GROUP EXTENSIONS AND AUTOMORPHISM GROUP RINGS

JOHN MARTINO ANd STEWART PRIDDY
(communicated by Lionel Schwartz)
Abstract

We use extensions to study the semi-simple quotient of the group ring $\mathbf{F}_{p} A u t(P)$ of a finite p-group P. For an extension $E: N \rightarrow P \rightarrow Q$, our results involve relations between $\operatorname{Aut}(N)$, $A u t(P), A u t(Q)$ and the extension class $[E] \in H^{2}(Q, Z N)$. One novel feature is the use of the intersection orbit group $\Omega([E])$, defined as the intersection of the orbits $\operatorname{Aut}(N) \cdot[E]$ and $\operatorname{Aut}(Q) \cdot[E]$ in $H^{2}(Q, Z N)$. This group is useful in computing $|A u t(P)|$. In case N, Q are elementary Abelian 2-groups our results involve the theory of quadratic forms and the Arf invariant.

1. Introduction

Since the simple modules of a ring and its semi-simple quotient are the same, for many purposes it suffices to consider the latter ring. In this note we study the problem of calculating the semi-simple quotient of the group ring $\mathbf{F}_{p} A u t(P)$ for the automorphism group of a finite p-group. The usual method is to consider the maximal elementary Abelian quotient $P \rightarrow P / \Phi(P)$, where $\Phi(P)$ is the Frattini subgroup. The induced map $\operatorname{Aut}(P) \rightarrow A u t(P / \Phi(P))$ has a p-group as kernel by the Hall Basis Theorem. Hence the map of algebras

$$
\mathbf{F}_{p} A u t(P) \rightarrow \mathbf{F}_{p} A u t(P / \Phi(P))
$$

has a nilpotent kernel and thus suffices to compute the semi-simple quotient. However this map is not necessarily onto and one is left with the still considerable problem of determining the image. For $\Phi(P)=\mathbf{Z} / p$, when p is an odd prime, this has been done by Dietz [7] giving a complete determination of $\operatorname{Aut}(P)$.

We adopt an inductive approach via extensions; that is, we assume P is given as an extension

$$
E: N \rightarrow P \rightarrow Q
$$

with $\operatorname{Aut}(N), \operatorname{Aut}(Q)$ under control. Then there is an exact sequence relating the automorphism groups of N and Q with that of P, depending on the cohomology class of the extension $[E] \in H^{2}(Q, Z(N))$ where $Z(N)$ denotes the center of N.

[^0]Our motivation comes from stable homotopy theory. Let G be a finite group and p be a prime. The classifying space of G completed at $p, B G_{p}^{\wedge}$, decomposes stably into a wedge of indecomposable summands

$$
B G_{p}^{\wedge} \simeq X_{1} \vee X_{2} \vee \cdots \vee X_{n}
$$

Each summand X_{i} is the mapping telescope of a primitive idempotent e in the ring of stable self-maps of $B G_{p}^{\wedge}, e \in\left\{B G_{p}^{\wedge}, B G_{p}^{\wedge}\right\}$. Thus there is a one-to-one correspondence between the indecomposable summands and the simple modules of the ring of stable self-maps. This correspondence is explored in both $[\mathbf{2}]$ and $[\mathbf{9}]$ (see also $[\mathbf{1 0}]$). It turns out that modular representation theory plays a crucial role: if P is a Sylow p-subgroup of G then each indecomposable summand of $B G_{p}^{\wedge}$ originates in $B Q$ for some subgroup $Q \leqslant P$ and corresponds to a simple $\mathbf{F}_{p} A u t(Q)$ module.

Of course, the automorphism group of a group is of intrinsic interest in its own right, and our methods shed some light on its structure.

An outline of the paper follows: Section 2 covers the preliminaries on extensions, $E: N \rightarrow G \rightarrow Q$, including the fundamental exact sequence, Theorem 2.1, relating $\operatorname{Aut}(N), \operatorname{Aut}(G), \operatorname{Aut}(Q)$, and the extension class $[E]$. In Section 3 we define and identify a group structure, $\Omega([E])$, on the intersection of the two orbits $A u t(N) \cdot[E]$ and $\operatorname{Aut}(Q) \cdot[E]$ where $\operatorname{Aut}(N)$ and $\operatorname{Aut}(Q)$ act on $H^{2}(Q, Z(N))$ in the usual way. This group, which we call the intersection orbit group, is useful in computing $|A u t(G)|$. The case of trivial action (or twisting) of Q on $Z(N)$ is considered in Section 4. Extensions with N, Q, elementary Abelian p-groups are studied in Section 5. In case $p=2$ this involves the theory of quadratic forms over \mathbf{F}_{2} and the Arf invariant. We recall Browder's classification theorem [3] and give several results describing the order of a quotient of $A u t(G)$ by a normal p-subgroup in Section 6. For more complicated p-groups G we describe an inductive procedure for extending these results using the mod- p lower central series. Section 7 is devoted to several applications of the theory.

In what follows all groups are assumed finite, except as noted in Section 3.

2. Preliminaries

We begin by recalling the results of C. Wells [14] as extended by J. Buckley [4]. Because their notation is now non-standard, e.g., functions written on the right, we re-couch these results in more standard notation. Let

$$
E: N \xrightarrow{i} G \xrightarrow{\pi} Q
$$

be an extension of the group N by the group Q and let $A u t_{N}(G)$ be the group of automorphisms of G mapping N to itself. The obvious homomorphism $\rho=\left(\rho_{Q}, \rho_{N}\right)$: $A u t_{N}(G) \rightarrow A u t(Q) \times \operatorname{Aut}(N)$ provides a means of studying $A u t_{N}(G)$.

As usual two extensions E_{1}, E_{2} are equivalent $E_{1} \sim E_{2}$ if there is an isomorphism $\alpha: G_{1} \rightarrow G_{2}$ restricting to the identity on N and inducing the identity on Q. The set of such equivalent extensions is denoted $\mathcal{E}(Q, N)$. The twisting (or coupling) $\chi: Q \rightarrow$ $\operatorname{Out}(N)$ of E is the homomorphism defined as usual by $\chi(q)(n)=i^{-1}\left(g^{-1} i(n) g\right)$ where $g \in \pi^{-1}(q), n \in N$. Equivalent extensions have the same twisting.

The center $Z N$ of N has the structure of a Q module via a homomorphism $\bar{\chi}: Q \rightarrow \operatorname{Aut}(Z N)$ defined by the composite

$$
\bar{\chi}: Q \xrightarrow{\chi} \operatorname{Out}(N) \xrightarrow{r e s} \operatorname{Aut}(Z N)
$$

where res : $\operatorname{Out}(N) \rightarrow \operatorname{Aut}(Z N)$ is induced by $\operatorname{Aut}(N) \rightarrow \operatorname{Aut}(Z N)$. It is wellknown that we may identify

$$
\mathcal{E}(Q, N)=\coprod_{\chi} H_{\bar{\chi}}^{2}(Q, Z N)
$$

where χ ranges over all twistings $\{Q \rightarrow \operatorname{Out}(N)\}$.
Now consider $(\sigma, \tau) \in \operatorname{Aut}(Q) \times \operatorname{Aut}(N)$ and form the extension

$$
\sigma E \tau^{-1}: N \xrightarrow{i \tau^{-1}} G \xrightarrow{\sigma \pi} Q
$$

Then $\operatorname{Aut}(Q) \times \operatorname{Aut}(N)$ acts on $\mathcal{E}(Q, N)$ from the left by

$$
\begin{equation*}
(\sigma, \tau)[E]=\left[\sigma E \tau^{-1}\right] \tag{1}
\end{equation*}
$$

One checks $(\sigma, \tau)\left(\sigma^{\prime}, \tau^{\prime}\right)[E]=\left(\sigma \sigma^{\prime}, \tau \tau^{\prime}\right)[E]$ and $(1,1)[E]=[E]$. The twisting of $(\sigma, \tau) E$ is given by $\gamma_{\bar{\tau}} \chi \sigma^{-1}$ where $\gamma_{\bar{\tau}}$ denotes conjugation by $\bar{\tau}$, the image of τ in $\operatorname{Out}(N)$. For a given χ define the subgroup $C_{\chi} \subset \operatorname{Aut}(Q) \times \operatorname{Aut}(N)$ by

$$
C_{\chi}=\left\{(\sigma, \tau) \in \operatorname{Aut}(Q) \times \operatorname{Aut}(N) \mid \gamma_{\bar{\tau}} \chi \sigma^{-1}=\chi\right\}
$$

that is, the following diagram commutes

The subgroup C_{χ} consists of all ordered pairs $(\sigma, \tau) \in \operatorname{Aut}(Q) \times \operatorname{Aut}(N)$ that preserve the twisting.

If χ is trivial then clearly $C_{\chi}=\operatorname{Aut}(Q) \times \operatorname{Aut}(N)$. We note that $\operatorname{ker}(\chi)$ plays no role in the commutativity of the diagram and $\left.\sigma\right|_{\operatorname{ker}(\chi)}: \operatorname{ker}(\chi) \rightarrow \operatorname{ker}(\chi)$. Thus if the sequence

$$
\operatorname{ker}(\chi) \rightarrow Q \rightarrow i m(\chi)
$$

splits, e.g., if Q is elementary Abelian, then $\left.\sigma\right|_{\operatorname{ker}(\chi)}$ can be an arbitrary linear isomorphism.

Then C_{χ} acts on $\{[E] \mid E$ has twisting $\chi\}$. It is trivial to check that $\operatorname{Im}(\rho) \subset C_{\chi}$ so we consider ρ as a homomorphism $\rho: A u t_{N}(G) \rightarrow C_{\chi}$.

Let $Z \frac{1}{\bar{\chi}}(Q, Z N)$ denote the group of derivations, i.e., functions $f: Q \rightarrow Z N$ satisfying $f\left(q q^{\prime}\right)=f(q)+q f\left(q^{\prime}\right)$ for $q, q^{\prime} \in Q$. Then there is a homomorphism $\mu: Z \frac{1}{\chi}(Q, Z N) \rightarrow A u t_{N}(G)$ defined by $\mu(f)(g)=f(\pi(g)) \cdot g$.

Finally we define a function $\epsilon: C_{\chi} \rightarrow H_{\bar{\chi}}^{2}(Q, Z N)$ by restricting the action of $\operatorname{Aut}(Q) \times \operatorname{Aut}(N)$ on the extension class $[E]$, that is, $(\sigma, \tau) \mapsto(\sigma, \tau)[E]$. In general ϵ is not a homomorphism.

The following is the principal result of $[\mathbf{1 4}]$ as extended by [4]:
Theorem 2.1. For a given extension $E: N \rightarrow G \rightarrow Q$ with twisting $\chi: Q \rightarrow \operatorname{Out}(N)$ there is an exact sequence

$$
1 \rightarrow Z \bar{\chi}(Q, Z N) \xrightarrow{\mu} A u t_{N}(G) \xrightarrow{\rho} C_{\chi} \xrightarrow{\epsilon} H_{\bar{\chi}}^{2}(Q, Z N)
$$

with $\operatorname{Im}(\rho)=\left(C_{\chi}\right)_{[E]}$, the isotropy subgroup of C_{χ} fixing $[E]$. The map ϵ is not onto and is only a set map.

An alternate exact sequence results by replacing $Z_{\bar{\chi}}(Q, Z N)$ with the cohomology group $H \frac{1}{\chi}(Q, Z N)$ and $A u t_{N}(G)$ by $A u t_{N}(G) / \operatorname{Inn}_{Z N}(G)$ where $I n n_{Z N}(G)$ is group of inner automorphisms of G induced by elements of $Z N$, (see [12], Proposition IV 2.1). We shall be interested in $\operatorname{Im}(\rho)$ so we will not need this refinement.

In case $Z N$ is a p-group Theorem 2.1 shows $Z \frac{1}{\chi}(Q, Z N)$ is a normal p-subgroup of $A u t_{N}(G)$ which in turn implies $\mathbf{F}_{p}\left(\left(C_{\chi}\right)_{[E]}\right)$ suffices to compute simple modules and idempotents:

Corollary 2.2. If $E: N \rightarrow G \rightarrow Q$ is an extension with $Z N$ a p-group, then $\mathbf{F}_{p} A u t_{N}(G) \xrightarrow{\mathbf{F}_{p}(\rho)} \mathbf{F}_{p}\left(\left(C_{\chi}\right)_{[E]}\right)$ is surjective with nilpotent kernel.

Proof. Since $\operatorname{ker}(\rho)=Z_{\bar{\chi}}^{1}(Q, Z N)$ is a p-group it is well known that $\operatorname{ker}\left(\mathbf{F}_{p}(\rho)\right)$ is nilpotent.

We shall be interested in determining when $A u t_{N}(G)$ is a p-group; clearly this is true if $\operatorname{Aut}(Q)$ and $\operatorname{Aut}(N)$ are p-groups. Further

Corollary 2.3. Suppose G is a p-group with p odd, and N is generated by the elements of G of order p. Then $\operatorname{Aut}(G)$ is a p-group if $\operatorname{Aut}(N)$ is a p-group.

Proof. By hypothesis $N=\Omega_{1}(G)$ is a characteristic subgroup, hence $A u t_{N}(G)=$ $\operatorname{Aut}(G)$. If $\alpha \in \operatorname{Aut}(G)$ has p^{\prime} order then $\rho_{N}(\alpha)=i d_{N}$. Since p is odd, the automorphisms of G which have p^{\prime} order and fix N are trivial by Theorem 5.3.10, [8]. Thus $\operatorname{Aut}(G)$ is a p-group.

3. The Intersection Orbit Group

Let X be a left $A \times B$ set where A, B are groups, not necessarily finite. Equivalently A acts on the left, B acts on the right such that $a(x b)=(a x) b$, and $(a, b) x=a x b^{-1}$, where $a \in A, x \in X, b \in B$. As usual let $A x$ denote the orbit of x under the action of A (respectively $x B$ denote the orbit of x under the action of B). We define the intersection orbit group at x

$$
\Omega(x):=(A x) \cap(x B)
$$

If $a x=x b, a^{\prime} x=x b^{\prime}$ are elements of $\Omega(x)$, their product is defined by

$$
(a x)\left(a^{\prime} x\right):=\left(a a^{\prime}\right) x=x\left(b b^{\prime}\right)
$$

It is straightforward to check that this pairing is well-defined giving $\Omega(x)$ the structure of a group. Although left and right actions commute, $\Omega(x)$ is not necessarily

Abelian; however, if either A or B is a p-group, then $\Omega(x)$ is a p-group. Also if A or B is trivial then obviously $\Omega(x)=\{x\}$, the trivial group.

Again, as usual, let A_{x} and B_{x} denote the respective isotropy subgroups.
Proposition 3.1. There is an isomorphism of groups

$$
\phi:(A \times B)_{x} /\left(A_{x} \times B_{x}\right) \xrightarrow{\cong} \Omega(x)
$$

given by $\phi(a, b)=a x=x b^{-1}$.
Proof. $(a, b) x=x$ if and only if $a x=x b^{-1}$. Similarly $(a, b) \in A_{x} \times B_{x}$ if and only if $a x=x b^{-1}=x$. Thus ϕ is well-defined and bijective. It is a homomorphism by the definition of the product in $\Omega(x)$.

Corollary 3.2. If A and B are finite groups, then
$|\Omega(x)|$ divides

$$
\left|N_{A}\left(A_{x}\right) / A_{x}\right|,\left|N_{B}\left(B_{x}\right) / B_{x}\right|
$$

and

$$
\operatorname{gcd}(|A x|,|x B|)
$$

Proof. Note that $N_{A}\left(A_{x}\right) / A_{x}$ is the largest subset of $A x \cong A / A_{x}$ which is a group. Thus $\Omega(x) \leqslant N_{A}\left(A_{x}\right) / A_{x}$ is a subgroup and so $|\Omega(x)|$ divides $\left|N_{A}\left(A_{x}\right) / A_{x}\right|$ and hence A / A_{x}. Similarly for B. Thus $|\Omega(x)|$ divides $\operatorname{gcd}(|A x|,|x B|)$.

Returning to automorphism groups, the following result often simplifies computing $|\operatorname{Im}(\rho)|$.

Corollary 3.3. For a given extension of finite groups $E: N \rightarrow G \rightarrow Q$,
i) $|\operatorname{Im}(\rho)|=\left|\operatorname{Aut}(Q)_{[E]}\right| \cdot\left|\operatorname{Aut}(N)_{[E]}\right| \cdot|\Omega([E])|$
ii) $\operatorname{Im}(\rho)$ is a p-group if and only if $\operatorname{Aut}(Q)_{[E]}$, $\operatorname{Aut}(N)_{[E]}$, and $|\Omega([E])|$ are p-groups.

Proof. ii) follows from i) which follows immediately from Proposition 3.1 with $A=$ $\operatorname{Aut}(Q), B=\operatorname{Aut}(N)$.

There exists extensions that do not depend on the intersection orbit group.
Proposition 3.4. Suppose N is an Abelian p-group, $A u t(Q)$ is a p-group, and $H^{2}(Q, N) \neq 0$ with a trivial twisting. Then there exists a non-split extension $[E]$ such that

$$
\left|A u t_{N}(G)\right|_{p}=|\operatorname{Hom}(Q, N)\|A u t(Q)\| A u t(N)|_{p}
$$

Proof. By Corollary 3.2, it suffices find $[E]$ with $|\Omega([E])|=1$. Let $A u t(Q) \times S$ be a Sylow p-subgroup of $\operatorname{Aut}(Q) \times \operatorname{Aut}(N)$. The $\operatorname{Aut}(Q) \times \operatorname{Aut}(N)$-module $H^{2}(Q, N)$ has cardinality a power of p. Thus there is an $\operatorname{Aut}(Q) \times S$ fixed point, $[E] \neq 0$ by the fixed point result $[\mathbf{1 3}]$, p. 64 , which generalizes to this case). Thus $\operatorname{Aut}(Q)_{[E]}=\{[E]\}$ and $|S|=|\operatorname{Aut}(N)|_{p}$. The kernel of the exact sequence in Theorem 2.1 is $Z^{1}(Q, N)=$ $\operatorname{Hom}(Q, N)$, which explains the presence of that term in the proposition.

4. Trivial twisting

Proposition 4.1. If $E: N \rightarrow G \rightarrow Q$ has trivial twisting the exact sequence of Theorem 2.1 reduces to

$$
0 \rightarrow \operatorname{Hom}(Q, Z N) \xrightarrow{\mu} A u t_{N}(G) \xrightarrow{\rho} \operatorname{Aut}(Q) \times \operatorname{Aut}(N) \rightarrow H^{2}(Q, Z N)
$$

Proof. [4], Th. 3.1. Clearly $Z \frac{1}{\chi}(Q, Z N)=\operatorname{Hom}(Q, Z N)$ and $C_{\chi}=\operatorname{Aut}(Q) \times$ Aut(N).

Before proceeding, it is instructive to consider the simplest case $G=N \times Q$. The extension class is trivial thus $\rho: \operatorname{Aut}_{N}(G) \rightarrow \operatorname{Aut}(Q) \times \operatorname{Aut}(N)$ is surjective. In fact ρ is split by the usual inclusion $\operatorname{Aut}(Q) \times \operatorname{Aut}(N) \rightarrow A u t_{N}(G)$. For a more complete discussion of $\operatorname{Aut}(Q \times N)$ see [11].

In what follows we are interested in $G=P$, a p-group. As immediate corollaries of 4.1 we have

Corollary 4.2. If $E: N \rightarrow P \rightarrow Q$ has trivial twisting and $\operatorname{Aut}(N)$ and $\operatorname{Aut}(Q)$ both p-groups then $A^{\prime} t_{N}(P)$ is a p-group.
Corollary 4.3. Let P be a p-group and define $P_{1}=P, P_{i+1}=P_{i} / Z\left(P_{i}\right)$. Suppose Aut $\left(Z\left(P_{i}\right)\right)$ is a p-group for each i. Then $A u t(P)$ is a p-group. In particular this hypothesis holds if $p=2$ and for each i the summands of P_{i} have distinct exponents.
Proof. The first statement is clear from Corollary 4.2. Similarly the second follows from Proposition 4.5 of [11] which implies each $\operatorname{Aut}\left(P_{i}\right)$ is a 2-group.

Another particularly tractable case is that of $E: N \rightarrow P \rightarrow Q$, with N an Abelian, characteristic subgroup. Since $\operatorname{Hom}(Q, N)$ tends to be relatively large in this case, the quotient $\operatorname{Im}(\rho)$ can be significantly smaller than $\operatorname{Aut}(G)$. We examine this phenomenon in more detail.

Let $\left\{\Gamma^{n}(P)\right\}$ be the mod-p lower central series, that is $\Gamma^{0}(P)=P$ and

$$
\Gamma^{n}(P)=\left\langle\left(g_{1}, \ldots, g_{s}\right)^{p^{k}} \mid s p^{k}>n\right\rangle, \quad n \geqslant 1
$$

where $\left(g_{1}, \ldots, g_{s}\right)=\left(g_{1},\left(g_{2},\left(\ldots\left(g_{s-1}, g_{s}\right) \ldots\right)\right)\right.$ is the s-fold iterated commutator. Then $\Gamma^{1}(P)=\Phi(P)$ is the Frattini subgroup and $V=P / \Gamma^{1}(P)$ is the largest elementary Abelian quotient of P. For some $n, \Gamma^{n}(P)=1$.
Example 4.4. For p an odd prime we consider the group
$P=\langle a, b, c| a^{p^{2}}=b^{p^{2}}=c^{p}=1, c=(b, a)$, trivial higher commutators \rangle
We shall determine $\operatorname{Aut}\left(P / \Gamma^{p}(P)\right)$ using the extension

$$
E: N=\Gamma^{1}(P) / \Gamma^{p}(P) \rightarrow P / \Gamma^{p}(P) \rightarrow Q=P / \Gamma^{1}(P)
$$

where $N=\mathbf{Z} / p\left\langle a^{p}, b^{p}, c\right\rangle$ and $Q=\mathbf{Z} / p\langle\bar{a}, \bar{b}\rangle$ are elementary Abelian. This extension has trivial twisting and its extension cocycle is easily seen to be $[E]=(x \wedge y) \otimes c \in$ $H^{2}(V, Q)=H^{2}(V) \otimes \mathbf{Z} / p\langle z\rangle$ where x, y are dual to a, b respectively. By inspection

$$
\operatorname{Im}(\rho)=\left\langle(A, B) \in G L_{2}\left(\mathbf{F}_{p}\right) \times G L_{1}\left(\mathbf{F}_{p}\right) \mid B=\operatorname{det}(A)\right\rangle
$$

Thus $\operatorname{Im}(\rho) \cong G L_{2}\left(\mathbf{F}_{p}\right)$. We conclude $\mathbf{F}_{p} A u t(P) \rightarrow \mathbf{F}_{p} G L_{2}\left(\mathbf{F}_{p}\right)$ is surjective with nilpotent kernel. Finally we note $\operatorname{Hom}(Q, N)=\operatorname{Mat}_{3,2}\left(\mathbf{F}_{p}\right)$, thus $|\operatorname{Hom}(Q, N)|=$ p^{6} and $|A u t(P)|=p^{6}\left|G L_{2}\left(\mathbf{F}_{p}\right)\right|=p^{7}\left(p^{2}-1\right)(p-1)$.

Example 4.5. Let $U_{5}\left(\mathbf{F}_{2}\right) \leqslant G L_{5}\left(\mathbf{F}_{2}\right)$ be the unipotent subgroup of upper triangular matrices over \mathbf{F}_{2}. These matrices necessarily have ones on the diagonal. Thus $U_{5}\left(\mathbf{F}_{2}\right)$ is generated by $x_{i j}=I_{4}+e_{i j}$ where $1 \leqslant i<j \leqslant 5$ and $e_{i j}$ is the standard elementary matrix with 1 in the $i j$ position and zeros elsewhere. Let $P=U_{5}\left(\mathbf{F}_{2}\right) / \Gamma^{2} U_{5}\left(\mathbf{F}_{2}\right)$. Then there is a central extension

$$
E: N=\mathbf{Z} / 2\left\langle\bar{x}_{13}, \bar{x}_{24}, \bar{x}_{35}\right\rangle \rightarrow P \rightarrow Q=\mathbf{Z} / 2\left\langle\bar{x}_{12}, \bar{x}_{23}, \bar{x}_{34}, \bar{x}_{45}\right\rangle
$$

Since N is the commutator subgroup of P, it is characteristic. The extension cocycle is

$$
[E]=y_{12} y_{23} \otimes \bar{x}_{13}+y_{23} y_{34} \otimes \bar{x}_{24}+y_{34} y_{45} \otimes \bar{x}_{35}
$$

where

$$
H^{*}(Q, N)=H^{*}(Q) \otimes N=\mathbf{Z} / 2\left\langle y_{12}, y_{23}, y_{34}, y_{45}\right\rangle \otimes\left\langle\bar{x}_{13}, \bar{x}_{24}, \bar{x}_{35}\right\rangle
$$

and $y_{i j}$ is dual to $\bar{x}_{i j}$. Since the twisting is trivial, $C_{\chi}=\operatorname{Aut}(Q) \times \operatorname{Aut}(N)=$ $G L_{4}\left(\mathbf{F}_{2}\right) \times G L_{3}\left(\mathbf{F}_{2}\right)$. Direct calculation shows

$$
(A u t(Q) \times \operatorname{Aut}(N))_{[E]}=\left\langle A, B \quad \mid A^{4}=B^{2}=1, B A B=A^{-1}\right\rangle
$$

the dihedral group of order 8 generated by

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0
\end{array}\right) \times\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
& B=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \times\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Moreover $|\operatorname{Hom}(Q, N)|=2^{12}, \operatorname{Aut}(P)$ is a 2 group of order 2^{15}.

5. An inductive procedure for determining $\operatorname{Aut}(P)$

Let $G=P$ be a p-group. Since $\Gamma^{i}(P)$ is characteristic there is an induced homomorphism $\rho_{V}: \operatorname{Aut}(P) \rightarrow \operatorname{Aut}(V)$ which factors as

$$
\begin{aligned}
\rho_{V}: \operatorname{Aut}(P) & \rightarrow \cdots \rightarrow \operatorname{Aut}\left(P / \Gamma^{i+1}(P)\right) \xrightarrow{\rho_{i}} \operatorname{Aut}\left(P / \Gamma^{i}(P)\right) \\
& \rightarrow \cdots \xrightarrow{\rho_{2}} \operatorname{Aut}\left(P / \Gamma^{2}(P)\right) \xrightarrow{\rho_{1}} \operatorname{Aut}(V)
\end{aligned}
$$

We shall describe an inductive procedure for lifting elements in the image of this map.

Consider the extensions

$$
\begin{gathered}
E_{i}: \Gamma^{1}(P) / \Gamma^{i}(P) \rightarrow P / \Gamma^{i}(P) \rightarrow V, \quad i \geqslant 2 \\
\widetilde{E}_{i}: \Gamma^{i}(P) / \Gamma^{i+1}(P) \rightarrow \Gamma^{1}(P) / \Gamma^{i+1}(P) \rightarrow \Gamma^{1}(P) / \Gamma^{i}(P), \quad i \geqslant 2
\end{gathered}
$$

where E_{2} and \widetilde{E}_{i} have trivial twisting. In each case the kernel is a characteristic subgroup.

Let $\sigma_{1} \in \operatorname{Aut}(V)$. By Theorem 2.1,

$$
\sigma_{1} \in \operatorname{Im}\left\{A u t_{\Gamma^{1}(P) / \Gamma^{2}(P)}\left(P / \Gamma^{2}(P)\right) \rightarrow \operatorname{Aut}(V)\right\}
$$

if and only if there exist $\tau_{1} \in \operatorname{Aut}\left(\Gamma^{1}(P) / \Gamma^{2}(P)\right)$ such that $\left(\sigma_{1}, \tau_{1}\right)$ fixes

$$
\left[E_{2}\right] \in H^{2}\left(V, \Gamma^{1}(P) / \Gamma^{2}(P)\right)
$$

Then there exists $\sigma_{2} \in A u t_{\Gamma^{1}(P) / \Gamma^{2}(P)}\left(P / \Gamma^{2}(P)\right)$ lifting σ_{1}. Since

$$
\operatorname{Aut}_{\Gamma^{1}(P) / \Gamma^{2}(P)}\left(P / \Gamma^{2}(P)\right)=\operatorname{Aut}\left(P / \Gamma^{2}(P)\right)
$$

this completes the initial step. Now suppose inductively that we have found elements $\sigma_{i} \in \operatorname{Aut}\left(P / \Gamma^{i}(P)\right), \tau_{i-1} \in \operatorname{Aut}\left(\Gamma^{1}(P) / \Gamma^{i}(P)\right)$ such that σ_{i}, τ_{i-1} are lifts of σ_{1}, τ_{i-2}, respectively. We need to find $\tau_{i} \in A u t\left(\Gamma^{1}(P) / \Gamma^{i+1}(P)\right)$ such that $\left(\sigma_{1}, \tau_{i}\right) \in C_{\chi}$ fixes

$$
\left[E_{i+1}\right] \in H_{\bar{\chi}}^{2}\left(V, Z\left(\Gamma^{1}(P) / \Gamma^{i+1}(P)\right)\right)
$$

Then by Thm 2.1 there exists $\sigma_{i+1} \in \operatorname{Aut}\left(P / \Gamma^{i}(P)\right)$ lifting σ_{1}.
To find τ_{i} we apply the same technique to the extension \widetilde{E}_{i} noting that the twisting is trivial so condition (1) is trivially satisfied. Thus we must find $\tau_{i}^{\prime} \in$ $\operatorname{Aut}\left(\Gamma^{i}(P) / \Gamma^{i+1}(P)\right)$ such that $\left(\tau_{i-1}, \tau_{i}^{\prime}\right)$ fixes

$$
\left[\widetilde{E}_{i}\right] \in H^{2}\left(\Gamma^{1}(P) / \Gamma^{i}(P), \Gamma^{i}(P) / \Gamma^{i+1}(P)\right)
$$

since $\Gamma^{i}(P) / \Gamma^{i+1}(P)$ is its own center. Then applying Theorem 2.1 again there exists $\tau_{i} \in A u t\left(\Gamma^{1}(P) / \Gamma^{i+1}(P)\right)$ lifting τ_{i-1} as desired.

The induction terminates when $\Gamma^{i+1}(P)=1$.
The procedure described in this section is demonstrated in the examples in Section 7 .

6. Extensions of elementary Abelian groups

We consider extensions $E: N \rightarrow G \rightarrow V$ where N, V are elementary Abelian p groups with N central. In this case the twisting is trivial, $\chi=i d$ and $C_{\chi}=A u t(N) \times$ $\operatorname{Aut}(V)$. Our aim is to use Corollary 3.3 to compute $|\operatorname{Im}(\rho)|$. Let $n=\operatorname{dim}_{\mathbf{F}_{p}}(N)$. Then the extension cocycle $[E] \in H^{2}(V ; N)$ has the form $[E]=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ where $X_{i} \in H^{2}\left(V ; \mathbf{F}_{p}\right)$. We recall that $\operatorname{Aut}(V)$ acts diagonally on $[E], \sigma[E]=$ $\left(\sigma X_{1}, \sigma X_{2}, \ldots, \sigma X_{n}\right)$ for $\sigma \in \operatorname{Aut}(V)$. Thus the isotropy subgroup

$$
\begin{equation*}
\operatorname{Aut}(V)_{[E]}=\operatorname{Aut}(V)_{X_{1}} \cap \cdots \cap \operatorname{Aut}(V)_{X_{n}} \tag{3}
\end{equation*}
$$

The action of $\operatorname{Aut}(N)$ on $[E]$ is induced from that on N.

6.1. Quadratic Forms

At this point we restrict our attention to the case $p=2$. Let $m=\operatorname{dim}(V)$ then each X_{i} is a quadratic form in $x_{1}, x_{2}, \ldots, x_{m}$ the generators of $H^{*}\left(V ; \mathbf{F}_{2}\right)=$ $\mathbf{F}_{2}\left[x_{1}, x_{2}, \ldots, x_{m}\right],\left|x_{i}\right|=1$.

We recall some classical facts about quadratic forms $Q: V \rightarrow \mathbf{F}_{2},[\mathbf{3}],[\mathbf{6}],[\mathbf{5}]$. The defining property is that the associated form $B(x, y)=Q(x+y)+Q(x)+Q(y)$ is alternate bilinear.

The bilinear radical of B,

$$
\operatorname{bilrad}(V, B):=\{x \in V \mid B(x, y)=0, \forall y \in V\}
$$

As usual, B is called non-degenerate if $\operatorname{bilrad}(V, B)=0$, i.e. its matrix is nonsingular. The radical of Q,

$$
\operatorname{Rad}(V, Q):=\{x \in \operatorname{bilrad}(V, B) \mid Q(x)=0\}
$$

Q is said to be non-degenerate if $\operatorname{Rad}(V, Q)=0$.
By a theorem of Dickson [6] (Section 199) a (non-zero) quadratic form over \mathbf{F}_{2} in m variables which is not equivalent (by a change of basis) to one in fewer variables must be equivalent to one of the following standard non-degenerate quadratic forms

$$
\begin{array}{rlr}
\Phi_{m}^{+}=x_{1} x_{2}+\cdots+x_{m-1} x_{m}, & \text { m even } \\
\Phi_{m}^{-}=x_{1} x_{2}+\cdots+x_{m-3} x_{m-2}+x_{m-1}^{2}+x_{m-1} x_{m}+x_{m}^{2}, & \text { m even } \\
\Phi_{m}=x_{1}^{2}+x_{2} x_{3}+\cdots+x_{m-1} x_{m}, & m \text { odd }
\end{array}
$$

If $\operatorname{bilrad}(V, B)=0$, then $m=2 r$ is even and one can define the Arf invariant of Q with respect to a symplectic basis $\left\{u_{1}, v_{1}, \ldots, u_{k}, v_{k}\right\}$ by

$$
\operatorname{Arf}(Q)=\sum_{i=1}^{k} Q\left(u_{i}\right) Q\left(v_{i}\right) \in \mathbf{Z} / 2
$$

This is invariant of the choice of symplectic basis and determines Q up to equivalence. It is convenient to write $\mathbf{Z} / 2=\langle \pm 1\rangle$ multiplicatively. Then with this notation, W. Browder has shown that $\operatorname{Arf}(Q)=1,-1$ if and only if Q sends the majority of elements of V to $1,-1$ respectively [3]. For m even one finds $\operatorname{Arf}\left(\Phi_{m}^{+}\right)=1$, $\operatorname{Arf}\left(\Phi_{m}^{-}\right)=-1$.

The Arf invariant can be extended to the m odd case (where B is degenerate) as follows. It is easy to see that Φ_{m} sends the same number of elements to 1 and -1 thus one can define $\operatorname{Ar} f\left(\Phi_{m}\right)=0$. It is clear that Browder's definition (also known as the "democratic invariant") is invariant under any basis change. This leads to the following classification theorem.

Theorem 6.1. [3], Theorem III.1.14
A quadratic form $Q: V \rightarrow \mathbf{Z} / 2$ is determined up to equivalence by the triple $(\operatorname{dim}(V), \operatorname{dim}(\operatorname{bilrad}(V, B)), \operatorname{Arf}(Q))$

The action of $\operatorname{Aut}(N)=G L\left(n, \mathbf{F}_{2}\right)$ on an n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of quadratic forms is linear and thus involves the sum of forms. Unfortunately it is impossible, in general, to determine the sum from the Arf invariant. For example if $X_{1}=x^{2}$ and $X_{2}=x y+y^{2}$ then $\operatorname{Arf}\left(X_{1}+X_{2}\right) \neq \operatorname{Arf}\left(X_{1}\right)+\operatorname{Arf}\left(X_{2}\right)$. However, on a direct sum of vector spaces then it follows easily from the definition that

$$
\operatorname{Arf}\left(X_{1} \oplus X_{2}\right)=\operatorname{Arf}\left(X_{1}\right)+\operatorname{Arf}\left(X_{2}\right)
$$

For the rest of this subsection we restrict attention to m even and consider the special case $[E]=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ where the X_{i} are in standard form. We write $X_{i}=X$ or Y depending on whether the Arf invariant is 1 or -1 . In the following theorem we use \sim to denote conjugacy.

Theorem 6.2. Suppose $m=2 r$ and $[E]=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ with $X_{1}=\cdots=$ $X_{k}=X, X_{k+1}=\cdots=X_{n}=Y$. Then $\Omega([E])=[E]$ and $|\operatorname{Im}(\rho)|=\left|A u t(V)_{[E]}\right|$. \mid Aut $(N)_{[E]} \mid$. Furthermore

1) If $k=n$ then

$$
A u t(V)_{[E]}=O_{m}^{+}\left(\mathbf{F}_{2}\right)
$$

the orthogonal group of order $2\left(2^{r}-1\right) \prod_{i=1}^{r-1}\left(2^{2 i}-1\right) 2^{2 i}$ of matrices preserving the form X.

$$
\operatorname{Aut}(N)_{[E]} \sim\left(\begin{array}{cc}
1 & 0 \\
* & G L_{n-1}\left(\mathbf{F}_{2}\right)
\end{array}\right)
$$

of order $2^{n-1} \prod_{i=1}^{n-1}\left(2^{i}-1\right) 2^{i-1}$. $\operatorname{Im}(\rho)$ is a 2 -group if and only if $m, n<3$.
2) If $k=0$ then

$$
A u t(V)_{[E]}=O_{m}^{-}\left(\mathbf{F}_{2}\right)
$$

the orthogonal group of order $2\left(2^{n}+1\right) \prod_{i=1}^{n-1}\left(2^{2 i}-1\right) 2^{2 i}$ of matrices preserving the form Y and

$$
\operatorname{Aut}(N)_{[E]} \sim\left(\begin{array}{cc}
1 & 0 \\
* & G L_{n-1}\left(\mathbf{F}_{2}\right)
\end{array}\right) .
$$

$\operatorname{Im}(\rho)$ is a 2-group if and only if $m<2$ and $n<3$.
3) If $1<k<n$ then

$$
\operatorname{Aut}(V)_{[E]}=O_{m}^{+}\left(\mathbf{F}_{2}\right) \cap O_{m}^{-}\left(\mathbf{F}_{2}\right)
$$

and

$$
\operatorname{Aut}(N)_{[E]} \sim\left(\begin{array}{cc}
I_{2} & 0 \\
* & G L_{n-2}\left(\mathbf{F}_{2}\right)
\end{array}\right)
$$

of order $2^{2(n-2)} \prod_{i=1}^{n-2}\left(2^{i}-1\right) 2^{i-1} . \operatorname{Im}(\rho)$ is a 2-group if and only if $m, n<4$.
Proof. The calculation of $\operatorname{Aut}(V)_{[E]}$ follows from (3). The intersection orbit group $\Omega([E])=(\operatorname{Aut}(V) \cdot[E]) \cap(\operatorname{Aut}(N) \cdot[E])=\{[E]\}$. To see this suppose $\sigma[E]=[E] \tau^{-1}$ differs from $[E]=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ in the i-th coordinate $X_{i}=X$, say. Now $\sigma X=$ $\left([E] \tau^{-} 1\right)_{i}=a X+b Y, a, b \in \mathbf{F}_{2}$. Thus $\sigma X=X+Y$ since $\sigma X \neq X$ and Y has Arf invariant -1 . However $\sigma X=X+Y=x_{m-1}^{2}+x_{m}^{2}=\left(x_{m-1}+x_{m}\right)^{2}$ contradicting the fact that X is not equivalent to a quadratic form in fewer than m variables. Similarly if $X_{i}=Y$.

Since X and Y are linearly independent polynomials, $(X, \ldots, X, Y, \ldots, Y)$ is equivalent to $(X, Y, 0, \ldots, 0)$ by a change of basis. Thus the descriptions of $\operatorname{Aut}(N)_{[E]}$ follow immediately.

6.2. Non-standard Forms

We now turn to the more general case where the forms X_{i} of $[E]=\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are not in standard form. One can still determine $|\operatorname{Im}(\rho)|$; we illustrate this by considering the case $n=2, m=3$. Thus we consider pairs of quadratic forms (X, Y) in variables x, y, z each equivalent to (but not necessarily equal to) one of the standard four forms:

$$
x^{2}+y z, \quad x y, \quad x^{2}+x y+y^{2}, \quad x^{2} .
$$

The respective isotropy groups, as subgroups of $G L_{3}\left(\mathbf{F}_{2}\right)$, are

$$
\operatorname{Aut}(V)_{x^{2}+y z}=O_{3}\left(\mathbf{F}_{2}\right) \cong G L_{2}\left(\mathbf{F}_{2}\right)
$$

non-Abelian of order 6 ;

$$
\operatorname{Aut}(V)_{x y}=\left(\begin{array}{cc}
\Sigma_{2} & 0 \\
* & 1
\end{array}\right)
$$

elementary Abelian of rank 3;

$$
\operatorname{Aut}(V)_{x^{2}+x y+y^{2}}=\left(\begin{array}{cc}
G L_{2} & 0 \\
* & 1
\end{array}\right)
$$

of order 24 ;

$$
\operatorname{Aut}(V)_{x^{2}}=\left(\begin{array}{cc}
1 & 0 \\
* & G L_{2}
\end{array}\right)
$$

of order 24 .

6.2.1. Simultaneous Equivalence

First we consider the case where X and Y are simultaneously equivalent to a standard form, i.e., there is an invertible linear transformation A of V such that $A^{-1} X A$ and $A^{-1} Y A$ are each in standard form.
Case 1, $X=Y$:
Then $\operatorname{Aut}(V)_{(X, X)}=\operatorname{Aut}(V)_{X}$. It is also easy to see $\operatorname{Aut}(N)_{(X, X)}=\Sigma_{2}$ and the intersection of orbits $\Omega([E])=\{(X, X)\}$ in this case.
a) X is equivalent to $x y$: As above the isotropy subgroup $\operatorname{Aut}(V)_{(X, X)}$ is elementary Abelian of rank 3. The intersection of the orbits is just (X, X) so the order of $\operatorname{Im}(\rho)=8 \cdot 2 \cdot 1=16$.
b) X is equivalent to $x^{2}+x y+y^{2}: \operatorname{Aut}(V)_{(X, X)}$ is of order 24 . Thus $|\operatorname{Im}(\rho)|=$ $24 \cdot 2 \cdot 1=48$.
c) X is equivalent to $x^{2}+y z: \operatorname{Aut}(V)_{(X, X)}=O_{3}\left(F_{2}\right)$. Thus $|\operatorname{Im}(\rho)|=6 \cdot 2 \cdot 1=12$.
d) X is equivalent to x^{2} : As above $\operatorname{Aut}(V)_{(X, X)}$ is of order 24. Thus $|\operatorname{Im}(\rho)|=$ $24 \cdot 2 \cdot 1=48$.
Case 2, $X \neq Y$:
In this case $\operatorname{Aut}(N)_{(X, Y)}=1$. Further $\operatorname{Aut}(V)_{(X, Y)}=\operatorname{Aut}(V)_{X} \cap \operatorname{Aut}(V)_{Y}=$ $\operatorname{Aut}(V)_{(Y, X)}$. There are several possibilities; we give only four in detail since the rest follow the same general pattern. By considering the Arf invariant we see that $\Omega([E])=1$ except in the third example.

1) (X, Y) equivalent to $\left(x^{2}+y z, x^{2}+x y+y^{2}\right)$: Then $\operatorname{Aut}(V)_{X} \cap \operatorname{Aut}(V)_{Y}$ is

$$
O_{3}\left(\mathbf{F}_{2}\right) \cap\left(\begin{array}{cc}
G L_{2} & 0 \\
* & 1
\end{array}\right)=\mathbf{Z} / 2\left\langle\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\right\rangle
$$

The intersection of orbits is $\{(X, Y)\}$ hence $|\operatorname{Im}(\rho)|=2 \cdot 1 \cdot 1=2$.
2) (X, Y) equivalent to $\left(x y, x^{2}+x y+y^{2}\right)$: Then $\operatorname{Aut}(V)_{X} \cap \operatorname{Aut}(V)_{Y}$ is

$$
\left(\begin{array}{cc}
\Sigma_{2} & 0 \\
* & 1
\end{array}\right) \cap\left(\begin{array}{cc}
G L_{2} & 0 \\
* & 1
\end{array}\right)=\left(\begin{array}{cc}
\Sigma_{2} & 0 \\
* & 1
\end{array}\right)
$$

i.e., dihedral of order 8 . The intersection of orbits is $\{(X, Y)\}$ thus $|\operatorname{Im}(\rho)|=8 \cdot 1 \cdot 1=$ 8.

Similarly for $\left(x y, y^{2}+y z+z^{2}\right)$ and $\left(x z, x^{2}+x y+y^{2}\right)$.
3) (X, Y) equivalent to $\left(x y, x^{2}+y z\right)$: Then $\operatorname{Aut}(V)_{X} \cap A u t(V)_{Y}$ is trivial and $\Omega([E])=\{(X, Y),(X+Y, Y)\}=\mathbf{Z} / 2$. Thus $|\operatorname{Im}(\rho)|=2$.
4) (X, Y) equivalent to $(x y, y z)$: Then $\operatorname{Aut}(V)_{X} \cap \operatorname{Aut}(V)_{Y}$ is trivial. Direct calculation shows the intersection of the orbits has order 6 . Thus $|\operatorname{Im}(\rho)|=1 \cdot 1 \cdot 6=$ 6.

Similarly for $(x z, y z),(x z, x y)$, and $(y z, x z)$.

6.2.2. Non-simultaneous Equivalence

By this we mean X and Y are not simultaneously equivalent to a pair of standard forms. Since $X \neq Y, \operatorname{Aut}(N)_{(X, Y)}=1$ in all cases.

To illustrate this phenomena the following table gives a complete computation of $|\operatorname{Im}(\rho)|$ in case X and Y are equivalent (non-simultaneously) to $x^{2}+y z$. Then X may be assumed to be $x^{2}+y z$ and we list only the relevant Y 's and the corresponding values of $|\operatorname{Im}(\rho)|=2,3,4$.

$$
|\operatorname{Im}(\rho)|
$$

2	3	4
$x^{2}+x z+y z$	$x y+x z+y^{2}$	$x^{2}+y z+z^{2}$
$x^{2}+x y+x z+z^{2}$	$x^{2}+x y+x z+y^{2}+y z$	$x y+x z+y^{2}+y z+z^{2}$
$x^{2}+x z+y z+z^{2}$	$x z+y^{2}+y z$	$x y+x z+y z$
$x^{2}+x y+y^{2}+y z$	$x y+x z+z^{2}$	$x z+y^{2}+z^{2}$
$x^{2}+x y+y z$	$x^{2}+x y+y^{2}+z^{2}$	$x^{2}+y^{2}+y z$
$x^{2}+x y+x z+y^{2}$	$x^{2}+x z+y^{2}+z^{2}$	$x y+z^{2}$
	$x^{2}+x y+z^{2}$	$x y+y^{2}+z^{2}$
	$x z+y^{2}+y z+z^{2}$	$x^{2}+y^{2}+y z+z^{2}$
	$x^{2}+x z+y^{2}$	$x z+y^{2}$
	$x^{2}+x y+x z+y z+z^{2}$	
	$x y+y^{2}+y z+z^{2}$	
	$x y+y z+z^{2}$	

In more detail, if $|\operatorname{Im}(\rho)|=2$, then $\operatorname{Aut}(V)_{(X, Y)}=1$ and $\Omega([E])=\{(X, Y)$, $(Y, X)\}=\mathbf{Z} / 2$ If $|\operatorname{Im}(\rho)|=3$, then $\left|\operatorname{Aut}(V)_{(X, Y)}\right|=1$ and $\Omega([E])=\{(X, Y),(X+$
$Y, X),(Y, X+Y)\}=\mathbf{Z} / 3$. If $|\operatorname{Im}(\rho)|=4$ then $\left|A u t(V)_{(X, Y)}\right|=2$ and $\Omega([E])=$ $\{(X, Y),(Y, X)\}=\mathbf{Z} / 2$.

As a final example we consider
$X=x y+y^{2}, Y=x^{2}+y^{2}+y z+z^{2}$. To analyze $\operatorname{Aut}(V)_{(X, Y)}$ we separately reduce X, Y to standard forms f_{1}, f_{2} respectively

$$
\sigma_{1} X=f_{1}, \quad \sigma_{2} Y=f_{2}
$$

with $\sigma_{i} \in \operatorname{Aut}(V)$. Let $\sigma=\sigma_{2} \sigma_{1}^{-1}$, then $\sigma^{-1} f_{2}=\sigma_{1} Y$ hence

$$
\operatorname{Aut}(V)_{\left(f_{1}, \sigma_{1} Y\right)}=\operatorname{Aut}(V)_{f_{1}} \cap \sigma^{-1}\left[\operatorname{Aut}(V)_{f_{2}}\right] \sigma
$$

This determines $\operatorname{Aut}(V)_{(X, Y)}$ up to conjugacy since $\operatorname{Aut}(V)_{(X, Y)}=$ $\sigma_{1}{ }^{-1}\left[\operatorname{Aut}(V)_{\left(f_{1}, \sigma_{1} Y\right)}\right] \sigma_{1}$. In this example $f_{1}=x y, f_{2}=x^{2}+y z$ with $\sigma_{1}: y \mapsto x+y$, $\sigma_{2}=x \mapsto x+y+z$. Then

$$
\operatorname{Aut}(V)_{\left(f_{1}, \sigma_{1} Y\right)}=A u t_{x y} \cap \sigma^{-1}\left[\operatorname{Aut}(V)_{x^{2}+y z}\right] \sigma=\mathbf{Z} / 2\left\langle\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)\right\rangle
$$

Further $\Omega([E])=\{(X, Y),(X, X+Y)\}=\mathbf{Z} / 2$ hence $|\operatorname{Im}(\rho)|=2 \cdot 1 \cdot 2=4$.

7. Applications

1. Let P denote the extraspecial group of order $|P|=p^{2 n+1}$ and exponent $p>2$ defined by the central extension

$$
E: Z \rightarrow P \rightarrow V
$$

where $Z=\Phi(P)=\mathbf{Z} / p, V=P / \Phi(P)=(\mathbf{Z} / p)^{2 n}$. The twisting χ is trivial thus $C_{\chi}=\operatorname{Aut}(V) \times \operatorname{Aut}(Z)$. Complete information about the automorphism group of P as well as all other extensions of elementary Abelian p-groups by \mathbf{Z} / p is known $[\mathbf{1 5}],[\mathbf{7}]$. Here we apply our results to obtain a quick derivation of $\operatorname{Im}\{A u t(P) \xrightarrow{\rho}$ $\operatorname{Aut}(V) \times \operatorname{Aut}(Z)\}$.
P is generated by elements $x_{1}, x_{2}, \ldots, x_{2 n}, \zeta$ of order p satisfying

$$
\begin{gathered}
{\left[\zeta, x_{i}\right]=1} \\
{\left[x_{2 i-1}, x_{2 i}\right]=\zeta} \\
{\left[x_{2 i-1}, x_{j}\right]=1, \quad j \neq 2 i} \\
{\left[x_{2 i}, x_{j}\right]=1, \quad j \neq 2 i-1}
\end{gathered}
$$

Thus $\Phi(P)=Z(P)=\langle\zeta\rangle=\mathbf{Z} / p$ and $V=\left\langle\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{2 n}\right\rangle$. It is immediate from these relations that the extension cocycle is

$$
[E]=B \otimes \zeta
$$

where $B=y_{1} y_{2}+\cdots+y_{2 n-1} y_{2 n}, y_{i} \in H^{1}(V)$ is dual to \bar{x}_{i}. Since p is an odd prime, $y_{i} y_{j}=-y_{j} y_{i}$. Thus B is exactly the skew-symmetric form for the symplectic group $S p\left(n, \mathbf{F}_{p}\right)$. We shall need a slightly more general version $G S p\left(2 n, \mathbf{F}_{p}\right),[\mathbf{5}]$,
the transformations which fix B up to a scalar. It is easy to see that $\operatorname{GSp}\left(2 n, \mathbf{F}_{p}\right)=$ $\langle\gamma\rangle \rtimes S p\left(2 n, \mathbf{F}_{p}\right)$ where γ is the linear transformation

$$
\bar{x}_{2 i-1} \mapsto k \bar{x}_{2 i-1}, \quad \bar{x}_{2 i} \mapsto \bar{x}_{2 i}
$$

and k is a generator of $\mathbf{F}_{p}{ }^{*}$.
Now considering $(\sigma, \tau) \in \operatorname{Aut}(Z) \times \operatorname{Aut}(V)$ acting on E we find

$$
(\sigma, \tau)(E)=\left[\sum_{i=1}^{n}(\sigma)\left(y_{2 i-1}\right) \sigma\left(y_{2 i}\right)\right] \otimes \tau(\zeta)
$$

Thus $(\sigma, \tau)(E)=E$ if and only if $\sigma \in G S p\left(2 n, \mathbf{F}_{p}\right)$ and τ is multiplication by $\operatorname{det}(\sigma)^{-1}$. We conclude $\operatorname{Im}\{\operatorname{Aut}(P) \rightarrow \operatorname{Aut}(V) \times \operatorname{Aut}(Z)\} \cong G S p\left(2 n, \mathbf{F}_{p}\right)$.
2. Let $W(n)$ be the universal W-group [1] on n generators defined as the central extension

$$
1 \rightarrow N=\Phi(W(n)) \rightarrow W(n) \rightarrow Q=(\mathbf{Z} / 2)^{n} \rightarrow 1
$$

where $N=(\mathbf{Z} / 2)^{n+\binom{n}{2}}$. These groups arise, for instance, in the study of the cohomology of Galois groups. The extension class $[E]=\left(X_{1}, X_{2}, \ldots, X_{n+\binom{n}{2}}\right)$ where the $\left\{X_{i}\right\}$ form an ordered basis for $H^{2}(Q)=S^{2}\left(Q^{*}\right)$, the second symmetric power of the dual of Q. Any order will do. The twisting is trivial, hence $C_{\chi}=G L(Q) \times G L(N)$. Now $G L(Q)$ induces linear isomorphisms on $H^{*}(Q)$ which are determined by their values on squares in $H^{2}(Q)$. Thus given $\sigma \in G L(Q)$ we can find a $\tau \in G L(N)$ such that $(\sigma, \tau)([E])=(\sigma[E]) \tau^{-1}=[E]$. Thus we see that $\operatorname{Im}(\rho) \leqslant G L(Q) \times G L(N)$ by an injection which projects to an isomorphism on the first factor, i.e. $\operatorname{Im}(\rho) \cong$ $G L(Q)$.
3. We consider $A u t(P)$ for the unipotent group $P=U_{4}\left(\mathbf{F}_{2}\right) \subset G L_{4}\left(\mathbf{F}_{2}\right)$ of upper triangular matrices over the finite field \mathbf{F}_{2}. These matrices necessarily have ones on the diagonal. Thus P is generated by $\left\{x_{12}, x_{23}, x_{34}\right\}$. Then $\Gamma^{3}(P)=1, \Gamma^{2}(P)=$ $\mathbf{Z} / 2\left\langle x_{14}\right\rangle=Z P$, and $\Gamma^{1}(P)=\mathbf{Z} / 2\left\langle x_{13}, x_{24}, x_{14}\right\rangle$. The corresponding extensions have

$$
E_{2}: \Gamma^{1}(P) / \Gamma^{2}(P) \xrightarrow{i_{2}} P / \Gamma^{2}(P) \rightarrow V
$$

where $V=P / \Gamma^{1}(P)=\mathbf{Z} / 2\left\langle\bar{x}_{12}, \bar{x}_{23}, \bar{x}_{34}\right\rangle, \Gamma^{1}(P) / \Gamma^{2}(P)=\mathbf{Z} / 2\left\langle\bar{x}_{13}, \bar{x}_{24}\right\rangle$ and

$$
E_{3}: \Gamma^{1}(P) \xrightarrow{i_{3}} P \rightarrow V
$$

The twisting χ is trivial for E_{2} but not for E_{3}. In this application we shall not need the auxiliary extensions $\left[\widetilde{E}_{i}\right]$.
Claim: $\operatorname{Im}\{\operatorname{Aut}(P) \rightarrow \operatorname{Aut}(V)\} \cong \Sigma_{3}$
Proof. (Sketch) From the commutator relations $\left[x_{i j}, x_{j k}\right]=x_{i k}$ for $i<j<k$, one sees that the extension class $\left[E_{2}\right] \in H^{2}\left(V ; \Gamma^{1}(P) / \Gamma^{2}(P)\right)$ is $x y \otimes \bar{x}_{13}+y z \otimes \bar{x}_{24}$ where

$$
\begin{gathered}
H^{*}\left(V, \Gamma^{1}(P) / \Gamma^{2}(P)\right)=H^{*}(V) \otimes \mathbf{Z} / 2\left\langle x_{13}, x_{24}\right\rangle \\
=\mathbf{Z} / 2[x, y, z] \otimes \mathbf{Z} / 2\left\langle x_{13}, x_{24}\right\rangle
\end{gathered}
$$

Here $x, y, z \in H^{1}(V)$ are classes dual to $\bar{x}_{12}, \bar{x}_{23}, \bar{x}_{34}$ respectively. Direct calculation shows the $\left[E_{2}\right]$ is fixed the subgroup generated by the involution defined by

$$
\sigma: \bar{x}_{12} \mapsto \bar{x}_{34}, \quad \bar{x}_{23} \mapsto \bar{x}_{23}, \quad \tau: x_{13} \mapsto x_{24}
$$

and the map of order three

$$
\begin{gathered}
\sigma^{\prime}: \bar{x}_{12} \mapsto \bar{x}_{12}+\bar{x}_{34}, \quad \bar{x}_{23} \mapsto \bar{x}_{23}, \quad \bar{x}_{34} \mapsto \bar{x}_{12}, \\
\tau^{\prime}: x_{13} \mapsto x_{24}, \quad x_{24} \mapsto x_{13}+x_{24}
\end{gathered}
$$

One finds $\left\langle(\sigma, \tau),\left(\sigma^{\prime}, \tau^{\prime}\right)\right\rangle \cong \Sigma_{3}$.
Turning to the extension E_{3}, we can extend τ, τ^{\prime} to $\Gamma^{1}(P)$ by letting them act identically on x_{14}. Then a simple calculation shows $\left\langle(\sigma, \tau),\left(\sigma^{\prime}, \tau^{\prime}\right)\right\rangle \leqslant C_{\chi}$. We note that $\left[E_{3}\right]=\left[E_{2}\right]$ considered as an element of $H_{\bar{\chi}}^{2}\left(V ; \Gamma^{1}(P)\right)$. This follows from the definition of the cocycle

$$
f: V \times V \rightarrow \Gamma^{1}(P) / \Gamma^{2}(P)
$$

for $\left[E_{2}\right]$. Recall that given a set theoretic section $s: V \rightarrow P / \Gamma^{2}(P)$ then

$$
s(a) s(b)=i_{2}(f(a, b)) s(a b)
$$

If we use one of the sections not involving the center, then it lifts to a section \tilde{s} : $V \rightarrow P$ and the corresponding cocycle $\tilde{f}: V \times V \rightarrow \Gamma^{1}(P)$ is a lift of f. (For example using the ordered basis $\left(\bar{x}_{12}, \bar{x}_{23}, \bar{x}_{34}\right)$ for V let $\tilde{s}\left(\bar{x}_{12}\right)=x_{12}, \tilde{s}\left(\bar{x}_{23}\right)=x_{23}, \tilde{s}\left(\bar{x}_{34}\right)=$ x_{34}. For products $w \in V$ let $\tilde{s}(w)=w^{\prime}$ where w^{\prime} is ordered lexicographically. Thus if $w=\bar{x}_{34} \bar{x}_{23} \bar{x}_{12}$ then $w^{\prime}=x_{12} x_{23} x_{34}$. Hence

$$
\tilde{s}\left(\bar{x}_{34} \bar{x}_{23}\right) \tilde{s}\left(\bar{x}_{12}\right)=i_{3}\left(\tilde{f}\left(\bar{x}_{34} \bar{x}_{23}, \bar{x}_{12}\right)\right) \tilde{s}\left(\bar{x}_{34} \bar{x}_{23} \bar{x}_{12}\right)
$$

implies $\tilde{f}\left(\bar{x}_{34} \bar{x}_{23}, \bar{x}_{12}\right)=x_{13} x_{24}$ In general we observe that no two-fold products among the elements of $\tilde{s}(V)$ involve the center i.e., two-fold products among the elements x_{12}, x_{23}, x_{34} are on the first and second diagonals, not in the center.)

This means $(\sigma, \tau),\left(\sigma^{\prime}, \tau^{\prime}\right)$ fix the extension class $\left[E_{3}\right]$ and hence define automorphisms of P not just $P / \Gamma^{1}(P)$.
4. Let p be an odd prime and let
$P=\langle a, b, c, d| a^{p}=b^{p}=c^{p}=d^{p}=1, c=(b, a), d=(c, a)$, other commutators trivial \rangle
We shall study $\operatorname{Aut}(P)$ for $p=5$, the smallest prime for which P is regular. We consider the extensions of $V=P / \Gamma^{1}(P)=\langle\bar{a}, \bar{b}\rangle$

$$
\begin{gathered}
{\left[E_{2}\right]: \quad N_{2}:=\Gamma^{1}(P) / \Gamma^{2}(P) \rightarrow P / \Gamma^{2}(P) \rightarrow V} \\
{\left[E_{3}\right]: \quad N_{3}:=\Gamma^{1}(P) \rightarrow P \rightarrow V}
\end{gathered}
$$

Since $\Gamma^{3}(P)=1$, we also have

$$
\left[\widetilde{E}_{2}\right]: \quad \widetilde{N}_{3}:=\Gamma^{2}(P) \rightarrow \Gamma^{1}(P) \rightarrow N_{2}
$$

Each N is Abelian:

$$
N_{2}=\langle\bar{c}\rangle, \quad N_{3}=\langle c, d\rangle, \quad \tilde{N}_{3}=\langle d\rangle
$$

Noting that E_{3} has non-trivial twisting we apply the algorithm of Section 4 to study $A u t(P)$.
Claim: The semi-simple quotient of $\mathbf{F}_{p}(A u t(P))$ is $\mathbf{F}_{p}(\mathbf{Z} / 4)^{2}$.
Proof. (sketch)
Extension E_{2} has trivial twisting and is quite similar to that of Example 1. Using the same notation and arguing analogously we can determine the extension class $\left[E_{2}\right]=x y \otimes z \in H^{2}\left(V, N_{2}\right)$. Hence

$$
C_{\left[E_{2}\right]}=\left\langle(A, B) \in G L_{2}\left(\mathbf{F}_{p}\right) \times G L_{1}\left(\mathbf{F}_{p}\right) \mid B=\operatorname{det}(A)\right\rangle
$$

Extension \widetilde{E}_{2} splits, $\Gamma^{1}(P)=\widetilde{N}_{2} \times N_{2}=\langle c, d\rangle$. Thus every $\tau \in \operatorname{Aut}\left(N_{2}\right)$ lifts to $\operatorname{Aut}\left(\Gamma^{1}(P)\right)$ and we proceed to study extension E_{3}.

First we determine

$$
C_{\chi}=\left\langle(\sigma, \tau) \in \operatorname{Aut}(V) \times \operatorname{Aut}\left(N_{3}\right) \mid \chi \sigma=c_{\bar{\tau}} \chi\right\rangle
$$

The action of V on N_{2} is given by $\chi(\bar{x}): c \mapsto c+d, d \mapsto d, \chi(\bar{y})=i d$. Hence $\operatorname{ker}(\chi)=\langle\bar{y}\rangle$. Since $\sigma: \operatorname{ker}(\chi) \rightarrow \operatorname{ker}(\chi)$, it must have the form

$$
\sigma=\left(\begin{array}{cc}
k & 0 \\
m & n
\end{array}\right) \in G L_{2}\left(\mathbf{F}_{p}\right)
$$

Now solving $\chi \sigma=c_{\bar{\tau}} \chi$ where

$$
\tau=\left(\begin{array}{cc}
s & t \\
u & v
\end{array}\right) \in G L_{2}\left(\mathbf{F}_{p}\right)
$$

we find

$$
\left(\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right)=\left(\begin{array}{cc}
1+t v / \Delta & t^{2} / \Delta \\
v^{2} / \Delta & 1-t v / \Delta
\end{array}\right)
$$

where $\Delta=\operatorname{det}(\tau)$. Thus $t=0$ and $k=v / s$. Hence

$$
C_{\chi}=\left\{\left.\left(\begin{array}{cc}
k & 0 \\
m & n
\end{array}\right) \times\left(\begin{array}{cc}
s & 0 \\
u & v
\end{array}\right) \right\rvert\, k=v / s\right\}
$$

To determine $\operatorname{Im}(\rho)=C_{(\chi)}{ }_{\left[E_{3}\right]}$ it is easier in this case to observe that $|A u t(P)|=$ $4^{2} 5^{5}$ (using Magma) and argue directly instead of using the extension class. First $\operatorname{ker}(\rho)$ contains a subgroup of order 5^{3} generated by the inner automorphisms of order $5,\left\{c_{b}, c_{c}\right\} \leqslant \operatorname{ker}(\rho)$ together with the automorphism $\phi: \phi(b)=b d^{-1}, \phi=i d$ on a, c, d. Next we show that $\operatorname{Im}(\rho)$ contains a subgroup of order $4^{2} 5^{2}$ which must equal $\operatorname{Im}(\rho)$.

To complete the proof of the claim we note that the subgroup of order 5^{2} is normal.

References

[1] A. Adem, D. Karagueuzian, J. Minac: On the cohomology of Galois groups determined by Witt rings, Adv. Math., 148 (1999), 105-160.
[2] D. Benson, M. Feshbach: Stable splittings of classifying spaces of finite groups, Topology, 31 (1992), 157-176.
[3] W. Browder: Surgery on simply-connected manifolds, Ergebnisse der Mathematik, 65, Springer-Verlag, Berlin Heidelberg New York, 1972.
[4] J. Buckley: Automorphism groups of isoclinic p-groups, J. London Math. Soc, 12 (1975), 37-44.
[5] J. Dieudonné: La Geometrie des Groupes Classiques, Ergebnisse der Mathematik, 5, Springer-Verlag, Berlin Heidelberg New York, 1963.
[6] L. Dickson: Linear Groups, Dover Publications, New York, 1958.
[7] J. Dietz: Automorphisms of p-groups given as cyclic-by-elementary Abelian central extensions, J. Algebra, 242 (2001), 417-432.
[8] D. Gorenstein: Finite Groups, Chelsea Publications, New York, 1980.
[9] J. Martino, S. Priddy: The complete stable splitting for the classifying space of a finite group, Topology, 31 (1992), 143-156.
[10] J. Martino, S. Priddy: Stable homotopy classification of $B G_{p}^{\wedge}$, Topology, 34, (1995), 633-649.
[11] J. Martino, S. Priddy, J. Douma: On stably decomposing products of classifying spaces, Math. Zeit., 235 (2000), 435-453.
[12] S. MacLane: Homology, Die Grundlehren der Mathemaischen Wissenschafen in Einzeldarstellungen, 114, Springer Verlag, Berlin Heidelberg New York, 1963.
[13] J.-P. Serre: Linear Representations of Finite Groups, Graduate Texts in Mathematics, 42, Springer-Verlag, Berlin Heidelberg New York, 1977.
[14] C. Wells: Automorphisms of group extensions, Trans. Amer. Math. Soc., 155 (1971), 189-194.
[15] D. Winter: The automorphism group of an extraspecial p-group, Rocky Mount. J. Math., 2 (1972), 159-168.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at
ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2003/n1a3/v5n1a3.(dvi,ps,pdf)

John Martino martino@wmich.edu
Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008
U.S.A.

Stewart Priddy priddy@math.northwestern.edu
Department of Matheamtics
Northwestern University
Evanston, IL 60208
U.S.A.

[^0]: Received October 29, 2002, revised February 28, 2003; published on March 14, 2003.
 2000 Mathematics Subject Classification: Primary 20J06; Secondary 55P42
 Key words and phrases: automorphism group, extension class, semi-simple quotient, stable splittings.
 © 2003, John Martino and Stewart Priddy. Permission to copy for private use granted.

