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THE SET OF RATIONAL HOMOTOPY TYPES
WITH GIVEN COHOMOLOGY ALGEBRA

HIROO SHIGA and TOSHIHIRO YAMAGUCHI

(communicated by James Stasheff)

Abstract
For a given commutative graded algebra A∗, we study the

set MA∗ = {rational homotopy type of X | H∗(X; Q) ∼= A∗}.
For example, we see that if A∗ is isomorphic to H∗(S3 ∨ S5 ∨
S16;Q), then MA∗ corresponds bijectively to the orbit space
P 3(Q)/Q∗∐{∗}, where P 3(Q) is the rational projective space
of dimension 3 and the point {∗} indicates the formal space.

1. Introduction

For a given graded algebra over the rationals (abbreviated to G.A.) A∗, there
exists at least one rational homotopy type having A∗ as a cohomology algebra,
namely the formal space. In general there are many rational homotopy types having
isomorphic cohomology algebras. In [5] it was shown that there are two rational
homotopy types with isomorphic cohomology algebras and isomorphic homotopy
Lie algebras, and in [6] it was shown that there are infinitely many rationally elliptic
homotopy types having isomorphic cohomology algebras. Set

MA∗ = {rational homotopy type of X | H∗(X; Q) ∼= A∗}.
The set MA∗ was studied by several authors([1],[2],[3],[7],[10]). For example, Lup-
ton ([3]) showed that for any positive integer n there is a G.A. A∗ such that the
cardinality of MA∗ is n. Halperin and Stasheff studied MA∗ by the set of pertur-
bations of the differential of the formal differential graded algebra (abbreviated to
D.G.A.). In particular they showed for A∗ = H∗((S2 ∨ S2) × S3; Q), the set MA∗

consists of two points. This example is also caluculated from our view point (see
Section 3(4)). Schlessinger and Stasheff ([7]) extended the arguments in [2].

We study MA∗ from a different point of view. Our strategy to study MA∗ is
as follows. We construct inductively 1-connected minimal algebras mn−1 such that
there is a G.A.map

σn : (H∗(mn−1)(n))∗ → A∗

so that σi is isomorphic for i 6 n − 1 and monomorphic for i = n, where
(H∗(mn−1)(n))∗ is the sub G.A. of H∗(mn−1) generated by elements of degree
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6 n. Suppose we have constructed the pair (mn−1, σn−1). Then there is a unique
minimal algebras mD containing mn−1 and a G.A.map

σD : (H∗(mD)(n))∗ → A∗

such that σD
i is isomorphic for i 6 n − 1, monomorphic for i = n and moreover

σn+1
D induces an isomorphism on the decomposable part

σD
n+1 : (H∗(mD)(n))n+1 → (A(n))n+1,

where (A(n))n+1 is the degree n + 1 part of the subalgebra A(n) of A∗ generated
by elements of degree 6 n. To construct mn we choose a subspace W of Hn+1(mD)
satisfying certain conditions (see (2.3) and (2.4) in Section 2) so that Hn+1(mn)⊕
W = Hn+1(mD).

Such a space W may be regarded as a rational point of a Grassmann manifold.
The set of isomorphism classes of mn containing mn−1 corresponds to the disjoint
union of subsets of rational points of Grassmann manifolds modulo the action of
D.G.A.automorphisms of mD (see Theorem 2.1). We can show that any minimal
algebra m with H∗(m) ∼= A∗ is obtained in this way. For example if A∗ = H∗(S3 ∨
S5 ∨ S16; Q), then MA∗ corresponds bijectively to P 3(Q)/Q∗∐{∗}, where P 3(Q)
is the rational projective space of dimension 3 and the point {∗} corresponds to the
formal space (see Section 3 (2)).

Throughout this paper we assume that G.A. A∗ satisfies that A0 = Q, A1 = 0
and dimQ Ai < ∞ for any positive integer i.

2. Inductive construction of minimal models

In this section we construct inductively minimal algebras mn and G.A. maps
σn : H∗(mn)(n + 1) → A∗ such that σn

i is isomorphic for i 6 n and monomorphic
for i = n + 1.

Suppose that we constructed a minimal algebra mn−1 satisfying the following
conditions.

(1)n−1 mn−1 is generated by elements of degree 6 n− 1.
(2)n−1 There is a G.A.-map

σn−1 : (H∗(mn−1)(n))∗ → A∗

where σn−1
i is isomorphic for i 6 n− 1 and monomorphic for i = n.

Let mD be the minimal algebra obtained by adding generators to mn−1 whose
differentials form a basis for the kernel of σn−1

n+1|(H(mn−1)(n))n+1 and σD :
(H(mD)(n))∗ → A∗ be the induced map. We set

dimQ An+1 = u, dimQ An+1/(A(n))n+1 = s

dimQ Hn+1(mD) = v

and

dimQ
Hn+1(mD)

(H∗(mD)(n))n+1
= t.
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Then we have
u− s = v − t. (2.1)

Let l be an integer satisfying

max(0, t− s) 6 l 6 t (2.2)

and W be a l-dimensional subspace of Hn+1(mD) such that

W ∩ (H∗(mD)(n))n+1 = {0}. (2.3)

Let mW be the minimal algebra obtained by adding l generators whose differentials
span W . Note that H(mW )(n) = H(mD)(n), hence we have a G.A.map σD :
(H(mW )(n))∗ → A∗ and

Hn+1(mW )⊕W = Hn+1(mD)

so that

dimQ
Hn+1(mW )

(H(mW )(n))n+1
= t− l 6 s = dimQ

An+1

(A(n))n+1
.

Let mW
n be a minimal algebra obtained by adding to mW the cokernel of σD

n :
(H(mW )(n))n → An. Then we have a G.A. map

σn : (H(mW
n)(n))∗ → A∗

such that σn
i is isomorphic for i 6 n. For a linear monomorphism

ψ : Hn+1(mW )/(H(mW )(n))n+1 → An+1/(A(n))n+1,

if the map σn ⊕ ψ can be extend to a G.A. map

σW
n : (H(mW

n)(n + 1))∗ → A∗, (2.4)

then the pair (mW
n, σW

n) satisfies the condition (1)n and (2)n. Remark that if we
take W so that dimQ W = t we can always construct a G.A. map (2.4).

Let mn be a minimal algebra containg mn−1 (hence mD) satisfying (1)n and (2)n.
Then mn is constructed from mD by taking W as the kernel of i∗ : H∗(mD) →
H∗(mn), where i is the inclusion.

By Plücker embedding Grassmann manifold is a projective variety defined over
Q. Then the Q-subspace W corresponds to a rational point of the variety. Let
Gr(v, l)(Q) be the set of rational points of the Grassmann manifold of l-dimensional
Q-subspaces in a v-dimensional space Hn+1(mD). Set

Ml = {W ∈ Gr(v, l)(Q)| W satisfies (2.3)}
satisfying (2.3). We take bases for Hn+1(mW )/(H∗(mW )(n))n+1 and
H∗(mW )(n)n+1. If we write a basis for W as a linear combinations of those
bases, we see that Ml is a Zariski open set of Gr(v, l)(Q) (Compare with Example
(3) in Section 3). Set

Ol = {W ∈ Ml| there is a G.A.map σW
n satisfying (2.4) for some linear map ψ}.

Let G be the group of D.G.A.automorphisms of mD. Then G acts on Hn+1(mD)
and hence on Gr(v, l)(Q). Let W be an element of Ol and Φ be an element of G.
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Then it is easy to see that Φ can be extended to a D.G.A.isomorphism

Φ : mW
n → mΦ(W )

n.

Hence G also acts on Ol.
Conversely let W1,W2 be l-dimensional subspaces of Hn+1(mD) such that there

is a D.G.A.isomorphism

f : mW1
n → mW2

n.

Then f |mD = Φ is an element of G and

Φ(W1) = W2.

Hence we have

Theorem 2.1. The set of isomorphism classes of minimal algebras mn contain-
ing a minimal algebra mn−1 and satisfying (1)n, (2)n corresponds bijectively to the
disjoint union of orbit spaces

Xn =
t∐

l=max(t−s,0)

Ol/G.

Note that Xn is not empty since Ot is not empty.

Definition 2.2. A G.A. A∗ is called k-intrinsically formal (abbreviated to k-I.F.)
if for any minimal algebras m with H∗(m) = A∗, the sub D.G.A. m(k) is unique
up to isomorphism.

Note that any G.A. A∗ is at least 2-I.F..
Let A∗ be (n−1)-I.F. and m be arbitrary minimal algebra with H∗(m) ∼= A∗. Set

mn−1 = m(n − 1) and in−1 : mn−1 → m be the inclusion. Then we can construct
minimal algebras mD and mW0

n as previous way where W0 is the kernel of the
induced map

iD
∗ : Hn+1(mD) → Hn+1(m).

The inclusion iD can be extended to

in : mW0
n → m

so that mW0
n and in

∗ satisfy (1)n, (2)n. Hence m can be constructed inductively as
this way. Especially we have

Corollary 2.3. If A∗ is (n− 1)-I.F. and Aj = 0 for j > n + 1. Then Ol = Ml and
MA∗ = Xn =

∐
max(t−s,0)6l6t Ml/G.

Suppose Ai = 0 for i 6 n. Then Xk is one point for k < 3n + 1. Therefore m3n

is uniquely determined, i.e., A∗ is 3n-I.F.. This implies

Corollary 2.4. Any n-connected k-dimensional finite CW complex is formal if
k 6 3n + 1.
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This result was noticed by Stasheff [8]. We see that Corollary 2.4 is best possible
by the example A∗ = H∗(S3 ∨ S3 ∨ S8;Q).

The following examples are studied in the next section, where degree is denoted
by suffix.

(1) A∗ = H∗(S3∨S7∨S22;Q),which is 20-I.F. and u = s = 1, v = t = 3 at n = 21.

(2) A∗ = H∗(S3∨S5∨S16;Q),which is 14-I.F. and u = s = 1, v = t = 4 at n = 15.

(3) A∗ = ∧(x3, y5) ⊗ Q[z8]/(xy, xz2, yz2, z3), which is 14-I.F. and u = 1, s = 0,
v = 5, t = 4 at n = 15.

(4) A∗ = H∗((S2 ∨ S2) × S3; Q), which is 3-I.F. and u = 2, s = 0, v = 4, t = 2
at n = 4.

(5) A∗ = H∗((S3 ∨ S3) × S5; Q), which is 6-I.F. and u = 2, s = 0, v = 4, t = 2
at n = 7.

(6) A∗ = H∗(S3 ∨ S5 ∨ S10 ∨ S16;Q), which is 8-I.F. and u = s = v = t = 1 at
n = 9.

(7) A∗ = H∗(S5∨ (S3×S10); Q), which is 8-I.F. and u = s = v = t = 1 at n = 9.

(8) A∗ = H∗((S3 × S8)](S3 × S8); Q), which is 6-I.F. and u = s = v = t = 2 at
n = 7. Here ] is connected sum.

3. Some examples

(1) A∗ = H∗(S3 ∨ S7 ∨ S22; Q) = ∧(x3, y7)⊗Q[z22]/(xy, xz, yz, z2)
Then A∗ is 20-I.F. and by straightfoward calculation

m20 = (∧(x, y, θ9, θ11, θ13, θ
1
15, θ

2
15, θ

1
17, θ

2
17, θ

1
19, θ

2
19), d)

with the differential is as follows :
d(x) = d(y) = 0, dθ9 = xy, dθ11 = xθ9, dθ13 = xθ11, dθ1

15 = yθ9, dθ2
15 = xθ13,

dθ1
17 = xθ1

15 + yθ11, dθ2
17 = xθ2

15, dθ1
19 = xθ1

17 + yθ13, dθ2
19 = xθ2

17.
Then at n = 21, u = s = 1 and v = t = 3. In fact mD = m20 and H22(mD) =

Q{e1, e2, e3}, where e1 = [xθ2
19], e2 = [xθ1

19 + yθ2
15] and e3 = [yθ1

15]. Let W be a 2
dimensional subspace of H22(mD) spanned by

a1,ie1 + a2,ie2 + a3,ie3 (i = 1, 2),

with

rank

[
a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

]
= 2.
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Let f ∈ Aut mD = G be an element such that

f(x) = λx, f(y) = µy, λ, µ ∈ Q∗.

Then we have

f(e1) = λ7µe1, f(e2) = λ4µ2e2, f(e3) = λµ3e3.

The set of W forms Gr(3, 2)(Q), the rational points of Grassmann manifold of
2-dimensional spaces in the 3-dimensional space H22(m(20)). By the Plücker em-
bedding i : Gr(3, 2)(Q) → P 2(Q),

i(W ) = [
∣∣∣∣
a1,1 a2,1

a1,2 a2,2

∣∣∣∣ ,

∣∣∣∣
a1,1 a3,1

a1,2 a3,2

∣∣∣∣ ,

∣∣∣∣
a2,1 a3,1

a2,2 a3,2

∣∣∣∣],

G acts on P 2(Q) by f [x1, x2, x3] = [λ11µ3x1, λ
8µ4x2, λ

5µ5x3] = [ρx1, x2, ρ
−1x3]

with ρ = λ3µ−1. Hence by Corollary 2.3, we have

MA∗ = M2/G
∐

M3 ' P 2(Q)/Q∗
∐
{∗}.

(2) A∗ = H∗(S3 ∨ S5 ∨ S16; Q) = ∧(x3, y5)⊗Q[z16]/(xy, xz, yz, z2)
Then A∗ is 14-I.F. and by straightfoward calculation

mD = m14 = (∧(x, y, θ7, θ9, θ
1
11, θ

2
11, θ

1
13, θ

2
13), d) (∗)

with the differential is as follows:
d(x) = d(y) = 0, dθ7 = xy, dθ9 = xθ7, dθ1

11 = yθ7, dθ2
11 = xθ9, dθ1

13 = xθ2
11,

dθ2
13 = xθ1

11 + yθ9.
Then at n = 15, u = s = 1 and H16(mD) = Q{e1, e2, e3, e4}, where e1 = [xθ1

13],
e2 = [yθ1

11], e3 = [xθ2
13 + θ7θ9] and e4 = [yθ2

11 + θ7θ9]. Hence at n = 15, v = t = 4.
Let W be a 3-dimensional subspace of H16(mD) spanned by

a1,ie1 + a2,ie2 + a3,ie3 + a4,ie4 (i = 1, 2, 3),

where rank(aj,i)16j64,16i63 = 3.
Let f ∈ Aut mD = G be an element such that

f(x) = λx, f(y) = µy, λ, µ ∈ Q∗.

Then we have

f(e1) = λ5µe1, f(e2) = λµ3e2, f(e3) = λ3µ2e3, f(e4) = λ3µ2e4.

The set of W forms Gr(4, 3)(Q), which is isomorphic to P 3(Q) by the Plücker
embedding i : Gr(4, 3)(Q) → P 3(Q),

i(W ) =

[∣∣∣∣∣
a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

a1,3 a2,3 a3,3

∣∣∣∣∣ ,

∣∣∣∣∣
a1,1 a2,1 a4,1

a1,2 a2,2 a4,2

a1,3 a2,3 a4,3

∣∣∣∣∣ ,

∣∣∣∣∣
a1,1 a3,1 a4,1

a1,2 a3,2 a4,2

a1,3 a3,3 a4,3

∣∣∣∣∣ ,

∣∣∣∣∣
a2,1 a3,1 a4,1

a2,2 a3,2 a4,2

a2,3 a3,3 a4,3

∣∣∣∣∣

]
.

Then G acts on P 2(Q) by f [x1, x2, x3, x4] = [λ9µ6x1, λ
9µ6x2, λ

11µ5x3, λ
7µ7x4] =

[ρx1, ρx2, ρ
2x3, x4] by putting ρ = λ2µ−1. Hence by Corollary 2.3, we have

MA∗ = M3/G
∐

M4 ' P 3(Q)/Q∗
∐
{∗}.

(3) A∗ = ∧(x3, y5)⊗Q[z8]/(xy, xz2, yz2, z3)
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Then A∗ is 14-I.F. and at n = 15, u = 1, s = 0, and

mD = m14 = m′
14 ⊗Q[z],

where m′
14 is isomorphic to m14 in the example (2) and d(z) = 0. Then H16(mD) =

Q{e1, e2, e3, e4, f1}, where e1 = [xθ1
13], e2 = [yθ1

11], e3 = [xθ2
13 + θ7θ9], e4 = [yθ2

11 +
θ7θ9] and f1 = [z2]. Hence at n = 15, v = 5, t = 4. By Corollary 2.3,

MA∗ = X15 = M4/G.

Let W be an element of M4 spanned by

a1,ie1 + a2,ie2 + a3,ie3 + a4,ie4 + a5,if1 (i = 1, 2, 3, 4),

with
rank (aj,i)16j64,16i64 = 4 (∗).

By Plücker embedding, we see that the set of W satisfying (∗) corresponds bi-
jectively to A4(Q) = {[x1, x2, x3, x4, x5] ∈ P 4(Q)|x1 6= 0}.

Let f ∈ Aut mD = G be an element such that

f(x) = λx, f(y) = µy, f(z) = κz, λ, µ, κ ∈ Q∗.

Then we have

f∗(e1) = λ5µe1, f∗(e2) = λµ3e2, f∗(e3) = λ3µ2e3,

f∗(e4) = λ3µ2e4, f∗(f1) = κ2f1.

Hence G acts on P 4(Q) by

f · [x1, x2, x3, x4, x5] = [λ12µ8x1, λ
11µ5κ2x2, λ

9µ6κ2x3, λ
9µ6κ2x4, λ

7µ7κ2x5].

Hence G acts on A4(Q) by

f · (y1, y2, y3, y4) = (λ−1µ−3κ2y1, λ
−3µ−2κ2y2, λ

−3µ−2κ2y3, λ
−5µ−1κ2y4),

where yi = xi+1/x1 for i = 1, .., 4. Then setting α = λ−7κ2 and β = λ2µ−1, G acts
on A4(Q) by

f · (y1, y2, y3, y4) = (αβ3y1, αβ2y2, αβ2y3, αβy4).

Since α and β take any non-zero rational numbers independently, we have

MA∗ ' A4(Q)/(Q∗ ×Q∗) ' P 3(Q)/Q∗
∐
{∗},

where Q∗ acts on P 3(Q) by

β · [z1, z2, z3, z4] = [β2z1, βz2, βz3, z4]

and the point {∗} corresponds (0, 0, 0, 0) in A4(Q), which corresponds a formal
model. Thus MA∗ is the same set as that of Example (2).

(4) A∗ = H∗((S2 ∨ S2)× S3; Q) = Q[x2, y2]⊗ Λ(z3)/(xy).
This example was studied by Halperin and Stasheff, see example 6.5 in [2]. It is

3-I.F. and at n = 4, s = 0 and t = 2. In fact

mD = m3 = (∧(x, y, θ1
3, θ

2
3, θ

3
3, z3), d)
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with d(x) = d(y) = d(z) = 0, dθ1
3 = x2, dθ2

3 = xy, dθ3
3 = y2 and H5(m3) =

Q{e1, e2, f1, f2}, where e1 = [yθ1
3 − xθ2

3], e2 = [yθ2
3 − xθ3

3], f1 = [xz] and f2 = [yz].
Then by Collorary 2.3,

MA∗ = X4 = M2/G.

Let W in M2 be spanned by

a1,ie1 + a2,ie2 + a3,if1 + a4,if2 (i = 1, 2),

where
rank (aj,i)16j62,16i62 = 2 .

By Plücker embedding, the set of W forms

{[x1, x2, x3, x4, x5, x6] ∈ P 5(Q)|x1x6 − x2x5 + x3x4 = 0, x1 6= 0}
' {(X1, X2, X3, X4, X5) ∈ A5(Q)|X5 −X2X5 + X3X4 = 0}

' {(X1, X2, X3, X4) ∈ A4(Q)},
where Xi = xi+1/x1 (i = 1, .., 5).

Let f ∈ Aut mD = G be an element such that

f(x) = x, f(y) = y, f(z) = µz µ ∈ Q∗

f(θi
3) = θi

3 + λiz, λi ∈ Q, i = 1, 2, 3.

Then we have

f∗(e1) = e1 − λ2f1 + λ1f2, f∗(e2) = e2 − λ3f1 + λ2f2,

f∗(f1) = µf1, f∗(f2) = µf2,

and f∗ induces a map Af defined by

Af ([x1, .., x6]) = [x1, .., x6]




1 −λ3 λ2 λ2 −λ1 λ1λ3 − λ2
2

0 µ 0 0 0 −λ1µ
0 0 µ 0 0 −λ2µ
0 0 0 µ 0 −λ2µ
0 0 0 0 µ −λ3µ
0 0 0 0 0 µ2




,

hence f∗ induces a map Ãf from A4(Q) to itself defined by

Ãf




X1

X2

X3

X4


 =




µ
µ

µ
µ







X1

X2

X3

X4


 +




−λ3

λ2

λ2

−λ1


 .

From this we see by varing λi ∈ Q (i = 1, 2, 3) and µ ∈ Q∗,

Ãf




0
0
0
0


 ∪ Ãf




0
1
0
0


 = A4(Q).



Homology, Homotopy and Applications, vol. 5(1), 2003 431

Hence MA∗ is at most two points.
Conversely, any element g ∈ Aut mD has the following form: g(x) = a1x + a2y,

g(y) = b1x + b2y and g(z) = µz with

a1, a2, b1, b2 ∈ Q, D =
∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ 6= 0, µ ∈ Q∗

and then
g(θ1) = a2

1θ1 + 2a1a2θ2 + a2
2θ3 + λ1z,

g(θ2) = a1b1θ1 + (a1b2 + a2b1)θ2 + a2b2θ3 + λ2z,
g(θ3) = b2

1θ1 + 2b1b2θ2 + b2
2θ3 + λ3z

for some λi ∈ Q. By straightfoward calculations we see that W1 = {e1, e2}, which
corresponds to (0, 0, 0, 0) in A4(Q), can not be mapped to W2 = {e1, e2 + f2}
corresponding to (0, 1, 0, 0) in A4(Q) by Aut mD. In fact,

Ãg




0
0
0
0


 =

1
D2

·




−b2
1λ1 + 2a1b1λ2 − a2

1λ3

−b1b2λ1 + (a1b2 + a2b1)λ2 − a1a2λ3

−b1b2λ1 + (a1b2 + a2b1)λ2 − a1a2λ3

−b2
2λ1 + 2a2b2λ2 − a2

2λ3


 =




∗
α
α
∗


 6=




0
1
0
0


 .

Thus we see that MA∗ is just two points.

(5) A∗ = H∗((S3 ∨ S3)× S5; Q) = Λ(x3, y3, z5)/(xy).
This example was considered by Schlessinger and Stasheff, see section 8 in [7]. It

is 6-I.F. and

mD = m6 = (∧(x3, y3, θ5, z5), d)

with d(x) = d(y) = d(z) = 0 and dθ5 = xy. Then H8(mD) = Q{e1, e2, f1, f2},
where e1 = [xθ5], e2 = [yθ5], f1 = [xz] and f2 = [yz]. Hence at n = 7, s = 0 and
t = 2. By Corollary 2.3,

MA∗ = X7 = M2/G.

Let W in M2 be spanned by

a1,ie1 + a2,ie2 + a3,if1 + a4,if2 (i = 1, 2),

where rank(aj,i)16j62,16i62 = 2.
Let f ∈ Aut mD = G be an element such that f(x) = a1x+a2y, f(y) = b1x+b2y,

f(θ5) = Dθ5 + λz and f(z) = µz, where

D =
∣∣∣∣
a1 a2

b1 b2

∣∣∣∣ 6= 0, λ ∈ Q,µ ∈ Q∗.

Then

f∗(e1) = a1De1 + a2De2 + a1λf1 + a2λf2,

f∗(e2) = b1De1 + b2De2 + b1λf1 + b2λf2,

f∗(f1) = a1µf1 + a2µf2, f∗(f2) = b1µf1 + b2µf2.
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By Plücker embedding the set of W forms

{[x1, x2, x3, x4, x5, x6] ∈ P 5(Q)|x1x6 − x2x5 + x3x4 = 0, x1 6= 0}

' {(X1, X2, X3, X4) ∈ A4(Q)},
where Xi = xi+1/x1 (i = 1, .., 4). Then G acts on A4(Q) as follows:

Ãf




X1

X2

X3

X4


 =

µ

D2




a2
1 a1b1 a1b1 b2

1

a1a2 a1b2 a2b1 b1b2

a1a2 a2b1 a1b2 b1b2

a2
2 a2b2 a2b2 b2

2







X1

X2

X3

X4


 +

λ

D




0
1
−1
0


 .

First we show that any point (x1, x2, x3, x4) of A4(Q) lies in the union of the
orbit of (1, 0, 0, r) for some r ∈ Q and that of (0, 0, 0, 0) by decomposing A4(Q)
into the following pieces (a)∼(f).

(a) If 4x1x4 6= (x2 + x3)2 and x1 6= 0, set a1 = 0, a2 = −1, b1 = 1, b2 = −x2+x3
2x1

,

µ = (x2+x3)
2−4x1x4

4x1
, r = 4x2

1
(x2+x3)2−4x1x4

and λ = 1
2 (x2 − x3). Then we have

Ãf




1
0
0
r


 =




x1

x2

x3

x4


 . (3.1)

(b) If 4x1x4 6= (x2 + x3)2 and x4 6= 0, set a1 = 1, a2 = 0, b1 = −x2+x3
2x4

, b2 = 1,

µ = (x2+x3)
2−4x1x4

4x4
, r = 4x2

4
(x2+x3)2−4x1x4

and λ = 1
2 (x2 − x3). Then we have (3.1).

(c) If 4x1x4 6= (x2 + x3)2 and x1 = x4 = 0, set a1 = b1 = 1, a2 = − 1
2 , b2 = 1

2
µ = −x2+x3

2 , r = −2 and λ = 1
2 (x2 − x3). Then we have (3.1).

(d) If 4x1x4 = (x2 +x3)2 and x1 6= 0, set a1 = x1, a2 = −x2+x3
2 , b1 = 0, b2 = 1

x1

µ = − 1
x1

, r = 0 and λ = 1
2 (x2 − x3). Then we have (3.1).

(e) If 4x1x4 = (x2 +x3)2 and x4 6= 0, set a1 = −x2+x3
2 , a1 = x4, b1 = − 1

x1
, b2 =

0, µ = − 1
x4

, r = 0 and λ = 1
2 (x2 − x3). Then we have (3.1).

(f) If x1 = x4 = 0, x2 + x3 = 0, set a1 = 1, a2 = 0, b1 = 0, b2 = 1, µ = 1 and
λ = x2. Then we have

Ãf




0
0
0
0


 =




0
x2

x3

0


 .

Thus we have a surjection

p : Q
∐
{∗} →MA∗ ' A4(Q)/G

defined by p(∗) = the class of (0, 0, 0, 0) and p(r) = the class of (1, 0, 0, r).
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If p(r1) = p(r2) then there is an element f ∈ G such that

Ãf




1
0
0
r1


 =




1
0
0
r2


 .

By straightfoward calculations we have r1r2 ∈ Q∗2 if r1r2 6= 0. Thus we have

MA∗ ' Q∗/Q∗2 ∐
{0}

∐
{∗},

where {0} corresponds to (1, 0, 0, 0) and {∗} corresponds to the formal model.
After tensoring with Q the set of isomorphism classes consists of three points.

(6) A∗ = H∗(S3 ∨ S5 ∨ S10 ∨ S16; Q) = ∧(x3, y5) ⊗
Q[v10, z16]/(xy, xv, xz, yv, yz, v2, vz, z2).

Then mD = m8 = (Λ(x, y, θ7), d) with d(θ7) = xy. Since H10(m8) = Q{xθ7},
s = t = 1 at n = 9. Then since the condition (2)9 is satisfied

X9 = O0

∐
O1 = M0

∐
M1 ' {p0, p1},

where the corresponding model for p0 is

m(0)
9 = (Λ(x, y, θ7), d)

with d(θ7) = xy and the corresponding model for p1 is

m(1)
9 = (Λ(x, y, θ7, θ9), d)

with d(θ9) = xθ7.
Next consider X15 over each point. The model containing m(0)

9 is

mD = m14 = (∧(x, y, θ7, θ11), d)

with d(θ11) = yθ7. Since H16(mD) = Q{yθ11}, s = t = 1 at n = 15. Hence X15

consists of two points.
The model containing m(1)

9 is

mD = m14 = (Λ(x, y, θ7, θ9, u10, θ
1
11, θ

2
11, θ

1
13, θ

2
13), d) = (Q[u]⊗m, d)

where d(u10) = 0 for a basis u10 of Coker(σ{xθ7}
9 )10 and m is the model (∗) in Ex-

ample (2). Then H16(mD) = Q{e1, e2, e3, e4} is same as that of the above Example
(2). Hence we have in this case

X15 'MH∗(S3∨S5∨S16).

Since A>16 = 0, MA∗ is the disjoint union of two points and P 3(Q)/Q∗∐{∗}.
See Fig 1.

(7) A∗ = H∗(S5 ∨ (S3 × S10); Q) = Λ(x3, y5)⊗Q[z10]/(xy, xz, z2).
Then mD = m8 = (Λ(x, y, θ7), d) with d(θ7) = xy. Since H10(m8) = Q{xθ7},

W = 0 or W = Q{xθ7} at n = 9. If W = {0}, (σW
9)13 : H3(mW

9) ·H10(mW
9) =
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0 → A3 · A10 6= 0 can not be a G.A.map. Hence the condition (2)9 is not satisfied.
Hence W must be Q{xθ7}.

Next consider X12. Then

mD = m12 = (Λ(x, y, θ7, θ9, u10, θ
1
11, θ

2
11), d)

with d(θ7) = xy, d(θ9) = xθ7, d(θ1
11) = yθ7, d(θ2

11) = xθ9. Since
H13(mD) = (H+(mD)(12))13 and A>13 = 0, MA∗ is an one point.

(8) A∗ = H∗((S3 × S8)](S3 × S8); Q) = Λ(x3, y3) ⊗ Q[u8, w8]/(xy, xu, xw +
yu, yw, u2, uw, w2).

It is 6-intrinsically formal Poincaré algebra of formal dimension 11 such that
m6 = (Λ(x, y, θ5), d) with d(x) = d(y) = 0 and d(θ5) = xy. There is a map
σ6 : (H∗(m6)(7))∗ → A∗ given by σ6(x) = x, σ6(y) = y and sending other elements
to zero. Since u = s = v = t = 2 at n = 7, we have 0 6 l 6 2. Consider the each
cases of l = 0, 1, 2 at n = 7 in the followings.

Case of l = 0.
Since W = 0, H8(mW ) = H8(m6) = Q{[xθ5], [yθ5]}. Put σW (x) = x, σW (y) =

y, σW ([xθ5]) = u and σW ([yθ5]) = w. Then the condition (1)7 and (2)7 are
satisfied. Since σW : H∗(mW ) → A∗ is isomorphic, this one point set M0 = O0,
corresponding the elliptic model (Λ(x, y, θ5), d), is a component of MA∗ .

Case of l = 1.
For H8(m6) = Q{e1 = [xθ5], e2 = [yθ5]}, W is spanned by ae1 + be2 for

[a, b] ∈ P 1(Q) = M1. Then mW
8 = (Λ(x, y, θ5, θ7, u8), d) where d(θ7) = ae1 + be2

and d(u8) = 0. But (σW
8)11 : H3(mW

8) · H8(mW
8) → A3 · A8 can not be a

G.A.map since x · (bxθ5 + ayθ5) = d(yθ7) and y · (bxθ5 + ayθ5) = d(xθ7). Hence the
condition (2)7 is not satisfied.

Case of l = 2.
Since W = Q{xθ5, yθ5},

mW = (Λ(x, y, θ5, θ
1
7, θ

2
7), d)

where d(θ1
7) = xθ5 and d(θ2

7) = yθ5 and

mW
8 = (Λ(x, y, θ5, θ

1
7, θ

2
7, u

1
8, u

2
8), d)

where dui
8 = 0 (i = 1, 2). Since t = 0 at 8 6 n 6 11 and A>11 = 0, it is one point

corresponding to the formal model.
Thus MA∗ is two points. See Fig 2.
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In the following figures, numbers mean degrees.

Fig 1
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The set P 3(Q)/Q∗
∐{∗} is indicated by one circle.

Fig 2

(8)
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Here
⊙

implies that there exists an elliptic minimal model generated by elements
of degree 6 5 satisfying H∗(m) ∼= A∗.
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