Homology, Homotopy and Applications, vol.5(1), 2003, pp.423-436

THE SET OF RATIONAL HOMOTOPY TYPES WITH GIVEN COHOMOLOGY ALGEBRA

HIROO SHIGA AND TOSHIHIRO YAMAGUCHI

(communicated by James Stasheff)

Abstract

For a given commutative graded algebra A^* , we study the set $\mathcal{M}_{A^*} = \{ \text{rational homotopy type of } X \mid H^*(X; Q) \cong A^* \}.$ For example, we see that if A^* is isomorphic to $H^*(S^3 \vee S^5 \vee$ $S^{16}; Q$, then \mathcal{M}_{A^*} corresponds bijectively to the orbit space $P^{3}(Q)/Q^{*} \prod \{*\},$ where $P^{3}(Q)$ is the rational projective space of dimension 3 and the point $\{*\}$ indicates the formal space.

1. Introduction

For a given graded algebra over the rationals (abbreviated to G.A.) A^* , there exists at least one rational homotopy type having A^* as a cohomology algebra, namely the formal space. In general there are many rational homotopy types having isomorphic cohomology algebras. In [5] it was shown that there are two rational homotopy types with isomorphic cohomology algebras and isomorphic homotopy Lie algebras, and in [6] it was shown that there are infinitely many rationally elliptic homotopy types having isomorphic cohomology algebras. Set

 $\mathcal{M}_{A^*} = \{ \text{rational homotopy type of } X \mid H^*(X; Q) \cong A^* \}.$

The set \mathcal{M}_{A^*} was studied by several authors([1],[2],[3],[7],[10]). For example, Lupton ([3]) showed that for any positive integer n there is a G.A. A^* such that the cardinality of \mathcal{M}_{A^*} is n. Halperin and Stasheff studied \mathcal{M}_{A^*} by the set of perturbations of the differential of the formal differential graded algebra (abbreviated to D.G.A.). In particular they showed for $A^* = H^*((S^2 \vee S^2) \times S^3; Q)$, the set \mathcal{M}_{A^*} consists of two points. This example is also caluculated from our view point (see Section 3(4)). Schlessinger and Stasheff ([7]) extended the arguments in [2].

We study \mathcal{M}_{A^*} from a different point of view. Our strategy to study \mathcal{M}_{A^*} is as follows. We construct inductively 1-connected minimal algebras m_{n-1} such that there is a G.A.map

$$\sigma_n: (H^*(m_{n-1})(n))^* \to A^*$$

so that σ^i is isomorphic for $i \leq n-1$ and monomorphic for i = n, where $(H^*(m_{n-1})(n))^*$ is the sub G.A. of $H^*(m_{n-1})$ generated by elements of degree

Received July 25, 2003, revised October 5, 2003; published on October 15, 2003. 2000 Mathematics Subject Classification: 55p62.

Key words and phrases: rational homotopy type, minimal algebra, k-intrinsically formal (k-I.F.) © 2003, Hiroo Shiga and Toshihiro Yamaguchi. Permission to copy for private use granted.

 $\leq n$. Suppose we have constructed the pair (m_{n-1}, σ_{n-1}) . Then there is a unique minimal algebras m_D containing m_{n-1} and a G.A.map

$$\sigma_D: (H^*(m_D)(n))^* \to A^*$$

such that σ_D^i is isomorphic for $i \leq n-1$, monomorphic for i = n and moreover σ_D^{n+1} induces an isomorphism on the decomposable part

$$\sigma_D^{n+1}: (H^*(m_D)(n))^{n+1} \to (A(n))^{n+1},$$

where $(A(n))^{n+1}$ is the degree n+1 part of the subalgebra A(n) of A^* generated by elements of degree $\leq n$. To construct m_n we choose a subspace W of $H^{n+1}(m_D)$ satisfying certain conditions (see (2.3) and (2.4) in Section 2) so that $H^{n+1}(m_n) \oplus$ $W = H^{n+1}(m_D)$.

Such a space W may be regarded as a rational point of a Grassmann manifold. The set of isomorphism classes of m_n containing m_{n-1} corresponds to the disjoint union of subsets of rational points of Grassmann manifolds modulo the action of D.G.A.automorphisms of m_D (see Theorem 2.1). We can show that any minimal algebra m with $H^*(m) \cong A^*$ is obtained in this way. For example if $A^* = H^*(S^3 \vee S^5 \vee S^{16}; Q)$, then \mathcal{M}_{A^*} corresponds bijectively to $P^3(Q)/Q^* \coprod \{*\}$, where $P^3(Q)$ is the rational projective space of dimension 3 and the point $\{*\}$ corresponds to the formal space (see Section 3 (2)).

Throughout this paper we assume that G.A. A^* satisfies that $A^0 = Q$, $A^1 = 0$ and $\dim_Q A^i < \infty$ for any positive integer *i*.

2. Inductive construction of minimal models

In this section we construct inductively minimal algebras m_n and G.A. maps $\sigma_n : H^*(m_n)(n+1) \to A^*$ such that σ_n^i is isomorphic for $i \leq n$ and monomorphic for i = n + 1.

Suppose that we constructed a minimal algebra m_{n-1} satisfying the following conditions.

(1)_{n-1} m_{n-1} is generated by elements of degree $\leq n-1$.

 $(2)_{n-1}$ There is a G.A.-map

$$\sigma_{n-1}: (H^*(m_{n-1})(n))^* \to A^*$$

where σ_{n-1}^{i} is isomorphic for $i \leq n-1$ and monomorphic for i=n.

Let m_D be the minimal algebra obtained by adding generators to m_{n-1} whose differentials form a basis for the kernel of $\sigma_{n-1}^{n+1}|(H(m_{n-1})(n))^{n+1}$ and σ_D : $(H(m_D)(n))^* \to A^*$ be the induced map. We set

$$\dim_Q A^{n+1} = u, \quad \dim_Q A^{n+1} / (A(n))^{n+1} = s$$

 $\dim_Q H^{n+1}(m_D) = v$

and

$$\dim_Q \frac{H^{n+1}(m_D)}{(H^*(m_D)(n))^{n+1}} = t.$$

Then we have

$$u - s = v - t. \tag{2.1}$$

Let l be an integer satisfying

$$max(0, t-s) \leqslant l \leqslant t \tag{2.2}$$

and W be a *l*-dimensional subspace of $H^{n+1}(m_D)$ such that

$$W \cap (H^*(m_D)(n))^{n+1} = \{0\}.$$
(2.3)

Let m^W be the minimal algebra obtained by adding l generators whose differentials span W. Note that $H(m^W)(n) = H(m_D)(n)$, hence we have a G.A.map $\sigma_D : (H(m^W)(n))^* \to A^*$ and

$$H^{n+1}(m^W) \oplus W = H^{n+1}(m_D)$$

so that

$$\dim_Q \frac{H^{n+1}(m^W)}{(H(m^W)(n))^{n+1}} = t - l \leqslant s = \dim_Q \frac{A^{n+1}}{(A(n))^{n+1}}$$

Let $m^W{}_n$ be a minimal algebra obtained by adding to m^W the cokernel of $\sigma_D{}^n$: $(H(m^W)(n))^n \to A^n$. Then we have a G.A. map

$$\sigma_n: (H(m^W{}_n)(n))^* \to A^*$$

such that σ_n^{i} is isomorphic for $i \leq n$. For a linear monomorphism

$$\psi: H^{n+1}(m^W)/(H(m^W)(n))^{n+1} \to A^{n+1}/(A(n))^{n+1},$$

if the map $\sigma_n \oplus \psi$ can be extend to a G.A. map

$$\sigma^{W}{}_{n}: (H(m^{W}{}_{n})(n+1))^{*} \to A^{*},$$
(2.4)

then the pair $(m^W{}_n, \sigma^W{}_n)$ satisfies the condition $(1)_n$ and $(2)_n$. Remark that if we take W so that $\dim_Q W = t$ we can always construct a G.A. map (2.4).

Let m_n be a minimal algebra containg m_{n-1} (hence m_D) satisfying $(1)_n$ and $(2)_n$. Then m_n is constructed from m_D by taking W as the kernel of $i^* : H^*(m_D) \to H^*(m_n)$, where i is the inclusion.

By Plücker embedding Grassmann manifold is a projective variety defined over Q. Then the Q-subspace W corresponds to a rational point of the variety. Let Gr(v,l)(Q) be the set of rational points of the Grassmann manifold of l-dimensional Q-subspaces in a v-dimensional space $H^{n+1}(m_D)$. Set

$$M_l = \{ W \in Gr(v, l)(Q) | W \text{ satisfies } (2.3) \}$$

satisfying (2.3). We take bases for $H^{n+1}(m^W)/(H^*(m^W)(n))^{n+1}$ and $H^*(m^W)(n)^{n+1}$. If we write a basis for W as a linear combinations of those bases, we see that M_l is a Zariski open set of Gr(v, l)(Q) (Compare with Example (3) in Section 3). Set

$$O_l = \{ W \in M_l | \text{ there is a G.A.map } \sigma^W{}_n \text{ satisfying } (2.4) \text{ for some linear map } \psi \}.$$

Let G be the group of D.G.A.automorphisms of m_D . Then G acts on $H^{n+1}(m_D)$ and hence on Gr(v, l)(Q). Let W be an element of O_l and Φ be an element of G.

Then it is easy to see that Φ can be extended to a D.G.A.isomorphism

$$\Phi: m^W{}_n \to m^{\Phi(W)}{}_n.$$

Hence G also acts on O_l .

Conversely let W_1, W_2 be *l*-dimensional subspaces of $H^{n+1}(m_D)$ such that there is a D.G.A.isomorphism

$$f: m^{W_1}{}_n \to m^{W_2}{}_n.$$

Then $f|m_D = \Phi$ is an element of G and

$$\Phi(W_1) = W_2.$$

Hence we have

Theorem 2.1. The set of isomorphism classes of minimal algebras m_n containing a minimal algebra m_{n-1} and satisfying $(1)_n, (2)_n$ corresponds bijectively to the disjoint union of orbit spaces

$$X_n = \coprod_{l=max(t-s,0)}^{\iota} O_l/G$$

Note that X_n is not empty since O_t is not empty.

Definition 2.2. A G.A. A^* is called k-intrinsically formal (abbreviated to k-I.F.) if for any minimal algebras m with $H^*(m) = A^*$, the sub D.G.A. m(k) is unique up to isomorphism.

Note that any G.A. A^* is at least 2-I.F..

Let A^* be (n-1)-I.F. and m be arbitrary minimal algebra with $H^*(m) \cong A^*$. Set $m_{n-1} = m(n-1)$ and $i_{n-1} : m_{n-1} \to m$ be the inclusion. Then we can construct minimal algebras m_D and $m^{W_0}{}_n$ as previous way where W_0 is the kernel of the induced map

$$i_D^*: H^{n+1}(m_D) \to H^{n+1}(m)$$

The inclusion i_D can be extended to

$$i_n: m^{W_0}{}_n \to m$$

so that $m^{W_0}{}_n$ and i_n^* satisfy $(1)_n, (2)_n$. Hence m can be constructed inductively as this way. Especially we have

Corollary 2.3. If A^* is (n-1)-*I.F.* and $A^j = 0$ for j > n+1. Then $O_l = M_l$ and $\mathcal{M}_{A^*} = X_n = \coprod_{max(t-s,0) \le l \le t} M_l/G.$

Suppose $A^i = 0$ for $i \leq n$. Then X_k is one point for k < 3n + 1. Therefore m_{3n} is uniquely determined, i.e., A^* is 3n-I.F.. This implies

Corollary 2.4. Any n-connected k-dimensional finite CW complex is formal if $k \leq 3n + 1$.

This result was noticed by Stasheff [8]. We see that Corollary 2.4 is best possible by the example $A^* = H^*(S^3 \vee S^3 \vee S^8; Q)$.

The following examples are studied in the next section, where degree is denoted by suffix.

(1)
$$A^* = H^*(S^3 \vee S^7 \vee S^{22}; Q)$$
, which is 20-I.F. and $u = s = 1, v = t = 3$ at $n = 21$.

(2)
$$A^* = H^*(S^3 \vee S^5 \vee S^{16}; Q)$$
, which is 14-I.F. and $u = s = 1, v = t = 4$ at $n = 15$.

(3) $A^* = \wedge (x_3, y_5) \otimes Q[z_8]/(xy, xz^2, yz^2, z^3)$, which is 14-I.F. and u = 1, s = 0, v = 5, t = 4 at n = 15.

(4) $A^* = H^*((S^2 \vee S^2) \times S^3; Q)$, which is 3-I.F. and u = 2, s = 0, v = 4, t = 2 at n = 4.

(5) $A^* = H^*((S^3 \vee S^3) \times S^5; Q)$, which is 6-I.F. and u = 2, s = 0, v = 4, t = 2 at n = 7.

(6) $A^* = H^*(S^3 \vee S^5 \vee S^{10} \vee S^{16}; Q)$, which is 8-I.F. and u = s = v = t = 1 at n = 9.

(7) $A^* = H^*(S^5 \vee (S^3 \times S^{10}); Q)$, which is 8-I.F. and u = s = v = t = 1 at n = 9.

(8) $A^* = H^*((S^3 \times S^8) \sharp (S^3 \times S^8); Q)$, which is 6-I.F. and u = s = v = t = 2 at n = 7. Here \sharp is connected sum.

3. Some examples

(1) $A^* = H^*(S^3 \vee S^7 \vee S^{22}; Q) = \wedge(x_3, y_7) \otimes Q[z_{22}]/(xy, xz, yz, z^2)$ Then A^* is 20-I.F. and by straightforward calculation

$$m_{20} = (\wedge (x, y, \theta_9, \theta_{11}, \theta_{13}, \theta_{15}^1, \theta_{15}^2, \theta_{17}^1, \theta_{17}^2, \theta_{19}^1, \theta_{19}^2), d)$$

with the differential is as follows :

 $\begin{array}{l} d(x) \,=\, d(y) \,=\, 0, \; d\theta_9 \,=\, xy, \; d\theta_{11} \,=\, x\theta_9, \; d\theta_{13} \,=\, x\theta_{11}, \; d\theta_{15}^1 \,=\, y\theta_9, \; d\theta_{15}^2 \,=\, x\theta_{13}, \\ d\theta_{17}^1 \,=\, x\theta_{15}^1 \,+\, y\theta_{11}, \; d\theta_{17}^2 \,=\, x\theta_{15}^2, \; d\theta_{19}^1 \,=\, x\theta_{17}^1 \,+\, y\theta_{13}, \; d\theta_{19}^2 \,=\, x\theta_{17}^2. \end{array}$

Then at n = 21, u = s = 1 and v = t = 3. In fact $m_D = m_{20}$ and $H^{22}(m_D) = Q\{e_1, e_2, e_3\}$, where $e_1 = [x\theta_{19}^2]$, $e_2 = [x\theta_{19}^1 + y\theta_{15}^2]$ and $e_3 = [y\theta_{15}^1]$. Let W be a 2 dimensional subspace of $H^{22}(m_D)$ spanned by

$$a_{1,i}e_1 + a_{2,i}e_2 + a_{3,i}e_3$$
 $(i = 1, 2),$

with

$$rank \begin{bmatrix} a_{1,1} & a_{2,1} & a_{3,1} \\ a_{1,2} & a_{2,2} & a_{3,2} \end{bmatrix} = 2$$

Let $f \in Aut \ m_D = G$ be an element such that

$$f(x) = \lambda x, \quad f(y) = \mu y, \quad \lambda, \mu \in Q^*.$$

Then we have

$$f(e_1) = \lambda^7 \mu e_1, \ f(e_2) = \lambda^4 \mu^2 e_2, \ f(e_3) = \lambda \mu^3 e_3.$$

The set of W forms Gr(3,2)(Q), the rational points of Grassmann manifold of 2-dimensional spaces in the 3-dimensional space $H^{22}(m(20))$. By the Plücker embedding $i: Gr(3,2)(Q) \to P^2(Q)$,

$$i(W) = \begin{bmatrix} \begin{vmatrix} a_{1,1} & a_{2,1} \\ a_{1,2} & a_{2,2} \end{vmatrix}, \begin{vmatrix} a_{1,1} & a_{3,1} \\ a_{1,2} & a_{3,2} \end{vmatrix}, \begin{vmatrix} a_{2,1} & a_{3,1} \\ a_{2,2} & a_{3,2} \end{vmatrix}$$

G acts on $P^2(Q)$ by $f[x_1, x_2, x_3] = [\lambda^{11} \mu^3 x_1, \lambda^8 \mu^4 x_2, \lambda^5 \mu^5 x_3] = [\rho x_1, x_2, \rho^{-1} x_3]$ with $\rho = \lambda^3 \mu^{-1}$. Hence by Corollary 2.3, we have

$$\mathcal{M}_{A^*} = M_2/G \coprod M_3 \simeq P^2(Q)/Q^* \coprod \{*\}$$

(2) $A^* = H^*(S^3 \vee S^5 \vee S^{16}; Q) = \wedge(x_3, y_5) \otimes Q[z_{16}]/(xy, xz, yz, z^2)$ Then A^* is 14-I.F. and by straightforward calculation

$$m_D = m_{14} = (\wedge (x, y, \theta_7, \theta_9, \theta_{11}^1, \theta_{11}^2, \theta_{13}^1, \theta_{13}^2), d) \qquad (*)$$

with the differential is as follows:

 $\begin{array}{l} d(x) \ = \ d(y) \ = \ 0, \ d\theta_7 \ = \ xy, \ d\theta_9 \ = \ x\theta_7, \ d\theta_{11}^1 \ = \ y\theta_7, \ d\theta_{11}^2 \ = \ x\theta_9, \ d\theta_{13}^1 \ = \ x\theta_{11}^2, \\ d\theta_{13}^2 \ = \ x\theta_{11}^1 + y\theta_9. \end{array}$

Then at n = 15, u = s = 1 and $H^{16}(m_D) = Q\{e_1, e_2, e_3, e_4\}$, where $e_1 = [x\theta_{13}^1]$, $e_2 = [y\theta_{11}^1]$, $e_3 = [x\theta_{13}^2 + \theta_7\theta_9]$ and $e_4 = [y\theta_{11}^2 + \theta_7\theta_9]$. Hence at n = 15, v = t = 4. Let W be a 3-dimensional subspace of $H^{16}(m_D)$ spanned by

$$a_{1,i}e_1 + a_{2,i}e_2 + a_{3,i}e_3 + a_{4,i}e_4 \quad (i = 1, 2, 3),$$

where rank $(a_{j,i})_{1 \leq j \leq 4, 1 \leq i \leq 3} = 3.$

Let $f \in Aut \ m_D = G$ be an element such that

$$f(x) = \lambda x, \quad f(y) = \mu y, \quad \lambda, \mu \in Q^*.$$

Then we have

$$f(e_1) = \lambda^5 \mu e_1, \ f(e_2) = \lambda \mu^3 e_2, \ f(e_3) = \lambda^3 \mu^2 e_3, \ f(e_4) = \lambda^3 \mu^2 e_4.$$

The set of W forms Gr(4,3)(Q), which is isomorphic to $P^3(Q)$ by the Plücker embedding $i: Gr(4,3)(Q) \to P^3(Q)$,

$$i(W) = \begin{bmatrix} \begin{vmatrix} a_{1,1} & a_{2,1} & a_{3,1} \\ a_{1,2} & a_{2,2} & a_{3,2} \\ a_{1,3} & a_{2,3} & a_{3,3} \end{vmatrix}, \begin{vmatrix} a_{1,1} & a_{2,1} & a_{4,1} \\ a_{1,2} & a_{2,2} & a_{4,2} \\ a_{1,3} & a_{2,3} & a_{4,3} \end{vmatrix}, \begin{vmatrix} a_{1,1} & a_{3,1} & a_{4,1} \\ a_{1,2} & a_{3,2} & a_{4,2} \\ a_{1,3} & a_{3,3} & a_{4,3} \end{vmatrix}, \begin{vmatrix} a_{2,1} & a_{3,1} & a_{4,1} \\ a_{2,2} & a_{3,2} & a_{4,2} \\ a_{2,3} & a_{3,3} & a_{4,3} \end{vmatrix} \end{bmatrix}.$$

Then G acts on $P^2(Q)$ by $f[x_1, x_2, x_3, x_4] = [\lambda^9 \mu^6 x_1, \lambda^9 \mu^6 x_2, \lambda^{11} \mu^5 x_3, \lambda^7 \mu^7 x_4] = [\rho x_1, \rho x_2, \rho^2 x_3, x_4]$ by putting $\rho = \lambda^2 \mu^{-1}$. Hence by Corollary 2.3, we have

$$\mathcal{M}_{A^*} = M_3/G \coprod M_4 \simeq P^3(Q)/Q^* \coprod \{*\}$$

(3)
$$A^* = \wedge(x_3, y_5) \otimes Q[z_8]/(xy, xz^2, yz^2, z^3)$$

Then A^* is 14-I.F. and at n = 15, u = 1, s = 0, and

$$m_D = m_{14} = m'_{14} \otimes Q[z],$$

where m'_{14} is isomorphic to m_{14} in the example (2) and d(z) = 0. Then $H^{16}(m_D) = Q\{e_1, e_2, e_3, e_4, f_1\}$, where $e_1 = [x\theta_{13}^1]$, $e_2 = [y\theta_{11}^1]$, $e_3 = [x\theta_{13}^2 + \theta_7\theta_9]$, $e_4 = [y\theta_{11}^2 + \theta_7\theta_9]$ and $f_1 = [z^2]$. Hence at n = 15, v = 5, t = 4. By Corollary 2.3,

$$\mathcal{M}_{A^*} = X_{15} = M_4/G.$$

Let W be an element of M_4 spanned by

$$a_{1,i}e_1 + a_{2,i}e_2 + a_{3,i}e_3 + a_{4,i}e_4 + a_{5,i}f_1$$
 $(i = 1, 2, 3, 4),$

with

$$rank \ (a_{j,i})_{1 \le j \le 4, 1 \le i \le 4} = 4 \quad (*).$$

By Plücker embedding, we see that the set of W satisfying (*) corresponds bijectively to $A^4(Q) = \{ [x_1, x_2, x_3, x_4, x_5] \in P^4(Q) | x_1 \neq 0 \}.$

Let $f \in Aut \ m_D = G$ be an element such that

$$f(x) = \lambda x, \quad f(y) = \mu y, \quad f(z) = \kappa z, \quad \lambda, \mu, \kappa \in Q^*$$

Then we have

$$f^*(e_1) = \lambda^5 \mu e_1, \ f^*(e_2) = \lambda \mu^3 e_2, \ f^*(e_3) = \lambda^3 \mu^2 e_3,$$
$$f^*(e_4) = \lambda^3 \mu^2 e_4, \ f^*(f_1) = \kappa^2 f_1.$$

Hence G acts on $P^4(Q)$ by

$$f \cdot [x_1, x_2, x_3, x_4, x_5] = [\lambda^{12} \mu^8 x_1, \lambda^{11} \mu^5 \kappa^2 x_2, \lambda^9 \mu^6 \kappa^2 x_3, \lambda^9 \mu^6 \kappa^2 x_4, \lambda^7 \mu^7 \kappa^2 x_5].$$

Hence G acts on $A^4(Q)$ by

$$f \cdot (y_1, y_2, y_3, y_4) = (\lambda^{-1} \mu^{-3} \kappa^2 y_1, \lambda^{-3} \mu^{-2} \kappa^2 y_2, \lambda^{-3} \mu^{-2} \kappa^2 y_3, \lambda^{-5} \mu^{-1} \kappa^2 y_4),$$

where $y_i = x_{i+1}/x_1$ for $i = 1, ..., 4$. Then setting $\alpha = \lambda^{-7} \kappa^2$ and $\beta = \lambda^2 \mu^{-1}$, G acts on $A^4(Q)$ by

$$f \cdot (y_1, y_2, y_3, y_4) = (\alpha \beta^3 y_1, \alpha \beta^2 y_2, \alpha \beta^2 y_3, \alpha \beta y_4)$$

Since α and β take any non-zero rational numbers independently, we have

$$\mathcal{M}_{A^*} \simeq A^4(Q)/(Q^* \times Q^*) \simeq P^3(Q)/Q^* \prod \{*\},$$

where Q^* acts on $P^3(Q)$ by

$$\beta \cdot [z_1, z_2, z_3, z_4] = [\beta^2 z_1, \beta z_2, \beta z_3, z_4]$$

and the point $\{*\}$ corresponds (0, 0, 0, 0) in $A^4(Q)$, which corresponds a formal model. Thus \mathcal{M}_{A^*} is the same set as that of Example (2).

(4) $A^* = H^*((S^2 \vee S^2) \times S^3; Q) = Q[x_2, y_2] \otimes \Lambda(z_3)/(xy).$

This example was studied by Halperin and Stasheff, see example 6.5 in [2]. It is 3-I.F. and at n = 4, s = 0 and t = 2. In fact

$$m_D = m_3 = (\wedge (x, y, \theta_3^1, \theta_3^2, \theta_3^3, z_3), d)$$

with d(x) = d(y) = d(z) = 0, $d\theta_3^1 = x^2$, $d\theta_3^2 = xy$, $d\theta_3^3 = y^2$ and $H^5(m_3) = Q\{e_1, e_2, f_1, f_2\}$, where $e_1 = [y\theta_3^1 - x\theta_3^2]$, $e_2 = [y\theta_3^2 - x\theta_3^3]$, $f_1 = [xz]$ and $f_2 = [yz]$. Then by Collorary 2.3,

$$\mathcal{M}_{A^*} = X_4 = M_2/G.$$

Let W in M_2 be spanned by

$$a_{1,i}e_1 + a_{2,i}e_2 + a_{3,i}f_1 + a_{4,i}f_2$$
 $(i = 1, 2),$

where

$$rank \ (a_{j,i})_{1 \leq j \leq 2, 1 \leq i \leq 2} = 2$$

By Plücker embedding, the set of W forms

$$\begin{aligned} &\{ [x_1, x_2, x_3, x_4, x_5, x_6] \in P^5(Q) | x_1 x_6 - x_2 x_5 + x_3 x_4 = 0, x_1 \neq 0 \\ & \simeq \{ (X_1, X_2, X_3, X_4, X_5) \in A^5(Q) | X_5 - X_2 X_5 + X_3 X_4 = 0 \} \\ & \simeq \{ (X_1, X_2, X_3, X_4) \in A^4(Q) \}, \end{aligned}$$

where $X_i = x_{i+1}/x_1$ (i = 1, ..., 5).

Let $f \in Aut \ m_D = G$ be an element such that

$$\begin{split} f(x) &= x, \quad f(y) = y, \quad f(z) = \mu z \quad \mu \in Q^* \\ f(\theta^i_3) &= \theta^i_3 + \lambda_i z, \; \lambda_i \in Q, \quad i = 1, 2, 3. \end{split}$$

Then we have

$$f^*(e_1) = e_1 - \lambda_2 f_1 + \lambda_1 f_2, \ f^*(e_2) = e_2 - \lambda_3 f_1 + \lambda_2 f_2,$$
$$f^*(f_1) = \mu f_1, \ f^*(f_2) = \mu f_2,$$

and f^* induces a map A_f defined by

$$A_f([x_1,..,x_6]) = [x_1,..,x_6] \begin{bmatrix} 1 & -\lambda_3 & \lambda_2 & \lambda_2 & -\lambda_1 & \lambda_1\lambda_3 - \lambda_2^2 \\ 0 & \mu & 0 & 0 & 0 & -\lambda_1\mu \\ 0 & 0 & \mu & 0 & 0 & -\lambda_2\mu \\ 0 & 0 & 0 & \mu & 0 & -\lambda_2\mu \\ 0 & 0 & 0 & 0 & \mu & -\lambda_3\mu \\ 0 & 0 & 0 & 0 & 0 & \mu^2 \end{bmatrix}$$

hence f^* induces a map \tilde{A}_f from $A^4(Q)$ to itself defined by

$$\tilde{A}_f \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \begin{bmatrix} \mu & & \\ & \mu & \\ & & \mu \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} + \begin{bmatrix} -\lambda_3 \\ \lambda_2 \\ \lambda_2 \\ \lambda_2 \\ -\lambda_1 \end{bmatrix}$$

From this we see by varing $\lambda_i \in Q$ (i = 1, 2, 3) and $\mu \in Q^*$,

$$\tilde{A}_f \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} \cup \tilde{A}_f \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix} = A^4(Q).$$

,

Hence \mathcal{M}_{A^*} is at most two points.

Conversely, any element $g \in Aut m_D$ has the following form: $g(x) = a_1 x + a_2 y$, $g(y) = b_1 x + b_2 y$ and $g(z) = \mu z$ with

$$a_1, a_2, b_1, b_2 \in Q, \ D = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \neq 0, \mu \in Q^*$$

and then

 $g(\theta_1) = a_1^2 \theta_1 + 2a_1 a_2 \theta_2 + a_2^2 \theta_3 + \lambda_1 z,$ $g(\theta_2) = a_1 b_1 \theta_1 + (a_1 b_2 + a_2 b_1) \theta_2 + a_2 b_2 \theta_3 + \lambda_2 z,$ $g(\theta_3) = b_1^2 \theta_1 + 2b_1 b_2 \theta_2 + b_2^2 \theta_3 + \lambda_3 z$

for some $\lambda_i \in Q$. By straightforward calculations we see that $W_1 = \{e_1, e_2\}$, which corresponds to (0, 0, 0, 0) in $A^4(Q)$, can not be mapped to $W_2 = \{e_1, e_2 + f_2\}$ corresponding to (0, 1, 0, 0) in $A^4(Q)$ by Aut m_D . In fact,

$$\tilde{A}_{g} \begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix} = \frac{1}{D^{2}} \cdot \begin{bmatrix} -b_{1}^{2}\lambda_{1} + 2a_{1}b_{1}\lambda_{2} - a_{1}^{2}\lambda_{3}\\ -b_{1}b_{2}\lambda_{1} + (a_{1}b_{2} + a_{2}b_{1})\lambda_{2} - a_{1}a_{2}\lambda_{3}\\ -b_{2}\lambda_{1} + (a_{1}b_{2} + a_{2}b_{1})\lambda_{2} - a_{1}a_{2}\lambda_{3}\\ -b_{2}^{2}\lambda_{1} + 2a_{2}b_{2}\lambda_{2} - a_{2}^{2}\lambda_{3} \end{bmatrix} = \begin{bmatrix} *\\\alpha\\\alpha* \end{bmatrix} \neq \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}.$$

Thus we see that \mathcal{M}_{A^*} is just two points.

(5) $A^* = H^*((S^3 \vee S^3) \times S^5; Q) = \Lambda(x_3, y_3, z_5)/(xy).$

This example was considered by Schlessinger and Stasheff, see section 8 in [7]. It is 6-I.F. and

$$m_D = m_6 = (\wedge (x_3, y_3, \theta_5, z_5), d)$$

with d(x) = d(y) = d(z) = 0 and $d\theta_5 = xy$. Then $H^8(m_D) = Q\{e_1, e_2, f_1, f_2\}$, where $e_1 = [x\theta_5], e_2 = [y\theta_5], f_1 = [xz]$ and $f_2 = [yz]$. Hence at n = 7, s = 0 and t = 2. By Corollary 2.3,

$$\mathcal{M}_{A^*} = X_7 = M_2/G.$$

Let W in M_2 be spanned by

$$a_{1,i}e_1 + a_{2,i}e_2 + a_{3,i}f_1 + a_{4,i}f_2$$
 $(i = 1, 2),$

where $rank(a_{j,i})_{1 \le j \le 2, 1 \le i \le 2} = 2.$

Let $f \in Aut \ m_D = G$ be an element such that $f(x) = a_1 x + a_2 y$, $f(y) = b_1 x + b_2 y$, $f(\theta_5) = D\theta_5 + \lambda z$ and $f(z) = \mu z$, where

$$D = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \neq 0, \lambda \in Q, \mu \in Q^*.$$

Then

$$f^*(e_1) = a_1 D e_1 + a_2 D e_2 + a_1 \lambda f_1 + a_2 \lambda f_2,$$

$$f^*(e_2) = b_1 D e_1 + b_2 D e_2 + b_1 \lambda f_1 + b_2 \lambda f_2,$$

$$f^*(f_1) = a_1 \mu f_1 + a_2 \mu f_2, \ f^*(f_2) = b_1 \mu f_1 + b_2 \mu f_2.$$

By Plücker embedding the set of W forms

$$\{ [x_1, x_2, x_3, x_4, x_5, x_6] \in P^5(Q) | x_1 x_6 - x_2 x_5 + x_3 x_4 = 0, x_1 \neq 0 \}$$
$$\simeq \{ (X_1, X_2, X_3, X_4) \in A^4(Q) \},$$

where $X_i = x_{i+1}/x_1$ (i = 1, ..., 4). Then G acts on $A^4(Q)$ as follows:

$$\tilde{A}_f \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} = \frac{\mu}{D^2} \begin{bmatrix} a_1^2 & a_1b_1 & a_1b_1 & b_1^2 \\ a_1a_2 & a_1b_2 & a_2b_1 & b_1b_2 \\ a_1a_2 & a_2b_1 & a_1b_2 & b_1b_2 \\ a_2^2 & a_2b_2 & a_2b_2 & b_2^2 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix} + \frac{\lambda}{D} \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}.$$

First we show that any point (x_1, x_2, x_3, x_4) of $A^4(Q)$ lies in the union of the orbit of (1, 0, 0, r) for some $r \in Q$ and that of (0, 0, 0, 0) by decomposing $A^4(Q)$ into the following pieces (a)~(f).

(a) If
$$4x_1x_4 \neq (x_2 + x_3)^2$$
 and $x_1 \neq 0$, set $a_1 = 0, a_2 = -1, b_1 = 1, b_2 = -\frac{x_2 + x_3}{2x_1}$,
 $\mu = \frac{(x_2 + x_3)^2 - 4x_1x_4}{4x_1}, r = \frac{4x_1^2}{(x_2 + x_3)^2 - 4x_1x_4}$ and $\lambda = \frac{1}{2}(x_2 - x_3)$. Then we have

$$\tilde{A}_f \begin{bmatrix} 1\\0\\0\\r \end{bmatrix} = \begin{bmatrix} x_1\\x_2\\x_3\\x_4 \end{bmatrix}.$$
(3.1)

(b) If $4x_1x_4 \neq (x_2 + x_3)^2$ and $x_4 \neq 0$, set $a_1 = 1$, $a_2 = 0$, $b_1 = -\frac{x_2 + x_3}{2x_4}$, $b_2 = 1$, $\mu = \frac{(x_2 + x_3)^2 - 4x_1x_4}{4x_4}$, $r = \frac{4x_4^2}{(x_2 + x_3)^2 - 4x_1x_4}$ and $\lambda = \frac{1}{2}(x_2 - x_3)$. Then we have (3.1).

(c) If $4x_1x_4 \neq (x_2 + x_3)^2$ and $x_1 = x_4 = 0$, set $a_1 = b_1 = 1$, $a_2 = -\frac{1}{2}$, $b_2 = \frac{1}{2}$ $\mu = -\frac{x_2 + x_3}{2}$, r = -2 and $\lambda = \frac{1}{2}(x_2 - x_3)$. Then we have (3.1).

(d) If $4x_1x_4 = (x_2 + x_3)^2$ and $x_1 \neq 0$, set $a_1 = x_1$, $a_2 = -\frac{x_2 + x_3}{2}$, $b_1 = 0$, $b_2 = \frac{1}{x_1}$, $\mu = -\frac{1}{x_1}$, r = 0 and $\lambda = \frac{1}{2}(x_2 - x_3)$. Then we have (3.1).

(e) If $4x_1x_4 = (x_2 + x_3)^2$ and $x_4 \neq 0$, set $a_1 = -\frac{x_2 + x_3}{2}$, $a_1 = x_4$, $b_1 = -\frac{1}{x_1}$, $b_2 = 0$, $\mu = -\frac{1}{x_4}$, r = 0 and $\lambda = \frac{1}{2}(x_2 - x_3)$. Then we have (3.1).

(f) If $x_1 = x_4 = 0$, $x_2 + x_3 = 0$, set $a_1 = 1$, $a_2 = 0$, $b_1 = 0$, $b_2 = 1$, $\mu = 1$ and $\lambda = x_2$. Then we have

$$\tilde{A}_f \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} = \begin{bmatrix} 0\\x_2\\x_3\\0 \end{bmatrix}.$$

Thus we have a surjection

$$p: Q \coprod \{*\} \to \mathcal{M}_{A^*} \simeq A^4(Q)/G$$

defined by p(*) = the class of (0, 0, 0, 0) and p(r) = the class of (1, 0, 0, r).

If $p(r_1) = p(r_2)$ then there is an element $f \in G$ such that

$$\tilde{A}_f \begin{bmatrix} 1\\0\\0\\r_1 \end{bmatrix} = \begin{bmatrix} 1\\0\\0\\r_2 \end{bmatrix}.$$

By straightfoward calculations we have $r_1r_2 \in Q^{*2}$ if $r_1r_2 \neq 0$. Thus we have

$$\mathcal{M}_{A^*} \simeq Q^* / {Q^*}^2 \coprod \{0\} \coprod \{*\},$$

where $\{0\}$ corresponds to (1, 0, 0, 0) and $\{*\}$ corresponds to the formal model. After tensoring with \overline{Q} the set of isomorphism classes consists of three points.

 $\begin{array}{rcl} (6) & A^{*} &=& H^{*}(S^{3} \,\,\vee\,\, S^{5} \,\,\vee\,\, S^{10} \,\,\vee\,\, S^{16};Q) &=& \wedge(x_{3},y_{5}) \,\,\otimes\, Q[v_{10},z_{16}]/(xy,xv,xz,yv,yz,v^{2},vz,z^{2}). \end{array}$

Then $m_D = m_8 = (\Lambda(x, y, \theta_7), d)$ with $d(\theta_7) = xy$. Since $H^{10}(m_8) = Q\{x\theta_7\}$, s = t = 1 at n = 9. Then since the condition (2)₉ is satisfied

$$X_9 = O_0 \coprod O_1 = M_0 \coprod M_1 \simeq \{p_0, p_1\},$$

where the corresponding model for p_0 is

$$m^{(0)}_{9} = (\Lambda(x, y, \theta_7), d)$$

with $d(\theta_7) = xy$ and the corresponding model for p_1 is

$$m^{(1)}_{9} = (\Lambda(x, y, \theta_7, \theta_9), d)$$

with $d(\theta_9) = x\theta_7$.

Next consider X_{15} over each point. The model containing $m^{(0)}{}_9$ is

$$m_D = m_{14} = (\wedge (x, y, \theta_7, \theta_{11}), d)$$

with $d(\theta_{11}) = y\theta_7$. Since $H^{16}(m_D) = Q\{y\theta_{11}\}$, s = t = 1 at n = 15. Hence X_{15} consists of two points.

The model containing $m^{(1)}{}_9$ is

$$m_D = m_{14} = (\Lambda(x, y, \theta_7, \theta_9, u_{10}, \theta_{11}^1, \theta_{11}^2, \theta_{13}^1, \theta_{13}^2), d) = (Q[u] \otimes m, d)$$

where $d(u_{10}) = 0$ for a basis u_{10} of $\operatorname{Coker}(\sigma_9^{\{x\theta_7\}})^{10}$ and m is the model (*) in Example (2). Then $H^{16}(m_D) = Q\{e_1, e_2, e_3, e_4\}$ is same as that of the above Example (2). Hence we have in this case

$$X_{15} \simeq \mathcal{M}_{H^*(S^3 \vee S^5 \vee S^{16})}.$$

Since $A^{>16} = 0$, \mathcal{M}_{A^*} is the disjoint union of two points and $P^3(Q)/Q^* \coprod \{*\}$. See Fig 1.

(7)
$$A^* = H^*(S^5 \vee (S^3 \times S^{10}); Q) = \Lambda(x_3, y_5) \otimes Q[z_{10}]/(xy, xz, z^2).$$

Then $m_D = m_8 = (\Lambda(x, y, \theta_7), d)$ with $d(\theta_7) = xy.$ Since $H^{10}(m_8) = Q\{x\theta_7\}, W = 0$ or $W = Q\{x\theta_7\}$ at $n = 9$. If $W = \{0\}, (\sigma^W_9)^{13} : H^3(m^W_9) \cdot H^{10}(m^W_9) =$

 $0 \to A^3 \cdot A^{10} \neq 0$ can not be a G.A.map. Hence the condition $(2)_9$ is not satisfied. Hence W must be $Q\{x\theta_7\}$.

Next consider X_{12} . Then

$$m_D = m_{12} = (\Lambda(x, y, \theta_7, \theta_9, u_{10}, \theta_{11}^1, \theta_{11}^2), d)$$

with $d(\theta_7) = xy, d(\theta_9) = x\theta_7, d(\theta_{11}) = y\theta_7, d(\theta_{11}^2) = x\theta_9$. Since $H^{13}(m_D) = (H^+(m_D)(12))^{13}$ and $A^{>13} = 0, \mathcal{M}_{A^*}$ is an one point.

(8) $A^* = H^*((S^3 \times S^8) \sharp (S^3 \times S^8); Q) = \Lambda(x_3, y_3) \otimes Q[u_8, w_8]/(xy, xu, xw + yu, yw, u^2, uw, w^2).$

It is 6-intrinsically formal Poincaré algebra of formal dimension 11 such that $m_6 = (\Lambda(x, y, \theta_5), d)$ with d(x) = d(y) = 0 and $d(\theta_5) = xy$. There is a map $\sigma_6 : (H^*(m_6)(7))^* \to A^*$ given by $\sigma_6(x) = x, \sigma_6(y) = y$ and sending other elements to zero. Since u = s = v = t = 2 at n = 7, we have $0 \leq l \leq 2$. Consider the each cases of l = 0, 1, 2 at n = 7 in the followings.

Case of l = 0.

Since W = 0, $H^8(m^W) = H^8(m_6) = Q\{[x\theta_5], [y\theta_5]\}$. Put $\sigma^W(x) = x$, $\sigma^W(y) = y$, $\sigma^W([x\theta_5]) = u$ and $\sigma^W([y\theta_5]) = w$. Then the condition $(1)_7$ and $(2)_7$ are satisfied. Since $\sigma^W : H^*(m^W) \to A^*$ is isomorphic, this one point set $M_0 = O_0$, corresponding the elliptic model $(\Lambda(x, y, \theta_5), d)$, is a component of \mathcal{M}_{A^*} .

Case of l = 1.

For $H^8(m_6) = Q\{e_1 = [x\theta_5], e_2 = [y\theta_5]\}$, W is spanned by $ae_1 + be_2$ for $[a,b] \in P^1(Q) = M_1$. Then $m^W_8 = (\Lambda(x, y, \theta_5, \theta_7, u_8), d)$ where $d(\theta_7) = ae_1 + be_2$ and $d(u_8) = 0$. But $(\sigma^W_8)^{11} : H^3(m^W_8) \cdot H^8(m^W_8) \to A^3 \cdot A^8$ can not be a G.A.map since $x \cdot (bx\theta_5 + ay\theta_5) = d(y\theta_7)$ and $y \cdot (bx\theta_5 + ay\theta_5) = d(x\theta_7)$. Hence the condition $(2)_7$ is not satisfied.

Case of
$$l = 2$$
.
Since $W = Q\{x\theta_5, y\theta_5\}$,
$$m^W = (\Lambda(x, y, \theta_5, \theta^1_7, \theta^2_7), d)$$

where $d(\theta_7^1) = x\theta_5$ and $d(\theta_7^2) = y\theta_5$ and

$$m^{W}_{8} = (\Lambda(x, y, \theta_{5}, \theta^{1}_{7}, \theta^{2}_{7}, u^{1}_{8}, u^{2}_{8}), d)$$

where $du_8^i = 0$ (i = 1, 2). Since t = 0 at $8 \le n \le 11$ and $A^{>11} = 0$, it is one point corresponding to the formal model.

Thus \mathcal{M}_{A^*} is two points. See Fig 2.

In the following figures, numbers mean degrees.

The set $P^3(Q)/Q^*\coprod\{*\}$ is indicated by one circle.

Here \bigcirc implies that there exists an elliptic minimal model generated by elements of degree ≤ 5 satisfying $H^*(m) \cong A^*$.

References

- Felix, Y., [1979] Classification homotopique des espaces rationals de cohomologie donnee, Bull. Soc. Math. of Belgique, 31, 75-86.
- [2] Halperin,S. and Stasheff,J., [1979] Obstructions to homotopy equivalences, Advance in Math., 32, 233-279.
- [3] Lupton, G., [1991] Algebras realized by n rational homotopy types, Proceedings of the A.M.S., **113**, 1179-1184.
- [4] Neisendorfer, J. and Miller, T., [1978] Formal and coformal spaces, Illinois J.of Math. 22, 565-580.
- [5] Nishimoto, T., Shiga, H. and Yamaguchi, T., [2003] Elliptic rational spaces whose cohomologies and homotopies are isomorphic, Topology, 42, 1397-1401.
- [6] Nishimoto, T., Shiga, H. and Yamaguchi, T., *Rationally elliptic spaces* with isomorphic cohomology algebras, to appear in JPAA.
- [7] Schlessinger, M. and Stasheff, J., (1991) Deformation theory and rational homotopy type, preprint.
- [8] Stasheff, J., [1983] Rational Poincaré duality spaces, Illinois J. of Math., 27, 104-109.
- [9] Sullivan, D., [1978] Infinitesimal computations in topology, Publ. Math. of I.H.E.S. 47, 269-331.
- [10] Shiga, H. and Yagita, N., [1982] Graded algebras having a unique rational homotopy type, Proceedings of the A.M.S., 85, 623-632.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2003/n1a18/v5n1a18.(dvi,ps,pdf)

Hiroo Shiga shiga@sci.u-ryukyu.ac.jp

Department of Mathematical Sciences, Colledge of Science, Ryukyu University, Okinawa 903-0213, Japan

Toshihiro Yamaguchi tyamag@cc.kochi-u.ac.jp

Department of Mathematics Education, Faculty of Education, Kochi University, Kochi 780-8520, Japan