natural transformations, satisfies the Kan condition DNE(n) for all n, so it
satisfies DNE(2, 1, 1), and it is clearly suitable.
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Hence it induces a nice cylinder object choice such that two maps are fibre
homotopic if and only if they are fibre homotopic in the usual, topological sense
(see for instance [DKP70, Definition 0.22]). A continuous map has the homotopy
lifting property mentioned above in Proposition 1.9, precisely when it has the WRLP
with respect to homotopy equivalences (see [Kie87]). Thus the categorical definition
coincides with the definition of weak fibration as given by [Dol63], or h-Faserung
as in [DKP70].

Example 3.2. Now we consider the other standard model structure on Top, the one
first described by Quillen in [Qui67]. Alternatively, a detailed description of this
model structure can be found in [Hov99] and [DS95]. For us, its most important
characteristics are that every object is fibrant and every CW-complex cofibrant,
and that a continuous map f : X −→ Y is a weak equivalence if and only if the
induced map

πn(f, x) : πn(X,x) −→ πn(Y, f(x))

is an isomorphism for all n > 0 and x ∈ X. We use this model structure to formulate
Whitehead’s Theorem (see, for instance, [Mau70], Theorem 7.5.4) and prove it as
a result of Dold’s Theorem.

Theorem 3.3. (cf. [Mau70], Theorem 7.5.4) Let X and Y be CW-complexes and
f : X −→ Y a continuous map. If f is a weak equivalence then f is a homotopy
equivalence.

Proof. Let ∗ denote a one-point topological space, a terminal object of Top. X and
Y are fibrant objects; hence, the unique maps p′ and p in the commutative diagram
below are fibrations.

X
f

//

p′ ÃÃ
@@

@@
@@

@ Y

p
ÄÄ~~

~~
~~

~

∗
Now X, Y and ∗ are CW-complexes. This means that the diagram above is a
diagram in the category of cofibrant objects (Topc, cof ∩Topc,we∩Topc) associated
with Quillen’s model structure on Top. According to Quillen ([Qui67], “Remarks”
below Definition I.1.4), the restriction of the cylinder from Example 3.1 to Topc

is suitable. But then Corollary 1.19 implies that p and p′ are weak fibrations, and
Dold’s Theorem 2.3 implies that f is a fibre homotopy equivalence. In particular, f
is a homotopy equivalence.

Of course this proof does not only work for maps between CW-complexes but,
more generally, also for maps between cofibrant objects. Consequently, in the cate-
gory of cofibrant objects (Topc, cof ∩Topc,we ∩Topc), a map is a weak equivalence
if and only if it is a homotopy equivalence. Thus, a map between cofibrant objects is
a weak fibration of (Topc, cof ∩Topc,we ∩Topc) exactly when it is a weak fibration
in the sense of Example 3.1.
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Example 3.4. Let Gpd denote the category of groupoids (i.e., small categories in
which every morphism is an isomorphism) and functors between them. The follow-
ing choice of classes fib, cof and we defines a model structure on Gpd: the weak
equivalences are equivalences of categories, the cofibrations are functors which are
injective on objects and the fibrations are functors p : E −→ B such that for any
object e of E and any map β : p(e) −→ b in B there exists a map ε : e −→ e′ in E
such that p(ε) = β. Every object is fibrant and cofibrant.

Let I be the category with two objects 0, 1 and two non-identity morphisms
ι : 0 −→ 1 and ι−1 : 1 −→ 0.

010 <<

ι
%%1

ι−1

ee 11
||

Let (·)× I : Gpd −→ Gpd be the functor defined by X × I = X ×I on groupoids X
and

f × I = f × 1I : X × I −→ Y × I
on functors f : X −→ Y between groupoids X and Y. The equations ε0(X )(x) =
(x, 0), ε0(X )(ξ) = (ξ, 10), ε1(X )(x) = (x, 1) and ε1(X )(ξ) = (ξ, 11) for x an object
and ξ a map of X define natural transformations e0, e1 : 1Gpd =⇒ (·) × I. Let
σ(X ) : X ×I −→ X be the first projection. Then I = ((·)× I, e0, e1, σ) is a cylinder
on Gpd which satisfies DNE(2), so it satisfies DNE(2, 1, 1) (see [KP97], III.1.8).
Also note that it is suitable.

In the category of cofibrant objects associated with this model category the
converse of Corollary 1.19 holds: every weak fibration will be shown to be a map in
fib; hence in Gpd the notions of fibration and weak fibration coincide.

Proposition 3.5. Let p : E −→ B be a map of groupoids. If p is a weak fibration then
p is a fibration.

Proof. Let e be an object of E and β : p(e) −→ b a map of B. Let ∗ denote the
category with one object ∗ and one morphism 1∗, a terminal object of Gpd. We
define a commutative square

∗ f
//

i0

²²

E
p

²²

I g
// B

by choosing i0(∗) = 0, f(∗) = e and g(ι) = β. Clearly i0 is a weak equivalence;
we get a map of groupoids h : I −→ E such that p ◦ h = g and a fibre homotopy
H : h ◦ i0 'p f : ∗ × I −→ E . Now put ε = h(ι) ◦H(1∗, ι−1) : e −→ h(1), then

p(ε) = p(h(ι)) ◦ p(H(1∗, ι−1)) = g(ι) ◦ p(f(σ(∗)(1∗, ι−1))) = β.

This shows that p is a fibration of groupoids.
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4. Comparing two notions of fibre homotopy in a model cat-
egory

Throughout this section, we assume that we work in a model category

(M,fib, cof ,we)

and denote (Mc, cof ∩Mc,we ∩Mc) the associated category of cofibrant objects.
The following definition is inspired by the notion of relative homotopy in a fibra-

tion category [Bau89].

Definition 4.1. Let p : E −→ B be a map in M. Consider a kernel pair of p, i.e.,
the pair pr0,pr1 : E ×p E −→ E of projections in a pullback

E ×p E
pr1 //

pr0

²²

E

p

²²

E p
// B.

Note that both projections are fibrations if p ∈ fib. Any factorisation of the diagonal
map (the unit of the pullback) ∆p = (1E , 1E) : E −→ E×p E as a weak equivalence
ς : E −→ Ep followed by a fibration (ε0, ε1) : Ep −→ E ×p E is called a path object
for p and is denoted (Ep, ε0, ε1, ς).

Definition 4.2. Consider a commutative diagram

X
f

//

g
//

p◦f=p◦g
ÃÃ

@@
@@

@@
@@

E

p
ÄÄ~~

~~
~~

~

B

in M. We say that f is right homotopic to g over p if there is a path object
(Ep, ε0, ε1, ς) for p and a map H : X −→ Ep (a right homotopy from f to g over p)
such that {

ε0 ◦H = pr0 ◦ (ε0, ε1) ◦H = f
ε1 ◦H = pr1 ◦ (ε0, ε1) ◦H = g.

Remark 4.3. If X is cofibrant and H : X −→ Ep is a right homotopy from f to
g over p for some path object (Ep, ε0, ε1, ς), then there is a right homotopy from
f to g over p for any path object ((Ep)′, ε′0, ε

′
1, ς

′). Thus, in contrast to the fibre
homotopy relation 'p, which depends on the cylinder object choice, in this case,
the relation of right homotopy over p does not depend on the chosen path object
for p.

Theorem 4.4. Let X, E and B be cofibrant objects of (M,fib, cof ,we). Suppose
that on (Mc, cof ∩Mc,we ∩Mc), we have a cylinder object choice

I = (X × I, e0(X), e1(X), σ(X))X∈|Mc|.

Consider a commutative triangle as in the definition above. Then we have the fol-
lowing:
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1. If f 'p g with respect to I then f is right homotopic to g over p.
2. Suppose that p ∈ fib. Then f 'p g with respect to I if and only if f is right

homotopic to g over p.

Proof. Suppose that L : X × I −→ E is a fibre homotopy from f to g over p, and
put K = f ◦ σ(X) : X × I −→ E. Then K is a fibre homotopy K : f 'p f . Let
(Ep, ε0, ε1, ς) be a path object for p. Note that p ◦σ(X) is a map X × I −→ B, and
that the following diagram of unbroken arrows commutes.

X
f

//

in0

²²

E
ς

// Ep

(ε0,ε1)

²²

X tX

e0(X)+e1(X)

²²

X × I
∆p◦σ(X)

//

h

55

(X × I)×p◦σ(X) (X × I)
K×L

// E ×p E

Since e0 = (e0(X) + e1(X)) ◦ in0 is a trivial cofibration and (ε0, ε1) is a fibration,
there exists a map h : X × I −→ Ep such that the diagram above is commutative.
Put H = h ◦ e1(X) : X −→ Ep. We now show that H is a right homotopy from f
to g over p:

ε0 ◦H = ε0 ◦ h ◦ e1(X) = K ◦ e1(X) = f

and

ε1 ◦H = ε1 ◦ h ◦ e1(X) = L ◦ e1(X) = g.

Now let us assume that f is right homotopic to g over p ∈ fib. Then there exists
a path object (Ep, ε0, ε1, ς) for p and a right homotopy H : X −→ Ep from f to g
over p. We note that the map K = ς ◦ f : X −→ Ep is a right homotopy from f
to f over p. This yields a commutative diagram such as the diagram of unbroken
arrows below.

X tX
KtH //

e0(X)+e1(X)

²²

Ep t Ep
∇Ep

// Ep

(ε0,ε1)

²²

E ×p E

pr0

²²

X × I
σ(X)

//

l

99

X
f

// E

Since e0(X)+ e1(X) is a cofibration and ε0 = pr0 ◦ (ε0, ε1) is a fibration as well as a
weak equivalence, there exists a map l : X × I −→ Ep such that the diagram above
commutes. Put L = ε1 ◦ l : X × I −→ E. Then the equalities

L ◦ e0(X) = ε1 ◦ l ◦ e0(X) = ε1 ◦K = f
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and

L ◦ e1(X) = ε1 ◦ l ◦ e1(X) = ε1 ◦H = g

show that the map L constitutes a fibre homotopy L : f 'p g.

Example 4.5. In this example, we show that if p does not belong to fib, then the two
notions of homotopy over p considered in Theorem 4.4 need not coincide. Consider
the Strøm model structure on Top with its choice of cylinder objects as in Example
3.1.

Lemma 4.6. If p : E −→ B is a map in Top, then a path object (Ep, ε0, ε1, ς) for p
is defined by





Ep = {γ ∈ EI | pγ(t) = pγ(1− t) for all t ∈ I},
(ε0, ε1) : Ep −→ E ×p E : γ 7−→ (γ(0), γ(1)),
ς : E −→ Ep : e 7−→ (ce : I −→ E : t 7−→ e).

Proof. In Top we can take

E ×p E = {(e, e′) ∈ E × E | p(e) = p(e′)}.
Clearly ς and (ε0, ε1) are continuous maps and ∆p = (ε0, ε1) ◦ ς. It is easy to see
that ς is a homotopy equivalence, since k ◦ ς = 1E and ς ◦ k ' 1Ep where

k : Ep −→ E : γ 7−→ γ( 1
2 );

indeed if
γt(τ) = γ((1− t)τ + t

2 ),

then H : Ep×I −→ Ep : (γ, t) 7−→ γt defines a homotopy from 1Ep to ς◦k. Moreover
the map ς is a weak cofibration, because it embeds E in Ep as a strong deformation
retract (here we use [DKP70], Satz 2.29; cf. Theorem 6.3): the homotopy H is a
homotopy relative ς(E).

Finally, (ε0, ε1) is a Hurewicz fibration since

Λ(γ, Γ)(t)(τ) =





pr0Γ(t− 3τ) if 0 6 τ 6 t
3

γ(3τ−t
3−2t ) if t

3 6 τ 6 1− t
3

pr1Γ(t + 3τ − 3) if 1− t
3 6 τ 6 1

defines a lifting function

Λ : {(γ, Γ) ∈ Ep × (E ×p E)I |Γ(0) = (γ(0), γ(1))} −→ (Ep)I

for (ε0, ε1).

Take E = I × {0} ∪ {0} × I ∪ I × {1} ⊂ I × I, B = I, p(x, y) = x, f : {0} −→
E : 0 7−→ (1, 1) and g : {0} −→ E : 0 7−→ (1, 0). Then clearly f is right homotopic
to g over p but not f 'p g!

Remark 4.7. One could formulate Definition 4.1 of path object in a more restrictive
manner by asking that the ς be a trivial cofibration (as, for example, in the context
of model categories, one sometimes asks path objects to be very good ; see [DS95],
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Definition 4.2). The relation of right homotopy over a map p in Definition 4.2 then
becomes stronger than ours (since we have less path objects) and has the advantage
of being independent of the chosen path object (cf. Remark 4.3). But yet, it would
not be equivalent to the fibre homotopy relation 'p: the topological counterexample
in 4.5 still applies, since the map

ς : E −→ Ep : e 7−→ ce

is a cofibration by Satz 3.26 of [DKP70]—ς(E) is the zeroset of the continuous
map

Ep −→ R+ : γ 7−→ max
t,t′∈I

‖γ(t)− γ(t′)‖.

5. The dual situation: relative homotopy and weak cofibra-
tions

All concepts introduced and theorems proved in the preceding sections can be
dualized. We will give explicit definitions and formulations of theorems for the dual
case. First we recall the axioms of a category of fibrant objects, as introduced by
K. S. Brown in [Bro73].

Definition 5.1. Consider a triple (F ,fib,we), where F is a category with binary
products and a terminal object e, and where fib and we are two classes of maps of
F . Maps in fib, we and fib ∩we are respectively called fibrations, weak equivalences
and trivial fibrations.

Let X be an object of F and let ∆X = (1X , 1X) : X −→ X × X denote the
diagonal morphism. A cocylinder object (XI , ε0, ε1, s) on X consists of an object
XI of F and maps

ε0, ε1 : XI −→ X, s : X −→ XI

such that the map (ε0, ε1) : XI −→ X × X is a fibration, s is a weak equivalence
and (ε0, ε1) ◦ s = ∆X .

The triple (F ,fib,we) is called a category of fibrant objects if the following axioms
hold.
F1 Any isomorphism is a weak equivalence. For two morphisms f and g in F such

that g ◦ f exists, two out of three morphisms f , g and g ◦ f being a weak
equivalence implies that the third morphism is a weak equivalence.

F2 Any isomorphism is a fibration and the class fib is closed under composition.
F3 Given any pair of maps i : A −→ X, u : B −→ X with i ∈ fib the pullback

A×X B

u

²²

ı // B

u

²²

A
i

// X

exists and ı is a fibration. If i is trivial, so is ı.
F4 For any object X of F there is a cocylinder object (XI , ε0, ε1, s).
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F5 For any object X of F the unique map X −→ e is a fibration.

Note that for any cocylinder object (XI , ε0, ε1, s) on an object X of F , the maps
ε0 and ε1 are trivial fibrations. We say that ε0, ε1 are cocylinder fibrations and that
s is a cocylinder section.

Note that for any model category (M,fib, cof ,we), the full subcategory Mf of
all fibrant objects, together with the classes fib ∩Mf and we ∩Mf of fibrations,
resp. weak equivalences between fibrant objects, forms a category of fibrant objects
(Mf ,fib ∩Mf ,we ∩Mf ).

In order to define our notion of relative homotopy in a category of fibrant objects
(F ,fib,we), we require that a cocylinder object is chosen for each object X ∈ |F|:

Definition 5.2. If (F ,fib,we) is a category of fibrant objects, then a cocylinder
object choice P is a family

(XI , ε0(X), ε1(X), s(X))X∈|F|,

where for each object X of F , (XI , ε0(X), ε1(X), s(X)) is a cocylinder object on X.

Example 5.3. Let F be a category. A cocylinder or cocylinder functor

P = ((·)I , ε0, ε1, s)

on F is a functor

(·)I : F −→ F
together with natural transformations

ε0, ε1 : (·)I =⇒ 1F , s : 1F =⇒ (·)I

such that ε0s = ε1s = 11F . Let (F ,fib,we) be a category of fibrant objects. A
cocylinder ((·)I , ε0, ε1, s) on F is called suitable if (XI , ε0(X), ε1(X), s(X)) is a co-
cylinder object on X for all X ∈ |F|. Let (M,fib, cof ,we) be a model category. A co-
cylinder (XI , ε0(X), ε1(X), s(X)) onM is called suitable if (XI , ε0(X), ε1(X), s(X))
is a cocylinder object (see [Qui67] or [Hov99]) on X for all X ∈ |M|.

If P is a suitable cocylinder on (F ,fib,we), then P evidently induces a cocylinder
object choice on (F ,fib,we). Furthermore, note that if (F ,fib,we) is a category of
fibrant objects generated by a cocylinder P—see [KP97]—then P is automatically
suitable.

Dualizing Definition 1.4 gives us the following notion of relative homotopy.

Definition 5.4. Let (F ,fib,we) be a category of cofibrant objects equipped with
a cocylinder object choice P = (XI , ε0(X), ε1(X), s(X))X∈|F|, and let i : A −→ X
be a map in F . Suppose further that we have a commutative diagram as folows:

A
i

~~~~
~~

~~
~

f◦i=g◦i

ÃÃ
@@

@@
@@

@

X
f

//

g
// Y.
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Then we say that f is homotopic to g under i, and we write f 'i g, if there is a
map H : X −→ Y I such that





ε0(X) ◦H = f
ε1(X) ◦H = g
H ◦ i = s(Y ) ◦ f ◦ i = s(Y ) ◦ g ◦ i.

The map H is said to be a relative homotopy (under i) from f to g.
If f : X −→ Y and i : A −→ X are maps in F , then being relatively homotopic

under i is a relation on the set [f ]i of all maps f : X −→ Y such that f ◦ i = f ◦ i.

The following dualizes Proposition 1.7.

Proposition 5.5. Let (F ,fib,we) be a category of fibrant objects equipped with a
cocylinder object choice P and let i : A −→ X be a map in F . Then the following
properties hold:

1. For each map f : X −→ Y in F , we have that f 'i f .

2. Suppose that we have the following commutative diagram.

A
i′

~~||
||

||
||

i

²² ÃÃ
@@

@@
@@

@@

X ′
h

// X
f

//

g
// Y

If f 'i g then f ◦ h 'i′ g ◦ h.

Definition 5.6. Let (F ,fib,we) be a category of fibrant objects equipped with a
cocylinder object choice P = (XI , ε0(X), ε1(X), s(X))X∈|F|. Suppose that i : A −→
X and p : E −→ B are maps in F . We say that i has the weak left lifting property
(WLLP) with respect to p if whenever we have a commutative square as below,

A

i

²²

f
// E

p

²²

X g
// B

(E)

then there exists a map h : X −→ E such that p ◦ h 'i g and h ◦ i = f . A map
i : A −→ X in F is said to be a weak cofibration if it has the WLLP with respect
to all weak equivalences p : E −→ B.

Weak cofibrations can be characterised using the mapping path space factorisa-
tion.

Definition 5.7. Let (F ,fib,we) be a category of fibrant objects equipped with a
cocylinder object choice P. Let f : X −→ Y be a map in F . A mapping path space
of f is a triple (Pf , πf , jf ) (sometimes denoted shortly Pf ) with Pf ∈ |F|, and
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πf : Pf −→ Y I and jf : Pf −→ X maps in F , such that the diagram

Pf
πf

//

jf

²²

Y I

ε0(Y )

²²

X
f

// Y

is a pullback in F .
If f : X −→ Y is a map in F , then a mapping path space for f always exists

by F3. Being a mapping path space depends on the cocylinder object choice P.
The map jf is a trivial fibration since ε0(Y ) is. We shall refer to the map kf =
ε1(Y ) ◦ πf : Pf −→ Y as the mapping path space fibration. If f ∈ we, then kf is a
trivial fibration.

Let f : X −→ Y be a map in F and (Pf , πf , jf ) a mapping path space of f . Due
to pullback properties there is a unique map qf : X −→ Pf such that jf ◦ qf = 1X

and πf ◦ qf = s(Y ) ◦ f . Thus we obtain a factorisation f = kf ◦ qf of f as a weak
equivalence followed by a fibration.

Proposition 5.8. Let (F ,fib,we) be a category of fibrant objects equipped with a
cocylinder object choice P. Let p : E −→ B and i : A −→ X be any maps in F ,
then the following conditions are equivalent:

1. the map i has the WLLP with respect to p,
2. given the diagram of solid arrows below, then for any mapping path space

(Pp, πp, jp) for p there exists a map H : X −→ Pp such that the the diagram
F below commutes,

3. given the diagram of solid arrows below, there exists a mapping path space
(Pp, πp, jp) for p and a map H : X −→ Pp such that the the diagram F below
commutes.

A
f

//

i

²²

E

p

²²

qp
~~

Pp

kp
ÃÃ

X g
//

H

>>

B.

(F)

Using this characterisation, one proves that in a category of fibrant objects
equipped with a cocylinder object choice, the class of weak cofibrations is closed
under pushout.

Now we restrict the class of cocylinder object choices in the following way:

Definition 5.9. Let (F ,fib,we) be a category of fibrant objects. Then a cocylinder
object choice P is called nice if, for each map i : A −→ X in F , we have the
following properties.

1. For each map f : X −→ Y in F , the relation 'i is an equivalence relation on
[f ]i.
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2. Suppose that we have the following commutative diagram.

A
i

~~~~
~~

~~
~~

²² ÃÃ
AA

AA
AA

A

X
f

//

g
// Y

h
// Y ′

If f 'i g then h ◦ f 'i h ◦ g.

One can prove that in a category of fibrant objects equipped with a nice cocylin-
der object choice, the class of weak cofibrations is closed under composition. The
following proposition gives an interesting situation in which a category of fibrant
objects can be equipped with a nice cocylinder object choice.

Proposition 5.10. Let (F ,fib,we) be a category of fibrant objects equipped with
a suitable cocylinder P = ((·)I , ε0, ε1, s) which satisfies the Kan filler condition
DNE(2, 1, 1). Then the cocylinder object choice induced by P is nice.

For the remaining part of this section, we suppose that the category of fibrant
objects (F ,fib,we) is equipped with a nice cocylinder object choice.

Proposition 5.11. Let i : A −→ X be a map in F , then the following conditions
are equivalent:

1. i has the WLLP with respect to all p ∈ we,

2. i has the WLLP with respect to all p ∈ fib ∩ we.

Definition 5.12. Let A be an object of F and f : i −→ i′ a map in the category
A/F of objects under A.

A
i

ÄÄ~~
~~

~~
~

i′

ÃÃ
AA

AA
AA

AA

X
f

// X ′
(G)

f is called a relative homotopy equivalence if there exists a relative homotopy inverse
for f , i.e., a map g : i′ −→ i in A/F such that g ◦ f 'i 1X and f ◦ g 'i′ 1X′ .

We get the following version of Dold’s theorem.

Theorem 5.13. Suppose that in the commutative triangle of diagram G, i and i′

are weak cofibrations. If f : X −→ X ′ is a weak equivalence then f : i −→ i′ is a
relative homotopy equivalence.

6. Examples of weak cofibrations

Example 6.1. On the category Top we consider the structure of category of fibrant
objects induced by the Strøm model structure: weak equivalences are homotopy
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equivalences and fibrations are Hurewicz-fibrations, maps which have the homotopy
lifting property with respect to all topological spaces. The cocylinder-functor

(·)I : Top −→ Top : X 7−→ X [0,1],

which maps a space X to the set of functions [0, 1] −→ X equipped with the
compact-open topology, together with the obvious natural transformations is a suit-
able cocylinder which satisfies DNE(n) for all n.

Recall from [DKP70] the following definition: a map i : A −→ X is said to
have the weak homotopy extension property or Homotopieerweiterungseigenschaft
bis auf Homotopie with respect to a topological space B if for any continuous map
f : X −→ B and homotopy H : A × I −→ B such that H ◦ e0(A) = f ◦ i, there
exists a homotopy h : X × I −→ B such that h ◦ (i× I) = H and h ◦ e0(X) 'i f . A
map i is called a (classical) weak cofibration or h-Cofaserung if it has has the weak
homotopy extension property with respect to all topological spaces B ∈ |Top|.

In the category of fibrant objects Top, two maps are relatively homotopic if
and only if they are relatively homotopic in the usual topological sense. Moreover,
the categorical notion of weak cofibration coincides with the topological notion of
classical weak cofibration, as proves the following theorem.

Theorem 6.2. (cf. [Kie87], Theorem 1) Let i : A −→ X be a map in Top. Then the
following conditions are equivalent:

1. i has the weak homotopy extension property with respect to all B ∈ |Top|,
2. i has the WLLP with respect to all p ∈ fib ∩ we,

3. i has the WLLP with respect to all p ∈ we,

4. i has the WLLP with respect to all ε0(B) : BI −→ B.

Proof. We will use the Strøm model structure on Top and use the names fibration,
cofibration and weak equivalence for maps in the respective classes. Suppose that
condition (1) holds and that we have a commutative square as E above, where p is
a trivial fibration. We can factor i as a cofibration ı : A −→ M followed by a trivial
fibration p : M −→ X. We get a weak lifting h : M −→ E in the commutative
square

A
f

//

ı

²²

E

p

²²

M
g◦p

// B.

Now p is a map ı −→ i in A/Top, p is a homotopy equivalence, ı is a cofibration
and i is a classical weak cofibration.

A
ı

~~}}
}}

}}
}} i

ÃÃ
@@

@@
@@

@

M
p

//
Xep

oo
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Thus Dold’s theorem [DKP70, 2.18] implies that p has a relative homotopy inverse
p̃ : i −→ ı. In particular, we have that p̃ ◦ p 'ı 1M and p ◦ p̃ 'i 1X . Put H = h ◦ p̃ :
X −→ E. Then H◦i = h◦p̃◦i = h◦ı = f and p◦H = p◦h◦p̃ = g◦p◦p̃ 'i g◦1X = g.
Condition (2) follows.

Condition (3) follows from (2) using Proposition 5.11 and (4) follows from (3)
because ε0(B) ∈ we for all topological spaces B ∈ |Top|. Condition (4) implies
condition (1) because the functor (·)× I is left adjoint to (·)I : there is a 1-1 corre-
spondence between diagrams such as on the left below and diagrams such as on the
right below.

X
f

&&
e0(X)

$$JJJJJJJJJJ

A

i

<<yyyyyyyyy

e0(A)
""EE

EE
EE

EE
E X × I h // B

A× I
H

88

i×I
::uuuuuuuuu

A
H //

i

²²

BI

ε0(B)

²²

X
f

//

h

>>

B

Moreover if h : X −→ BI is a weak lifting in the right diagram, then the associated
map h : X × I −→ B is a weak homotopy extension for the left diagram and vice
versa.

As Strøm’s model structure on Top is a closed one, dualizing Proposition 2.7
yields the following dual of [Kie87], Theorem 2. Note that it contains Satz 2.29 of
[DKP70].

Theorem 6.3. Let i : A −→ X be a map in Top. Then the following conditions are
equivalent:

1. i is a weak cofibration and a homotopy equivalence,

2. i is a strong deformation retraction,

3. i has the WLLP with respect to all maps p : E −→ B in Top.

Example 6.4. Contrary to the dual case (Example 3.2), in the category of fibrant
objects (Top,fib,we) induced by the Quillen model structure on Top, the notion of
weak cofibration does not coincide with the classical notion, but instead is strictly
stronger.

Note that the cocylinder from Example 6.1 is suitable and recall from Example 3.2
that in this model category, every object is fibrant. Clearly, every weak cofibration
of (Top,fib,we) is a classical weak cofibration, because a map that has the WLLP
with respect to all elements of we has the WLLP with respect to all homotopy
equivalences. The converse is not true. To see this, suppose that every classical
weak cofibration is a weak cofibration of (Top,fib,we), and let f : X −→ X ′ be a
weak equivalence. Let ∅ denote the empty topological space, the initial object of



Homology, Homotopy and Applications, vol. 5(1), 2003 374

Top, and let i and i′ in the diagram below be the unique maps.

∅
i

~~~~
~~

~~
~~ i′

ÃÃA
AA

AA
AA

A

X
f

// X ′

The maps i and i′ are cofibrations in the sense of Example 3.1; hence, they are
classical weak cofibrations, thus, by assumption, weak cofibrations of (Top,fib,we).
But then Dold’s Theorem 5.13 implies that f is a homotopy equivalence. As there
exist examples of weak equivalences that are not homotopy equivalences (see, for
instance, [Mau70], Example 7.5.5), this is a contradiction.

This example proves that our notion of weak cofibration (and, dually, weak fi-
bration) is not determined by the choice of (co)cylinder alone, but also by the given
structure of category of (co)fibrant objects. Hence our notion of weak (co)fibration
does in general not coincide with Kamps’s notion as defined in [Kam72]—cf. Propo-
sition 2.9.

Now we can strengthen Theorem 3.3 to the following version of Whitehead’s
Theorem, and prove it as a result of Dold’s Theorem.

Theorem 6.5. Let X and Y be topological spaces that are homotopy equivalent to
cofibrant objects, and let f : X −→ Y be a continuous map. If f is a weak equivalence
then f is a homotopy equivalence.

Proof. The dual of Theorem 2.5 implies that X and Y are homotopy equivalent to
cofibrant objects if and only if the maps ∅ −→ X and ∅ −→ Y are weak cofibra-
tions. But then Dold’s Theorem 5.13 implies that f is a homotopy equivalence.

Example 6.6. It is easily proved that the category Gpd from Example 3.4 is cartesian
closed. In particular, this means that the cylinder functor (·) × I : Gpd −→ Gpd
has a right adjoint (·)I : Gpd −→ Gpd. One can choose X I to be a functor category
Fun(I,X ) = Gpd(I,X ). The obvious natural transformations ε0, ε1 and s such that
P = ((·)I , ε0, ε1, s) is a suitable cocylinder on Gpd are such that (I,P) is an adjoint
cylinder/cocylinder pair ([KP97], II.3.5). Using [KP97], Proposition II.3.7, we get
that P satisfies DNE(2, 1, 1).

The structure of a category of fibrant objects associated to the model structure
on Gpd, equipped with the nice cocylinder object choice induced by P, gives rise to
a notion of weak cofibration; as in the dual case, the weak cofibrations are exactly
the cofibrations.

Proposition 6.7. Let i : A −→ X be a map of groupoids. If i is a weak cofibration
then i is cofibration.

Proof. Let a and a′ be two objects of A such that i(a) = i(a′) and suppose that
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a 6= a′. We define a commutative square

A f
//

i

²²

I

²²

X // ∗
by choosing f(a′) = 1 and f(a′′) = 0 for all objects a′′ 6= a′ of A. The unique
functor I −→ ∗ is a weak equivalence and i is a weak cofibration, so there is a
functor h : X −→ I such that h ◦ i = f . But then f(a) = f(a′), a contradiction. If
follows that a = a′ and i is a cofibration.

7. The case of chain complexes in an abelian category

In this last section we give a characterisation of the weak fibrations and weak
cofibrations of unbounded chain complexes in an abelian category A that one gets
when applying our definition to the model structures defined in [CH02]. We start
by fixing some notations and giving a short description of these model structures.

Let A be an abelian category, for instance the category RMod of left R-modules
over a ring R and R-linear maps. A homomorphism f : C· −→ D· of degree n
between graded objects C· and D·, i.e. collections of objects C· = (Cn)n∈Z and
D· = (Dn)n∈Z ofA, is a collection of maps f = (fi : Ci −→ Di+n)i∈Z. We denote the
abelian group of homomorphisms of degree n as Ch·(A)(C·, D·)n. A chain complex
then is a graded object C· together with a homomorphism d : C· −→ C· of degree
−1 (its differential) such that dn ◦ dn+1 = 0 for all n ∈ Z, and a morphism between
chain complexes C· and D· is a homomorphism f : C· −→ D· of degree 0 such
that fn−1 ◦ dn = dn ◦ fn for all n ∈ Z. Chain complexes and morphisms between
them—morphisms are composed degreewise—form a category we denote Ch·(A)
and Ch·(R) = Ch·(RMod). Dually, the category of cochain complexes and cochain
morphisms will be denoted Ch·(A) and Ch·(R) = Ch·(RMod). Given objects C·
and D· of Ch·(A), the graded object Ch·(A)(C·, D·)· = (Ch·(A)(C·, D·)n)n∈Z has a
natural structure of chain complex of Z-modules with differential

dn : Ch·(A)(C·, D·)n −→ Ch·(A)(C·, D·)n−1 :
f = (fi : Ci −→ Di+n)i∈Z 7−→ dn(f) = (dn(f)i : Ci −→ Di+n−1)i∈Z,

where dn(f)i = di+n ◦ fi + (−1)n−1fi−1 ◦ di. For a given chain complex C· we
denote the object of n-cycles as ZnC· = ker dn, the object of n-boundaries as
BnC· = im dn+1 and the n-th homology as HnC· = ZnC·/BnC·. If A is RMod, the
homology class of an n-cycle z ∈ ZnC· is denoted [z]. Note that for chain complexes
C· and D·, the 0-cycles of Ch·(A)(C·, D·)· are exactly the morphisms C· −→ D·.
Homology induces exact functors Hn : Ch·(A) −→ A. A homology isomorphism or
quasi-isomorphism is a map f : C· −→ D· of Ch·(A) such that Hnf : HnC· −→
HnD· is an isomorphism for all n ∈ Z. Two chain maps f, g : C· −→ D· are called
chain homotopic, notation f ' g, if there exists a homomorphism H : C· −→ D· of
degree 1 such that fn− gn = d1(H)n = dn+1 ◦Hn + Hn−1 ◦ dn. A map is said to be
nullhomotopic if it is chain homotopic to 0. A map f : C· −→ D· is a chain homotopy
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equivalence if there is a g : D· −→ C· with g◦f ' 1C· and f◦g ' 1D· . A complex C· is
called contractible if the unique map C· −→ 0· is a chain homotopy equivalence. Any
chain homotopy equivalence is a quasi-isomorphism. Finally, for a chain complex C·,
let ΣnC· denote its n-fold suspension, the chain complex given by (ΣnC·)i = Ci−n

and dΣnC·
i = (−1)ndi−n, for i ∈ Z; recall that the mapping cone cone f of a chain

map f : C· −→ D· is the chain complex given by (cone f)n = Cn−1 ⊕Dn and

dn =
(−dC·

n−1 0
−fn−1 dD·

n

)
: (cone f)n −→ (cone f)n−1,

for n ∈ Z.
In the article [CH02], model structures are defined on Ch·(A) with respect to a

given projective class; this consists of a class of A-objects one thinks of as the class
of projective objects, together with a class of A-maps one thinks of as the class of
epimorphisms. This notion was originally introduced by Maranda in [Mar64].

Definition 7.1. [CH02, Definition 1.1], [Mar64] Let C be a category. Let P be
an object of C. Then a map f : A −→ B is called P -epic if the induced map

C(P, f) = f ◦ (·) : C(P, A) −→ C(P, B)

is a surjection. Given a class P of objects of C, f is said to be P-epic if it is P -epic
for all P in P.

A projective class on C is a class P of objects of C together with a class E of maps
of C such that

1. E is the collection of all P-epic maps,
2. P is the collection of all objects P such that each map in E is P-epic,
3. for each object B there is a map P −→ B in E with P in P.

An object of P is called P-projective.

Since the class P determines E we will sometimes speak of the projective class
P. If A is an abelian category with enough projectives then (P, E), where P is the
class of projectives and E is the class of epimorphisms, forms a projective class on
A, called the categorical projective class. Dualizing the definition of projective class
gives rise to a notion of injective class on a category C. Note that a map f : A −→ B
is I-monic if the induced map C(f, I) = (·) ◦ f is a surjection. If A is an abelian
category with enough injectives, then the class of injectives together with the class
of monomorphisms forms an injective class on A, the categorical injective class.

Given a projective class P or an injective class I on an abelian category A, Chris-
tensen and Hovey construct a model structure on the category Ch·(A) of unbounded
chain complexes in A as follows.

Definition 7.2. [CH02, Definition 2.1] Let A be an abelian category. For any
object A of A, there are hom-functors

A(A, ·)· : Ch·(A) −→ Ch·(Z) and A(·, A)· : Ch·(A) −→ Ch·(Z).

Let P be a projective class onA. A map f : X· −→ Y· in Ch·(A) is a P-equivalence
if the chain map A(P, f)· is a homology isomorphism (of abelian groups) for each P
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in P. The map f is a P-fibration if A(P, f)· is an epimorphism of Ch·(Z) for each P
in P. f is a P-cofibration if it has the left lifting property with respect to all maps
that are both P-fibrations and P-equivalences (the P-trivial fibrations). A complex
C· is called P-cofibrant if the unique map 0· −→ C· is a P-cofibration. A complex
K· is called weakly P-contractible if the map K· −→ 0· is a P-equivalence.

Dually, let I be an injective class on A. A map f : X· −→ Y· in Ch·(A) is an
I-equivalence if the cochain map A(f, I)· is a cohomology isomorphism (of abelian
groups) for each I in I. The map f is an I-cofibration if A(f, I)· is an epimorphism
of Ch·(Z) for each I in I. f is an I-fibration if it has the right lifting property with
respect to all maps that are both I-cofibrations and I-equivalences (the I-trivial
cofibrations). A complex C· is called I-fibrant if the unique map C· −→ 0· is an
I-fibration. A complex K· is called weakly I-contractible if the map 0· −→ K· is an
I-equivalence.

Theorem 2.2 of [CH02] gives hypotheses for the classes of P-fibrations, P-
cofibrations and P-equivalences to form a model structure

(Ch·(A),fib(P), cof (P),we(P))

on Ch·(A), the P-model structure. Clearly, all of its objects are fibrant, and any chain
homotopy equivalence is a P-equivalence. Proposition 2.5 of [CH02] states that a
map is a P-cofibration exactly when it is a degreewise split monomorphism with a P-
cofibrant cokernel, and Lemma 2.4 that a chain complex C· is P-cofibrant if and only
if each Cn is P-projective and every map from C· to a weakly P-contractible object
K· is nullhomotopic. A detailed and direct proof that Ch·(R) with the categorical
projective class on RMod—the projective model structure on RMod—forms a model
category can be found in [Hov99, Section 2.3]. Its cofibrant objects are exactly the
DG-projective chain complexes of [AFL93]; these are chain complexes C· such that
Cn is projective for all n ∈ Z and the functor Ch·(R)(C·, ·)· : Ch·(R) −→ Ch·(Z)
preserves homology isomorphisms.

The dual model structure on Ch·(A), this time obtained from an injective class
I, is called the I-model structure on Ch·(A), and is denoted

(Ch·(A),fib(I), cof (I),we(I)).

All of its objects are cofibrant and a map is an I-fibration if and only if it is a
degreewise split epimorphism with an I-fibrant kernel; any chain homotopy equiv-
alence is an I-equivalence. Of course, A and the injective class must satisfy some
hypotheses for this model structure to exist, for instance the dual of the hypothe-
ses of [CH02, Theorem 2.2]. But also the injective model structure on Ch·(A), for
A a Grothendieck category, constructed in [Hov01] is of this form: it is the model
structure obtained from the categorical injective class. Its cofibrations are monomor-
phisms and its weak equivalences are homology isomorphisms. If A is RMod and
I is the categorical injective class, then the I-fibrant objects are exactly the DG-
injective chain complexes of [AFL93]; these are chain complexes C· such that Cn is
injective for all n ∈ Z and the functor Ch·(R)(·, C·)· : Ch·(R) −→ Ch·(Z) preserves
homology isomorphisms.

From now on we suppose that we work in Ch·(A) for A an abelian category,
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equipped with a model structure such as in Definition 7.2 above. We will define
suitable cylinder and cocylinder functors for the associated categories of (co)fibrant
objects, and characterise the resulting weak (co)fibrations. The standard cylinder
((·)×I, e0, e1, σ) on Ch·(A) is such that two chain maps are homotopic with respect
to it (in the sense of [KP97]) if and only if they are chain homotopic. According to
[KP97, Section III.3], this cylinder satisfies DNE(2, 1, 1). Here the functor (·)× I :
Ch·(A) −→ Ch·(A) is given by the equalities (C· × I)n = Cn ⊕ Cn ⊕ Cn−1 and

dn =




dn 0 −1
0 dn 1
0 0 −dn−1


 : (C· × I)n −→ (C· × I)n−1,

and the natural transformations e0, e1 and σ by

e0(C·)n =




1
0
0


 : Cn −→ (C· × I)n, e1(C·)n =




0
1
0


 : Cn −→ (C· × I)n

and σ(C·)n =
(
1 1 0

)
: (C· × I)n −→ Cn, for C· in Ch·(A) and n ∈ Z.

Let (Ch·(A),fib(P), cof (P),we(P)) be a model category obtained from a pro-
jective class P on A. In [CH02, Lemma 2.13], it is shown that e0(C·) + e1(C·) :
C· t C· −→ C· × I is a P-cofibration as soon as C· is P-cofibrant, and σ(C·), be-
ing a chain homotopy equivalence, is a P-equivalence for all objects C·. It follows
that ((·) × I, e0, e1, σ) suits the category of cofibrant objects (Ch·(A)c, cof (P) ∩
Ch·(A)c,we(P) ∩ Ch·(A)c), because restricting the functor (·) × I to Ch·(A)c also
corestricts it to Ch·(A)c. Dually, let (Ch·(A),fib(I), cof (I),we(I)) be a model cat-
egory obtained from an injective class I on A, and let C· be a chain complex in
A. Since e0(C·) + e1(C·) : C· t C· −→ C· × I is a degreewise split monomorphism,
it is an I-cofibration; the chain homotopy equivalence σ(C·) is an I-equivalence. It
follows immediately that ((·) × I, e0, e1, σ) suits the category of cofibrant objects
(Ch·(A), cof (I),we(I)).

In the category of cofibrant objects (Ch·(A)c, cof (P)∩Ch·(A)c,we(P)∩Ch·(A)c)
equipped with the suitable cylinder defined above, the notion of weak fibration
coincides with the notion of P-fibration (between P-cofibrant chain complexes). To
prove this, consider a weak fibration p : E· −→ B·, and let P be a P-projective
object. We must show that for all n ∈ Z, pn ◦ (·) : A(P, En) −→ A(P,Bn) is a
surjection. Take f : P −→ Bn in A(P, Bn). Let DnP denote the chain complex that
is P in degrees n and n−1 and 0 elsewhere, and has differential dn = 1P . Then DnP
is cofibrant, being a bounded below complex of P-projectives (see [CH02, Lemma
2.7]). Moreover 0· −→ DnP is a homotopy equivalence, thus also an I-equivalence.
Hence the commutative square

0· //

²²

E·

p

²²

DnP g
// B·,

in which the map g : DnP −→ B· is given by gn = f and gn−1 = dn ◦ f , has a
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lifting h : DnP −→ E·, and pn ◦ hn = f .
Note that in a similar way, one shows that the weak fibrations or P-fibrations

between P-cofibrant, hence degreewise P-projective, objects are exactly the degree-
wise split epimorphisms.

The weak fibrations of (Ch·(A), cof (I),we(I)) equipped with the suitable cylin-
der defined above, are characterised by the following statements, of which the dual
will be proved below (Proposition 7.6, Corollary 7.7 and Theorem 7.8).

Proposition 7.3. Let C· be a chain complex in (Ch·(A), cof (I),we(I)). Then the
following are equivalent:

1. C· is weakly I-fibrant, i.e., C· −→ 0· is a weak fibration,

2. the functor Ch·(A)(·, C)· : Ch·(A) −→ Ch·(Z) maps I-equivalences to homol-
ogy isomorphisms.

This means that our notion of weakly I-fibrant object is a generalisation of the
K-injective objects of Spalenstein [Spa88].

Proposition 7.4. Let C· be a chain complex in (Ch·(A), cof (I),we(I)). Then the
following are equivalent:

1. C· is I-fibrant,

2. C· is degreewise I-injective and weakly I-fibrant.

Theorem 7.5. Let p : E· −→ B· be a chain map in (Ch·(A), cof (I),we(I)). Then
the following are equivalent:

1. p : E· −→ B· is a weak fibration,

2. p : E· −→ B· is a degreewise split epimorphism with weakly I-fibrant kernel.

It follows that a map is an I-fibration exactly when it is a weak fibration with
a degreewise I-injective kernel. As an immediate consequence of Dold’s Theorem
2.3, we get that any I-equivalence between weakly I-fibrant objects is a homotopy
equivalence, as well as any weak fibration that is also an I-equivalence. As shown
in the dual case (Proposition 7.9), the classes of weak fibrations and I-fibrations
coincide if and only if I is the trivial injective class, i.e., I = |A| and the I-monos
are the split monomorphisms.

Now we consider the dual case. The model structures described above deter-
mine structures of category of fibrant objects on Ch·(A). But in order to speak of
weak cofibrations we also need to have a cocylinder on Ch·(A). Again, the standard
cocylinder ((·)I , ε0, ε1, s) from [KP97] has the property that two maps are homo-
topic with respect to it if and only if they are chain homotopic, and it satisfies
DNE(2, 1, 1). Here the functor (·)I : Ch·(A) −→ Ch·(A) is given by the equalities
(CI
· )n = Cn ⊕ Cn ⊕ Cn+1 and

dn =




dn 0 0
0 dn 0
1 −1 −dn+1


 : CI

n −→ CI
n−1,
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and the natural transformations ε0, ε1 and s by

s(C·)n =




1
1
0


 : Cn −→ CI

n

and ε0(C·)n =
(
1 0 0

)
, ε1(C·)n =

(
0 1 0

)
: CI

n −→ Cn, for n ∈ Z and C· in
Ch·(A).

Let (Ch·(A),fib(I), cof (I),we(I)) be a model category obtained from an injec-
tive class I on A. For any chain complex C·, the map s(C·) is a chain homotopy
equivalence, hence an I-equivalence; the map (ε0(C·), ε1(C·)) : CI

· −→ C·×C· is an
I-fibration as soon as C· is I-fibrant. Now let (Ch·(A)f ,fib(I) ∩ Ch·(A)f ,we(I) ∩
Ch·(A)f ) denote the category of fibrant objects associated with this model struc-
ture. The restriction of (·)I to Ch·(A)f corestricts it to Ch·(A)f because 0 =
0 ◦ (ε0(C·), ε1(C·)) : CI

· −→ 0·, and for an I-fibrant chain complex C·, C· × C· is
I-fibrant. As proved dually above, in this category of fibrant objects, the notion of
weak cofibration coincides with the notion of I-cofibration (between I-fibrant chain
complexes). Moreover, a map between I-fibrant chain complexes is an I-cofibration
exactly when it is a degreewise split monomorphism.

Now reconsider the model structure (Ch·(A),fib(P), cof (P),we(P)) generated by
a projective class P. The cocylinder functor (·)I defined above suits the category
of fibrant objects (Ch·(A),fib(P),we(P)) associated with this model category. Its
weak cofibrations can be characterized by the following statements.

Proposition 7.6. Let C· be a chain complex in (Ch·(A),fib(P),we(P)). Then the
following are equivalent:

1. C· is weakly P-cofibrant, i.e., the map 0· −→ C· is a weak cofibration,

2. any map from C· to a weakly P-contractible object K· is nullhomotopic,

3. for every weakly P-contractible object K·, the chain complex Ch·(A)(C·, K·)·
is acyclic,

4. the functor Ch·(A)(C·, ·)· : Ch·(A) −→ Ch·(Z) maps P-equivalences to homol-
ogy isomorphisms,

5. given chain maps

E·

p

²²

C·
f

// B·

such that p is a P-equivalence, there exists a map h : C· −→ E· such that
p ◦ h ' f ; moreover, this map h is unique up to chain homotopy.

Proof. This is just a reformulation and slight generalization of [Spa88, Proposition
1.4]. To show that (1) implies (2), let f : C· −→ K· be a map from C· to a weakly
P-contractible object K·. Then the map 0 : 0· −→ K· in the diagram below is a
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P-equivalence by axiom F1.

0·

²²

0·

0

²²

C·
f

// K·

It follows that there is a map h : C· −→ 0· such that f ' 0 ◦ h = 0.
Now suppose that (2) holds and let K· be any chain complex. Note that, for n ∈ Z,

the abelian group HnCh·(A)(C·, K·)· consists of the chain homotopy classes of mor-
phisms C· −→ Σ−nK·. Let K· be weakly P-contractible. But then Σ−nK· is weakly
P-contractible for any n ∈ Z; hence, condition (2) implies that Ch·(A)(C·,K·)· is
acyclic, and condition (3) holds.

Next, suppose that (3) holds, and let p : E· −→ B· be a P-equivalence. Then the
left exactness of Ch·(A)(C·, ·)· already implies that the group homomorphism

HnCh·(A)(C·, p)· : HnCh·(A)(C·, E·)· −→ HnCh·(A)(C·, B·)·

is a monomorphism for any n ∈ Z. To see that it is an epimorphism as well, take
[f ] ∈ HnCh·(A)(C·, B·)·. This [f ] is the chain homotopy class of a morphism f :
C· −→ Σ−nB·. Note that, because p is a P-equivalence, the mapping cone cone p
of p is a weakly P-contractible chain complex; thus, (3) implies that the complex
Ch·(A)(C·, cone p)· is acyclic. Hence, the extension of f to a morphism f = (0, f) :
C· −→ Σ−ncone p is nullhomotopic. Let H denote the chain homotopy f ' 0,
then the homomorphism h = prΣ−nE· ◦ H : C· −→ Σ−nE· of degree 0 is in fact
a chain map, and moreover Σ−np ◦ h ' f . It follows that [f ] = [Σ−np ◦ h] =
HnCh·(A)(C·, p)·[h] and HnCh·(A)(C·, p)· is an epimorphism of abelian groups. This
proves that (4) holds.

Condition (5) follows easily from condition (4), and (5) obviously implies (1).

It is clear that our notion of weakly P-cofibrant object is a generalisation of the
K-projective objects of Spaltenstein [Spa88].

Corollary 7.7. Let C· be a chain complex in (Ch·(A),fib(P),we(P)). Then the
following are equivalent:

1. C· is P-cofibrant,

2. C· is degreewise P-projective and weakly P-cofibrant.

Proof. This follows immediately from Proposition 7.6, the dual of Corollary 1.19
and [CH02, Lemma 2.4].

Theorem 7.8. Let i : A· −→ X· be a chain map in (Ch·(A),fib(P),we(P)). Then
the following are equivalent:

1. i : A· −→ X· is a weak cofibration,

2. i : A· −→ X· is a degreewise split monomorphism with weakly P-cofibrant
cokernel.



Homology, Homotopy and Applications, vol. 5(1), 2003 382

Proof. Suppose that i : A· −→ X· is a weak cofibration and consider the pushout
square

A· //

i

²²

0·

²²

B· // coker i.

As the class of weak cofibrations in a category of fibrant objects is closed under
pushout, this already shows that coker i is weakly P-cofibrant. Now let Dn+1An

denote the chain complex that is An in degrees n + 1 and n and 0 elsewhere, and
has differential dn+1 = 1An . Then Dn+1An −→ 0· is a P-equivalence, being a
homotopy equivalence, and the commutative square

A·
f

//

i

²²

Dn+1An

²²

X· //

r

;;

0·,

in which the map f : A· −→ Dn+1An is given by fn = 1An and fn+1 = dn+1,
has a lifting r : X· −→ Dn+1An. We get that rn : Xn −→ An is a left inverse of
in : An −→ Xn, and in is a split monomorphism.

Now suppose that (2) holds. In the commutative square

A·
f

//

i

²²

E·

p

²²

X· g
// B·,

let i be a degreewise split monomorphism with P-cofibrant cokernel q : X· −→ C· =
coker i, and let p be a weak equivalence. We must show that i has the WLLP with
respect to p. Now for all n ∈ Z,

0 // An
in // Xn

qn // Cn
// 0

is a short exact sequence with in a split monomorphism. Thus, qn is a split epimor-
phism and we have a commutative diagram

An
in // Xn

qn //

rn
}}{{

{{
{{

{{
Cn

An Cn.

sn

aaCCCCCCCC

Moreover, Xn
∼= An ⊕Cn, where in + sn : An ⊕Cn −→ Xn is an isomorphism with

inverse (rn, qn) : Xn −→ An ⊕ Cn. Now the differentials on X· induce a structure
of chain complex on (An ⊕ Cn)n∈Z such that they are isomorphic; in particular,
∀n ∈ Z,

dn = (dn + rn−1 ◦ dn ◦ sn, dn) : An ⊕ Cn −→ An−1 ⊕ Cn−1.
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The collection τ = (τn = rn−1 ◦dn ◦ sn)n∈Z is a homomorphism C· −→ A· of degree
−1 such that for all n ∈ Z, dn−1◦τn+τn−1◦dn = 0, because τn◦qn = rn−1◦dn−dn◦rn

by definition of sn, and consequently (dn−1◦τn+τn−1◦dn)◦qn = 0◦qn, and because
qn is epi. This means that d−1(τ) = 0, i.e., τ ∈ Ch·(A)(C·, A·)−1 is a (−1)-cycle of
Ch·(A)(C·, A·)·. Also, τ ◦ q = d0(−r) ∈ B−1Ch·(A)(X·, A·)· is a (−1)-boundary of
Ch·(A)(X·, A·)·. Moreover q : X· −→ C· is epi, hence

Ch·(A)(q,A·)· : Ch·(A)(C·, A·)· −→ Ch·(A)(X·, A·)·

is mono, and in particular

H−1Ch·(A)(q, A·)· : H−1Ch·(A)(C·, A·)· −→ H−1Ch·(A)(X·, A·)·

is mono. But H−1Ch·(A)(q, A·)·[τ ] = [τ ◦ q] = 0, hence [τ ] = 0 and τ ∈ im d0. This
implies that there exists a homomorphism H ∈ Ch·(A)(C·, A·)0 of degree 0 such
that for all n ∈ Z, τn = dn ◦Hn −Hn−1 ◦ dn.

Because g : X· −→ B· is a chain morphism, we can write gn ◦ (in + sn) =
(pn ◦ fn + σn), where σ = (σn)n∈Z = (gn ◦ sn)n∈Z : C· −→ B· is a homomorphism
of degree 0 such that

dn ◦ σn = σn−1 ◦ dn + pn−1 ◦ fn−1 ◦ τn, ∀n ∈ Z.

We get that the homomorphism σ − p ◦ f ◦ H : C· −→ B· of degree 0 is a chain
map. Now C· is weakly P-cofibrant; thus, there exists a map h : C· −→ E· such that
p◦h ' σ−p◦f ◦H. It follows that there is a homomorphism K : C· −→ B· of degree
1, yielding for all n ∈ Z the equality pn◦hn−σn+pn◦fn◦Hn = dn+1◦Kn+Kn−1◦dn.
Now the homomorphism f ◦ r + h ◦ q + f ◦H ◦ q : X −→ E of degree 0 is in fact a
chain map and

pn ◦ (fn ◦ rn + hn ◦ qn + fn ◦Hn ◦ qn)− gn

= dn+1 ◦ (Kn ◦ qn) + (Kn−1 ◦ qn−1) ◦ dn.

The collection L = (pn ◦ (fn ◦rn +hn ◦qn +fn ◦Hn ◦qn), gn,Kn ◦qn)n∈Z is a relative
homotopy L : p ◦ (f ◦ r +h ◦ q + f ◦H ◦ q) 'i g, and (f ◦ r +h ◦ q + f ◦H ◦ q) ◦ i = f .
This shows that i has the WLLP with respect to p.

It follows that a map is a P-cofibration exactly when it is a weak cofibration
with a degreewise P-projective cokernel. As an immediate consequence of Dold’s
Theorem 5.13, we get that any P-equivalence between weakly P-cofibrant objects
is a chain homotopy equivalence, as well as any weak cofibration that is also a
P-equivalence.

To end this section, we now show that the class of weak cofibrations is almost
never trivial, in the following sense:

Proposition 7.9. The class of weak cofibrations of (Ch·(A),fib(P),we(P)) coin-
cides with the class of P-cofibrations if and only if P is the trivial projective class,
i.e., P = |A| and the P-epis are the split epimorphisms.

Proof. If P is the trivial projective class, then any chain complex in A is degreewise
P-projective. By Corollary 7.7 then, any weakly P-cofibrant object is P-cofibrant.
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But then any weak cofibration is a degreewise split monomorphism with P-cofibrant
cokernel, hence a P-cofibration.

Reciprocally, suppose that A ∈ |A| \ P is a non-P-projective object. Then the
chain complex C· given by Cn = A for any n ∈ Z, dn = 0 for n even and dn = 1A

for n odd, is contractible. This implies that C· is weakly P-cofibrant but not P-
cofibrant. Consequently, the class of weak cofibrations of (Ch·(A),fib(P),we(P))
strictly contains the class of P-cofibrations.
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