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HOCHSCHILD COHOMOLOGY AND MODULI SPACES OF
STRONGLY HOMOTOPY ASSOCIATIVE ALGEBRAS

A. LAZAREV

(communicated by James Stasheff)

Abstract
Motivated by ideas from stable homotopy theory we study

the space of strongly homotopy associative multiplications on a
two-cell chain complex. In the simplest case this moduli space
is isomorphic to the set of orbits of a group of invertible power
series acting on a certain space. The Hochschild cohomology
rings of resulting A∞-algebras have an interpretation as totally
ramified extensions of discrete valuation rings. All A∞-algebras
are supposed to be unital and we give a detailed analysis of
unital structures which is of independent interest.

1. Introduction

The notion of a strongly homotopy associative algebra or of an A∞-algebra was
introduced in [26] by Stasheff and was recently much studied in connection with
deformation quantization and the Deligne conjecture, cf. [15], [22]. From the point
of view of homotopy theory, an A∞-algebra is the same as a differential graded
algebra (dga). However, for the purposes of explicit computations, it is often more
convenient to work with A∞-algebras rather than with dga’s.

The purpose of this paper is to study ‘homotopy invariant’ or ‘derived’ mod-
uli spaces for A∞-algebras. It should be noted that other authors also considered
the problem of constructing derived moduli spaces. Here we mention the works of
M.Schlessinger and J.Stasheff, cf. [27] and of V.Hinich, [10],[11]. Another approach
making heavy use of simplicial methods and homotopical algebra is developed in [3].
The case of A∞-algebras considered here, exhibits, on the one hand, most of the rep-
resentative features of derived moduli space theory and, on the other hand, allows
one to perform concrete computations without the need of too much apparatus.

Though our examples are purely algebraic, they are motivated by the study of
complex-oriented cohomology theories. There is a parallel notion of an S-algebra, or
an A∞-ring spectrum in stable homotopy theory, cf. [4]. Many important spectra of
algebraic topology, especially those related to complex cobordisms admit structures
of A∞-ring spectra. The existence of such structures was proved in [17], [24] and
in [8] by methods of obstruction theory, but up until now there was no attempt
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to classify such structures. Of particular interest is the space of A∞ structures on
K(n)’s, the higher Morava K-theories. A closely related problem is computation of
THH∗(K(n),K(n)), the topological Hochschild cohomology of K(n). It should be
noted that in the topological situation one is forced to work in the abstract setting
of Quillen closed model categories and this makes the classification problem much
more difficult then the corresponding algebraic one. Therefore it seems natural to
consider the algebraic problem first and this is what we do in the present paper.

We now outline the problem under consideration and our approach. Consider
the field of p elements Fp as an algebra over Z. Then we could form the derived
Hochschild cohomology of Fp with coefficients in itself as a Z-algebra (sometimes
called Shukla cohomology, cf. [29]):

HHZ(Fp,Fp) := RHomFp⊗LFp
(Fp,Fp).

Here ⊗L denotes the derived tensor product over Z and RHom denotes the derived
module of homomorphisms. An easy computation then shows that HH∗

Z(Fp,Fp) =
Fp[[z]] with z having cohomological degree 2.

This result is valid because Fp has a unique structure of a Z-algebra which hap-
pens to be commutative. If R is an evenly graded commutative ring and x ∈ R
is a homogeneous element that is not a zero divisor we obtain similarly
HH∗

R(R/x,R/x) = R/x[[z]] with z having cohomological degree |x| + 2. Notice,
however, that we implicitly resolved the R-algebra R/x by the differential graded
algebra ΛR(y), with one generator y in degree |x|+1 whose square is 0 and dy = x.
In other words we assumed that R/x is given the usual structure of an R-algebra,
in particular that it is commutative. In general there are many different structures
of an A∞-algebra on the complex R

x→ R (which is a model for R/x in the de-
rived category of R-modules). Take for instance R = Z[v, v−1] where the element v
has degree 2 and x is a prime number p 6= 2. Then the differential graded algebra
R[y]/(y2 − v) with differential dy = p is a model for R/x (that is, its homology
ring is R/x), but it is not commutative even up to homotopy. It turns out that
its Hochschild cohomology is Ẑp[v, v−1] where Ẑp is the ring of p-adic integers. In
general for any structure of an A∞-R-algebra on R/p the ring HH∗

R(R/p, R/p) is
filtered and complete with associated graded isomorphic to the formal power series
algebra over Fp[v, v−1]. It follows that the ring HH∗

R(R/p, R/p) is either an Fp-
algebra or it has no p-torsion. The torsion-free case corresponds to totally ramified
extensions of the field of the p-adic numbers (cf.[25]) and we show that by vary-
ing A∞ structures one can obtain extensions of arbitrary ramification index that is
coprime to p, the so-called tamely ramified extensions.

So the natural problem is now to classify all possible A∞ structures of R/x (or,
equivalently all differential graded R-algebras whose homology ring is R/x). We
consider this as part of a more general problem, namely the classification of all
A∞ structures on a two cell complex {ΣdR

∂→ R} with no restrictions on d or
the differential ∂. An A∞-algebra of this sort is called a Moore algebra as being
analogous to the Moore spectrum of stable homotopy theory. The resulting theory
bears striking resemblance with the theory of one-dimensional formal groups, cf. [9]
although we could not establish a direct link between the two. There are essentially
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two different cases: d odd and d even. We concentrate mainly on the even case since
it is most relevant to the parallel topological problem. However, the odd case is
also quite interesting and apparently related to the homology of moduli spaces of
algebraic curves, cf. [13].

We note that there is a close connection between the results of this paper and
algebraic deformation theory, cf. [5], [23]. For example Theorem 4.4 implies that
any deformation of a unital A∞-algebra is equivalent to a unital one. This and other
implications of our results in deformation theory will be explained elsewhere.

We need to make a comment about grading. Throughout the paper we work with
Z-graded complexes of modules over a Z-graded even commutative ring R. Some
other authors, e.g. [14] work in the slightly less general Z/2Z-graded context. These
two approaches are closely related. If we have a Z-graded object we could always
forget down to a Z/2Z-graded object. Conversely, tensoring everything in sight with
the ring Z[v, v−1] with |v| = 2 we obtain a Z-graded object from a Z/2Z-graded one.
This procedure is routinely employed in topology when studying complex oriented
cohomology theories, cf. for example [1].

This paper is organized as follows. In section 2 we recall the definition of an
A∞-algebra and A∞-morphism and collect various formulae which will be needed
later on. The material presented here is fairly standard, except that we define A∞-
algebras over commutative graded rings rather than over fields as normally done.

In section 3 we study unital structures and prove a formula for the action of
a unital automorphism on a given A∞ structure. It turns out that this and other
formulae in the theory of A∞-algebras are best handled using the language of the
dual cobar-construction (or, perhaps, of the ‘cobar-construction of the dual’) which
could be thought of as a formal noncommutative (super)manifold in the sense of
[13] . The seemingly trivial passage from bar to cobar construction is the main
technical invention of this paper. We hope that it will have further applications.

In section 4 we define the Hochschild complex for A∞-algebras and prove that it
is homotopically equivalent to a normalized complex. This theorem is well-known
for (strictly) associative algebras.

Section 5 introduces Moore algebras which are our main object of study. Moore
algebras are in several respects similar to one-dimensional formal group laws and
we prove the analogue of Lazard’s theorem stating that the functor associating to
a ring the set of Moore algebras over it is representable by a certain polynomial
algebra on infinitely many generators.

In section 6 we consider the problem of classification of even Moore algebras
over a field or a complete discrete valuation ring. This problem is equivalent to the
classification of orbits of a certain action of the group of formal power series without
the constant term. We obtain complete classification in characteristic zero and some
partial results in characteristic p.

In section 7 we compute Hochschild cohomology of even Moore algebras and
discuss its relation with totally ramified extensions of discrete valuation rings.

Notations and conventions. In sections 2 − 4 we work over a fixed evenly
graded commutative ground ring R. The symbols Hom and ⊗ always mean HomR

and ⊗R. In Sections 5−7 the emphasis is shifted somewhat in that the ground ring
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is varied. It is still denoted by R sometimes with subscripts, e.g. Re and Ro, and
we use unadorned Hom and ⊗ where it does not cause confusion.

A graded ring whose homogeneous nonzero elements are invertible is referred
to as a graded field. A graded discrete valuation ring is a Noetherean graded ring
having a unique homogeneous ideal generated by a nonnilpotent element.

The set of invertible elements in a ring R is denoted by R×.
Acknowledgement. The author wishes to thank J.Greenlees whose visit to Bristol

in February 2001 provided stimulus for the author to start this project and J.
Rickard and J. Chuang for many useful discussions.

2. Preliminaries

In this section we collect the necessary definitions and facts about A∞-algebras.
The details may be found in the definitive monograph by Markl, Shnider and Stash-
eff [21] or in the papers by Getzler-Jones [7], and Keller [12].

Let R be an evenly graded commutative ring. Since we need to work in the
derived category of unbounded complexes of R-modules we will recall some basic
facts following [16]. An n-sphere R-module is a free R-module on one generator in
degree n. A cell R-module is the union of an expanding sequence of R-submodules
Mn such that M0 = 0 and Mn+1 is the mapping cone of a map φn : Fn → Mn

where Fn is a direct sum of sphere modules (perhaps of different degrees). Thus
a cell R-module is necessarily a complex of free R-modules. Conversely, it is easy
to see that a bounded below complex of free R-modules is a cell R-module. In our
applications we will be concerned with only such cell complexes.

Further, any R-module M admits a cell approximation, that is there is a cell
R-module ΓM and a a quasi-isomorphism of complexes ΓM → M . The functors
? ⊗ M and Hom(M, ?) where M is a cell R-module preserve quasi-isomorphisms
and exact sequences in the variable ?. This allows one to define the derived functors
of ⊗ and Hom by setting M⊗L N := ΓM⊗N and RHom(M, N) := Hom(ΓM, N).

Let A be a cell R-module and TA the tensor algebra of A:

TA = R⊕A⊕A⊗2 ⊕ . . . .

Then TA is a coalgebra via the comultiplication ∆ : TA → TA⊗ TA where

∆(a1, . . . , an) =
∑

(a1, . . . , ai)⊗ (ai+1, . . . , an).

It is standard that a coderivation ξ : TA → TA of the coalgebra TA is determined by
the composition TA

ξ→ TA → A where the second map is the canonical projection.
Denoting the components of this composite map by ξi we see that a coderivation
ξ ∈ Coder(TA) is specified by a collection of maps ξi : A⊗i → A. Let us introduce
a filtration on the coalgebra TA by setting FpTA = ⊕p

i=0T
iA. Then the space of

coderivations of TA also acquires a filtration. Namely, we say that a coderivation
ξ has weight > p if ξ(FiTA) ⊂ Fi−pTA. Then clearly the elements of weight > −1
form the whole space Coder(TA) and filtration by weight is an exhaustive Hausdorff
filtration on the space Coder(TA). We will denote the set of coderivations of weight
> p by O(p).
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For a graded R-module A we will denote by ΣA its suspension: (ΣA)i = Ai−1.

Definition 2.1. The structure of an A∞-algebra on a cell R-module A is a coderiva-
tion m : TΣA → TΣA of degree −1 such that m2 = 0, m(T 0ΣA) = 0 and the first
component m1 of m is (the suspension of) the original differential on A. Thus an
A∞-algebra is a pair (A,m). We will frequently omit mentioning m and simply refer
to the A∞-algebra A.

Remark 2.2. The condition that m(T 0ΣA) = 0 means that m ∈ O(0), or that
the zeroth component m0 of m vanishes. Some authors consider A∞-algebras with
nonvanishing m0, cf. [6].

This definition is slightly more general then the usual one in that R is not assumed
to be a field. We emphasize here that the grading on the ground ring R will be
essential for our constructions. For an A∞-algebra A we will call the coalgebra TΣA
with the differential m the bar-construction of A and use the symbol BA to denote it.
Following the usual tradition we will denote the element Σa1⊗Σa2 . . . Σan ∈ (ΣA)⊗n

by [a1|a2| . . . |an]. The following formula shows how to recover the coderivation
m : TΣA → TΣA from its components:

m[a1| . . . |an]

=
n∑

k=1

n−k∑

i=0

(−1)|a1|+...+|ai|+i[a1| . . . |ai|mk[ai+1| . . . |ai+k]|ai+k+1| . . . |an] (2.1)

The components mi : ΣA⊗i → ΣA of the coderivation m correspond to maps
m̃i : A⊗i → A of degree i− 2. The map m̃1 is the original differential in A, the map
m̃2 is a multiplication up to homotopy and m̃i : A⊗i → A are higher multiplications
on A.

The space Coder(TΣA) ∼= Hom(TΣA,ΣA) is a differential graded Lie algebra
with respect to the (graded) commutator. Let m,n ∈ Hom(TΣA,ΣA) so that
m = (m1,m2, . . .) and n = (n1, n2, . . .) where mi, ni ∈ Hom((ΣA⊗i), ΣA). Then the
commutator of m and n is clearly determined by commutators of their components:
[mi, nj ] = mi ◦ nj − (−1)|mi||ni|ni ◦mi. Furthermore we have the following formula
for the composition mi ◦ nj ∈ Hom((ΣA)⊗i+j−1, ΣA):

(mi ◦ nj)[a1| . . . |ai+j−1] =
i−1∑

k=0

(−1)|nj |(|a1|+...+|ak|+k)mi[a1| . . .

|ak|nj [ak+1| . . . , |ak+j ]|ak+j+1| . . . |ai+j−1] (2.2)

Definition 2.3. For two A∞-algebras A and C an A∞-morphism (or A∞-map)
A → C is a map of differential graded coalgebras f : TΣA → TΣC for which
f(T 0ΣA) = T 0ΣC = R.

It is clear that any A∞-map TΣA → TΣC between two A∞-algebras A and C
is a map of filtered coalgebras. Furthermore a coalgebra map f : TΣA → ΣC is
determined by the composition TΣA

f→ TΣC → ΣC where the second arrow is the
canonical projection. Denoting the components of the composite map by fi we see
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that f is determined by the collection (f1, f2, . . .) where fi : (ΣA)⊗i → ΣC. The
map f could be recovered from the collection {fi} as follows:

f [a1| . . . |an] =
∑

[fi1 [a1| . . . |ai1 ]| . . . |fik
[aik−1+1| . . . |an]] (2.3)

where the summation is over all partitions (i1, . . . , ik) of n.
The components fi of the A∞-map f correspond to the maps f̃i : A⊗i → C of

degrees i − 1. The map f̃1 : A → C is a map of complexes which is multiplicative
up to higher homotopies provided by f̃2, f̃3, . . ..

We say that an A∞-map f is a weak equivalence if f1 : ΣA → ΣC is a quasi-
isomorphism of complexes. Further we say that two A∞-algebras A and C are weakly
equivalent if there is a chain of weak equivalences A → A1 ← A2 → . . . ← An = C.

Remark 2.4. In fact it is possible to prove that for a weak equivalence A → C
there is always a weak equivalence C → A. This could be proved by constructing a
closed model category of cocomplete differential graded R-coalgebras and identifying
bar-constructions of A∞-algebras as fibrant-cofibrant objects in this category. The
discussion of such matters would take us too far afield and we refer the reader to
[20] where this construction is carried out.

The weak equivalences f = (f1, f2, . . .) that we consider later on in the paper
will always have the property that the morphism f1 is invertible (this is always
the case for so-called minimal A∞-algebras, i.e. such that m1 = 0). The following
proposition is a version of the formal implicit function theorem.

Proposition 2.5. Let f = (f1, f2, . . .) : TA → TC be a map of (filtered) coalgebras.
Then f is invertible if and only if f1 : A → C is invertible.

Proof. If f is invertible with the inverse g = (g1, g2, . . .) then clearly g1 is the
inverse to f1. Conversely suppose that f1 is invertible. We will construct a sequence
of maps gn : TC → TA such that f ◦ gn = id mod O(n) as follows. Set g1 =
(f−1

1 , 0, 0, . . .). Clearly f ◦ g1 = id mod O(1). Now assume by induction that the
maps gn = (gn

1 , gn
2 , . . .) have been constructed for n 6 k. Then up to the terms

of filtration > k + 1 we have f ◦ gk = id + f1 ◦ gk
k+1 + X where X is some map

TA → TA having filtration k. Set gk+1 = gk − gk
k+1 − f−1

1 ◦X. Then gk+1 agrees
with gk up to the terms of filtration > k−1 and has the property that f ◦gk+1 = id
mod O(k + 1). The sequence {gn} clearly converges in the sense of the filtration
on Hom(TC, TA)and setting g = limn→∞gn we obtain f ◦ g = id. Similarly there
exists a right inverse to f so f is invertible.

3. Unital structures

Definition 3.1. An A∞ structure m = (m1,m2, . . .) on a cell complex A is called
unital if there exists an element 1 = 1A of degree zero (called the unit of A) such
that m2[1A|a] = a = (−1)|a|m2[a, 1A] for all a ∈ A and such that mi(a1, . . . , ai) = 0
for all i 6= 2 if one of ai equals 1A. An A∞-morphism f = (f1, f2, . . .) between two
unital A∞-algebras A and B is called unital if f1[1A] = [1B ] and fi[a1| . . . |ai] = 0
for all i > 2 if one of ai equals 1A.
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Remark 3.2. Notice that m2[1A|a] = a = (−1)|a|m2[a|1A] is equivalent to the
more customary m̃2(1A, a) = m̃2(a, 1A) = a.

From now on we will use the term A∞-algebra for a unital A∞-algebra and an
A∞-morphism for a unital A∞-morphism (unless indicated otherwise).

One important consequence of unitality (which will not be used in this paper
however) is that the complex BA with the differential determined by the collection
m = (m1,m2, . . .) is exact for a unital A∞-algebra A. We leave it to the interested
reader to check that the map s : [a1|a2| . . . |an] → [1|a1|a2| . . . |an] is a contracting
homotopy for BA.

The classification problem of A∞-algebras naturally leads one to consider the
group Aut(TΣA) of automorphisms of the coalgebra TΣA where A is a graded
R-module. In the unital case the relevant group is the group of normalized auto-
morphisms Aut(TΣA) which we will now define.

Definition 3.3. Let A be a free graded R-module with a distinguished element
[1] ∈ ΣA of degree 1. We call an automorphism f = (f1, f2, . . .), fi : (ΣA)⊗i → ΣA
of the coalgebra TΣA normalized if f1[1] = [1] while fi[a1| . . . |an] = 0 for i > 1 if
one of ai’s is equal to 1. The set of normalized automorphisms will be denoted by
Aut(TΣA).

The set Aut(TΣA) is in fact a group. Indeed using the formula (2.3) one sees
immediately that the composition of two normalized automorphisms is normalized.
Therefore Aut(TΣA) is a subgroup in Aut(TΣA).

The concomitant notion to a normalized automorphism is that of a normalized
coderivation.

Definition 3.4. A coderivation ξ = (ξ0, ξ1, . . .) ∈ Coder(TΣA) will be called nor-
malized if ξi[a1| . . . |ai] = 0 each time one of ak = 1 for i = 1, 2, . . .. The set of all
normalized derivations is denoted by Coder(TΣA).

Remark 3.5. Clearly the set Coder(TΣA) forms a (graded) Lie subalgebra in the
Lie algebra Coder(TΣA). It is natural to consider Aut(TΣA) as the associated Lie
group.

It is often extremely convenient to work in the dual setting. Suppose that the
element 1 ∈ A can be completed to a basis {1, yi, i ∈ I} of the R-module A. The
indexing set I will be finite in our examples but need not be in general.

Remark 3.6. If our ground ring R is local, than the above assumption is always
satisfied. Indeed let {ei} be a basis of A over R. Then 1 = r1e1 + . . . + rnen.
Clearly the element 1 remains nonzero after reducing modulo the maximal ideal in
R. Therefore one of the coefficients r1, . . . , rn, say r1 must be invertible in R. Then
1, e2, e3, . . . form a basis in A. Thus the assumption that 1 can be completed to a
basis in A is not really a restriction since we can always argue ‘one prime at a time’.

Then the R-module dual to the coalgebra TΣA (usually referred to as the cobar-
construction) is the algebra of noncommutative power series in variables {τ, t} =
{τ, t1, t2, . . .}. Here the elements τ, ti form the basis in ΣA∗ dual to [1], [yi] ∈ ΣA:

(TΣA)∗ = k〈〈τ, t〉〉
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Notice that τ has degree −1 whereas |ti| = −|yi| − 1.
The algebra R〈〈τ, t〉〉 has a linear topology where the fundamental system of

neighborhoods of 0 is formed by those series whose constant term is 0 and which
annihilate a finite dimensional submodule in TΣA. It is clear that R〈〈τ, t〉〉 is Haus-
dorff and complete with respect to this topology.

Clearly the coalgebra endomorphisms of TΣA are in one-to-one correspondence
with continuous endomorphisms of the algebra R〈〈τ, t〉〉 while coderivations of
TΣA are in one-to-one correspondence with continuous derivations of R〈〈τ, t〉〉.
A continuous endomorphism f of R〈〈τ, t〉〉 is specified by its values on τ , which
is a series G(τ, t) of degree −1 and on ti’s which are series Fi(τ, t) whose de-
gree equals that of ti. So f corresponds to a collection of power series of the form
(G(τ, t), F1(τ, t), F2(τ, t) . . .). (Observe that if the indexing set I is infinite then
continuity imposes certain restrictions on the collection G(t), F1(t), F2(t), . . .)).
The composition of endomorphisms corresponds to substitution of power series.
Similarly any continuous derivation ξ could be uniquely represented in the form
ξ = A(τ, t)∂τ +

∑
i Bi(τ, t)∂ti . Here ∂τ and ∂ti are standard derivations corre-

sponding to the coordinates τ, ti.

Definition 3.7. A continuous derivation of R〈〈τ, t〉〉 is called normalized if the cor-
responding coderivation of TΣA is normalized. We will denote the set of normalized
derivations of R〈〈τ, t〉〉 by Der(R〈〈τ, t〉〉). Similarly we call a continuous automor-
phism of R〈〈τ, t〉〉 normalized if such is the corresponding automorphism of TΣA.
The set of normalized automorphisms of R〈〈τ, t〉〉 will be denoted by Aut(R〈〈τ, t〉〉).

Recall that the space Coder(TΣA) has a filtration O(−1) ⊃ O(0) ⊃ . . . where
O(n) consists of those coderivations ξ = (ξ0, ξ1, . . .) for which ξ1 = ξ2 = . . . =
ξn = 0. Then the space of (continuous) derivations of (TΣA)∗ acquires filtration so
that the derivation A(τ, t)∂τ +

∑
i∈I Bi(τ, t)∂ti has weight > n if and only if the

expressions A(τ, t), B1(τ, t), B2(τ, t) . . .) do not contain terms of degree 6 n. We
will still denote the collection of elements of weight > n by O(n).

Proposition 3.8. (i) Any normalized derivation ξ of R〈〈τ, t〉〉 has the form

ξ = A(t)∂τ +
∑

i∈I

Bi(t)∂ti .

(ii) Any unital A∞ structure m on A corresponds to a derivation m∗ of (TΣA)∗ of
the form

m∗ = (A(t) + τ2)∂τ +
∑

i∈I

([τ, ti] + Bi(t))∂ti .

where the series A(t), B(t) have vanishing constant terms.

Proof. Denote by 〈, 〉 the R-linear pairing between (TΣA) and (TΣA)∗. Associated
to a homogeneous endomorphism T of the R-module (TΣA) is the endomorphism
T ∗ of (TΣA)∗ for which

〈T (a), b〉 = (−1)|a||T |〈a, T ∗(b)〉 (3.1)
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The rest is just a routine exercise in dualization using (3.1) which we can safely
leave to the reader. Note that the quadratic term

∑
i∈I [τ, ti]∂ti + τ2∂τ corresponds

to the identities m2[1|yi] = (−1)|yi|m2[yi|1] = [yi] and m[1|1] = [1]. The condition
that A(t), B(t) have vanishing constant terms means that m∗ ∈ O(0).

Remark 3.9. Of course not every derivation ξ of (TΣA)∗ of the form ξ = (A(t) +
τ2)∂τ +

∑
i∈I([τ, ti] + Bi(t))∂ti

is an A∞ structure. The condition which specifies
an A∞ structure is ξ ◦ ξ = 0 (or, equivalently, [ξ, ξ] = 0 if R has no 2-torsion). Also
the condition that m∗ has degree −1 puts further restrictions on A(t) and Bi(t).
For example if the variables ti have even degrees then all Bi’s necessarily vanish.

Remark 3.10. It is easy to check that the derivation
∑

i∈I([τ, ti])∂ti + τ2∂τ can
be compactly written as adτ − τ2∂τ where adτ(?) := [τ, ?]. Therefore the formula
for m∗ could be written as

m∗ = A(t)∂τ +
∑

i∈I

Bi(t)∂ti
+ adτ − τ2∂τ .

Similarly we could translate the notion of a normalized automorphism to the
dual setting. Consider the continuous endomorphism of R〈〈τ, t〉〉 corresponding to
the collection (G,F) := (τ + G(t), F1(t), F2(t), . . .) of power series without con-
stant terms. Here we require that F(t) = (F1(t), F2(t), . . .) : R〈〈t〉〉 → R〈〈t〉〉 be
invertible with inverse F−1(t). Then clearly (G,F) is invertible and (G,F)−1 =
(−G(F−1),F−1). Moreover such endomorphisms form a subgroup of all continuous
automorphisms of R〈〈τ, t〉〉. Then we have the following result whose proof is similar
to part (i) of Proposition 3.8.

Proposition 3.11. The group of continuous automorphisms of R〈〈τ, t〉〉 consisting
of pairs (G,F) as above is isomorphic to Aut(R〈〈τ, t〉〉).
Remark 3.12. The condition that a multiplicative automorphism necessarily has
degree zero puts certain restrictions on F and G. For example if all variables ti have
even degrees then G(t) = 0.

Remark 3.13. It is illuminating to consider the unit map R → A from the point
of view of the cobar construction. Observe that the canonical structure of an as-
sociative algebra on R corresponds to the derivation τ2∂τ of the power series ring
R[[τ ]]. Then the unit map R → A considered as an A∞-map is the map of cobar
constructions

(TΣA)∗ = R〈〈τ, t〉〉 i−→ (TΣR)∗ = R[[τ ]]

where i(τ) = τ and i(t) = 0. The unitality condition ensures that i is a map
of dga’s. Further the maps of dga’s R[[τ ]] → R〈〈τ, t〉〉 should be considered as
‘A∞-points’ of A. The existence of A∞-points is a subtle question in general and
we hope to return to it in in the future. If the A∞ structure m∗ has the form
m∗ = adτ − τ2∂τ +

∑
i∈I B(t)∂ti then the map ε : R[[τ ]] → R〈〈τ, t〉〉 : ε(τ) = τ is a

‘canonical’ A∞-point of A.

Next observe that the group Aut(TΣA) acts on the set of coderivations of ΣTA
according to the formula f : m → mf = f ◦ m ◦ f−1 for m ∈ Coder(ΣTA) and
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f ∈ Aut(ΣTA). Obviously if m ◦m = 0 then mf ◦mf = 0 so Aut(ΣTA)) acts on
the set of (nonunital) A∞ structures on A. It turns out the the group Aut(TΣA) =
Aut(R〈〈τ, t〉〉) acts on the set of unital A∞ structures.

Denote by (A,B) the derivation of R〈〈τ, t〉〉 corresponding to a unital A∞ struc-
ture:

(A,B) = (A(t) + τ2)∂τ +
∑

i∈I

([τ, ti] + Bi(t))∂ti
.

Proposition 3.14. The group Aut(R〈〈τ, t〉〉) acts on the right on the set of unital
A∞ structures according to the formula

(A,B) ∗ (G,F) = (G,F) ◦ (A,B) ◦ (G,F)−1 = (A(F(t))−G(t)2+
∑

j∈I

[Bj(F(t))∂tj
G(F−1)](F(t)),

∑

i,j∈I

([G(t), ti] + (Bj(F(t))∂tj
F−1)(F(ti)). (3.2)

Proof. This is one of the examples where the use of the dual language leads to
considerable simplifications; the relatively painless calculations below become ex-
ceedingly gruesome when performed in terms of coderivations of the coalgebra TΣA.
We compute:

((A,B) ∗ (G,F))(ti) = (G,F) ◦ (A,B) ◦ (G,F)−1(ti)

= (G,F) ◦ (A,B)(F−1(ti))

= (G,F)([τ,F−1(ti)] +
∑

j∈I

Bj(t)∂tjF
−1(ti))

= [τ, ti] + [G(t), ti] +
∑

j∈I

(Bj(F(t))∂tjF
−1)(F(ti)) (3.3)

Further

((A,B) ∗ (G,F))(τ) = (G,F) ◦ (A,B) ◦ (G,F)−1(τ)

= (G,F) ◦ (A,B)(τ −G(F−1(t)))

= (G,F)(τ2 + A(t)− [τ,G(F−1(t))]−
∑

j∈I

Bj(t)∂tj G(F−1(t)))

= (τ + G(t))2 + A(F(t))− [τ + G(t), G(t)] +
∑

j∈I

[Bj(F(t))∂tj G(F−1)](F(t)).

Since G(t) and τ have odd degrees we have the equalities (τ +G(t))2 = τ2+G(t)2+
[τ,G(t)] and [G(t), G(t)] = 2G(t)2. It follows that

((A,B) ∗ (G,F))(τ) (3.4)

= τ2 + A(F(t))−G(t)2 +
∑

j∈I

[Bj(F(t))∂tj G(F−1)](F(t))

The formula (3.14) is a consequence of (3) and (3.4) and our proposition is proved.

Remark 3.15. The above proposition has two parts: the statement that the group
Aut(R〈〈τ, t〉〉) acts on the set of unital A∞ structures and an explicit formula for this
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action. While the formula clearly requires the assumption that 1 can be completed
to an R-basis in A, the statement about the group action is valid without this
assumption. The proof of this could be deduced from Remark 3.6 using standard
localization techniques.

Remark 3.16. Proposition 3.14 admits the following infinitesimal analogue: if m is
a unital A∞ structure and ξ is a normalized coderivation of TΣA then the commu-
tator [ξ,m] is also normalized. This can be interpreted as saying that the normalized
Hochschild cochains of a unital A∞-algebra form a subcomplex with respect to the
Hochschild differential, cf. next section of the present paper.

Remark 3.17. We have seen that if the variables ti all have even degrees then
Bi = 0 and G = 0. In other words the group of normalized automorphisms is just
the group of formal power series F(t) under composition and a unital A∞ structure
corresponds to the derivation of the form A(t)∂τ . The formula (3.14) in this case
takes an especially simple form: A ∗ F = A(F).

The next result we are going to discuss requires a certain knowledge of operads.
We do not intend to discuss this subject in detail here and refer the interested
reader to the nice exposition in [30]. An A∞-algebra is in fact an algebra over
a certain operad A∞ in the category of differential graded R-modules, sometimes
called the Stasheff operad. The operad A∞ maps into another operad Ass whose
algebras are strictly associative differential graded R-algebras and this map is a
quasi-isomorphism. In particular any differential graded algebra is an A∞-algebra.

Proposition 3.18. There is a functor that assigns to each unital A∞-algebra A a
strictly associative differential graded algebra Ã which is weakly equivalent to A.

Proof. We will only give a sketch following [16], V.1.7. Associated to any operad is
a monad having the same algebras. Denote the monad in the category of complexes
of R-modules associated to Ass by C and the one associated to A∞ by C∞. Then
there is a canonical map of monads C → C∞. Consider the following maps of
A∞-algebras

A ← B(C∞, C∞, A) → B(C, C∞, A) (3.5)

Here B(−,−, A) stands for a two-sided monadic bar construction. Both maps in
(3.5) are homology isomorphisms and our proposition is proved.

4. Hochschild Cohomology of A∞-algebras.

Let A be an A∞-algebra. Consider the graded Lie algebra Coder(BA) of all
coderivations of the coalgebra BA = TΣA. There is a preferred coderivation m :
BA → BA of degree −1 which is given by the A∞ structure on A. We will define a
differential ∂ on Coder(BA) by the formula ∂(f) = [f, m] where the right hand side
is the (graded) commutator of two coderivations f and m. The condition m◦m = 0
implies that ∂ ◦ ∂ = 0.

Definition 4.1. The complex C∗(A, A) := Coder(BA) with the differential ∂ is
called the Hochschild complex of an A∞-algebra A. Its cohomology H∗(A,A) is
called the Hochschild cohomology of A with coefficients in itself.
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Remark 4.2. Since the coderivation m has weight > 0 the differential on C∗(A,A)
agrees with the filtration on BA in the sense that d(O(n)) ⊂ O(n).

Recall that since BA is cofree in the category of cocomplete coalgebras there
is a natural identification C∗(A,A) ∼= Hom(BA, ΣA) which we will use without
explicitly mentioning. Using the the formula (2.1) one can recover the coderivation
of BA = TΣA from its components ck ∈ Hom((TΣA)⊗k,ΣA) ⊂ Hom(BA, ΣA).

We will now introduce the normalized Hochschild complex for A∞-algebras which
is smaller and easier to compute with.

Definition 4.3. Let A be an A∞-algebra. Then a Hochschild cochain
c ∈ Hom(TΣA, ΣA) is called normalized if c is normalized as a coderivation of
BA.

It is easy to check using (2.2) that the normalized cochains form a subcomplex
of the Hochschild complex. We will denote this subcomplex by C̄∗(A,A).

Theorem 4.4. Let A be an A∞-algebra. Then there is a chain deformation retrac-
tion of C∗(A,A) onto the subcomplex C̄∗(A, A). In particular both complexes have
the same cohomology.

Proof. The proof is similar to that of the classical theorem of Eilenberg-MacLane
on normalized simplicial modules. Note that this theorem cannot be applied di-
rectly since the Hochschild cohomology of an A∞-algebra is not a cohomology of
a simplicial object. The resulting calculations in the A∞ context are considerably
more involved.

Let us call a cochain c ∈ C∗(A,A) i-normalized if c vanishes each time one if its
first i arguments is equal to 1. Then c is normalized if and only if it is i-normalized
for all i.

We define a sequence of cochain maps hi : C∗(A,A) → C∗(A,A) as follows.
Let c ∈ Hom((ΣA)⊗n, ΣA) for some n and consider the cochain
si(c) ∈ Hom((ΣA)⊗n−1, ΣA) defined by the formula

si(c)[a1| . . . |an−1] = (−1)|a1|+...+|al|+i+1c[a1| . . . |ai|1|ai+1| . . . |an−1].

Extending by linearity we define si on the whole C∗(A,A). Then set hi(c) := c −
∂(si(c))− si(∂c). We claim that hi takes an i-normalized Hochschild cochain to an
i+1-normalized cochain. Indeed, let c be an i-normalized cochain. We could assume
without loss of generality that c ∈ Hom((ΣA⊗n), ΣA) for some n > i. We want to
show that

c(?) = [si(c),mk](?) + si[c,mk](?) (4.1)

for any k as long as the i + 1st argument in ? is 1.
Notice that the left hand side of (4.1) is only nonzero if the number of arguments

in ? is n whereas the right hand side of (4.1) is nonzero if the number of arguments
is n − k + 2. Therefore we need to consider the cases k = 2 and k 6= 2 separately.
For k = 2 we have

(m2 ◦ sic)[a1| . . . |an] = (−1)|a1|+...+|ai|+i+1m2[c[a1| . . . |ai|1|ai+1| . . . an−1]an]
±m2[a1|c[a2| . . . |ai+1|1|ai+2| . . . |an].
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Setting ai+1 = 1 and taking into account that c is i-normalized we obtain

(m2 ◦ sic)[a1| . . . |ai|1|ai+2| . . . |an]

= (−1)|a1|+...+|ai|+i+1m2[c[a1| . . . |ai|1|1|ai+2| . . . an−1]an].

Similarly we obtain

si(m2 ◦ c)[a1| . . . |ai|1|ai+2| . . . |an]

= (−1)|a1|+...+|ai|+i+1m2[c[a1| . . . |ai|1|1|ai+2| . . . an−1]an].

It follows that

(m2 ◦ sic− si(m2 ◦ c))[a1| . . . |ai|1|ai+2| . . . |an] = 0 (4.2)

Taking into account the identities m2[ai|1] = (−1)|ai|[ai] and m2[1|ai+1] = [ai+1]
we have

(sic ◦m2)[a1| . . . |an] =
i∑

l=0

±sic[a1| . . . |al|m2[al+1|al+2]|al+3| . . . | . . . |an]

+
n−2∑

l=i+1

(−1)|a1|+...+|al|+lsic[a1| . . . |ai|ai+1| . . . |al|m2[al+1|al+2]|al+3| . . . |an].

After substituting ai+1 = 1 the term having the sign ± in front of it vanishes and
we get

(sic ◦m2)[a1| . . . |ai|1|ai+1| . . . |an]

=
n−2∑

l=i+1

(−1)|a1|+...+|al|+l+|a1|+...+|ai|+i+1c[a1| . . . |ai|1|1| . . .

|al|m2[al+1|al+2]|al+3| . . . |an].

And similarly

si(c ◦m2)[a1| . . . |ai|1| . . . |an] = c[a1| . . . |ai|1|ai+1| . . . |an]

+
n−2∑

l=i+1

(−1)|a1|+...+|al|+l+1+|a1|+...+|ai|+ic[a1| . . . |ai|1|1|ai+2| . . .

|al|m2[al+1|al+2]|al+3| . . . |an]

Therefore

(sic ◦m2 + si(c ◦m2))[a1| . . . |ai|1|ai+1| . . . |an] = c[a1| . . . |ai|1|ai+1| . . . |an] (4.3)

Taking into account that |sic| = |c|+ 1 we obtain from (4.3), and (4.2)

([sic,m2] + si[c,m2])[a1| . . . |ai|1|ai+1| . . . |an]

= (sic ◦m2 − (−1)|c|+1m2 ◦ sic + si(c ◦m2)

−(−1)|c|si(m2 ◦ c))[a1| . . . |ai|1|ai+1| . . . |an]
= c[a1| . . . |ai|1|ai+1| . . . |an].
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Now let k 6= 2. We have:

(mk ◦ sic)[a1| . . . |ai|1|ai+2|an+k−2] = mk[sic[a1| . . . |an−1]an| . . . |an+k−2]
= (−1)|a1|+...+|ai|+i+1mk[c[a1| . . . |ai|1|1|ai+2| . . . |an−1]|an| . . . |an+k−2]

(the remaining terms in the expansion for (mk ◦sic)[a1| . . . |ai|1|ai+2|an+k−2] vanish
because the Hochschild cochains sic is i-normalized and mk is normalized). Likewise

si(mk ◦ c)[a1| . . . |ai|1|ai+1| . . . |an+k−2]

= (−1)|a1|+...+|ai|+i+1mk ◦ c[a1| . . . |ai|1|1|ai+2| . . . |an+k−2]

= (−1)|a1|+...+|ai|+i+1mk[c[a1| . . . |ai|1|1|ai+2| . . . |an−1]|an| . . . |an+k−2]

It follows that

(mk ◦ sic− si(mk ◦ c))[a1| . . . |ai|1|ai+2| . . . |an] = 0. (4.4)

Further

(sic ◦mk)[a1| . . . |ai|1|ai+1| . . . |an+k−2]

=
n−2∑

l=i

(−1)|a1|+...+|al|+lsic[a1| . . . |ai|1|ai+1| . . .

|al|mk[al+1| . . . |al+k]|al+k+1| . . . |ak+n−2]

=
n−2∑

l=i

εlc[a1| . . . |ai|1|ai+1| . . . |al|mk[al+1| . . . |al+k]|al+k+1| . . . |ak+n−2]

where εl = (−1)|a1|+...+|ai|+i+1+|a1|+...+|al|+l and similarly

si(c ◦mk)[a1| . . . |ai|1|ai+1| . . . |an+k−2]

= (−1)|a1|+...+|ai|+i+1c ◦mk[a1| . . . |ai|1|ai+1| . . . |ak+n−2]

=
n−2∑

l=i+1

(−εl)c[a1| . . . |ai|1|1|ai+2| . . . |al|mk[al+1| . . . |al+k]|al+k+1| . . . |ak+n−2].

Therefore

(sic ◦mk + si(c ◦mk))[a1| . . . |ai|1|ai+1| . . . |an+k−2] = 0 (4.5)

Finally (4.4) and (4.5) imply that [sic,mk] + si[c,mk] = 0.
This proves (4.1) and, therefore, our claim that hi takes i-normalized cochains

into i + 1-normalized cochains. It follows that the composition . . . ◦ hl ◦ hl−1 . . . h0

takes an arbitrary cochain c ∈ C∗(A,A) into a normalized cochain and exhibits
the subcomplex C̄(A,A) of normalized cochains as a chain deformation retract of
C∗(A,A).

Remark 4.5. Part of Theorem 4.4 could be interpreted as saying that if the cochain
c ∈ C∗(A,A) has the property that [c,m] belongs to the Lie subalgebra of normal-
ized cochains then there exists a normalized cochain c′ for which [c,m] = [c′,m].
This result has the following globalization proved in [20]: if two minimal A∞ struc-
tures are equivalent through a nonunital A∞-morphism, then they are equivalent
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also through a unital one. It would be interesting to deduce this result from Theorem
4.4 (the proof in the cited reference uses obstruction theory).

Remark 4.6. Let us call an A∞-algebra A homotopy unital if there exists an
element 1 ∈ A of degree 0 for which m1[1] = 0, and m2[1|a] = (−1)|a|m2[a|1] for
any a ∈ A. It is easy to see that (in contrast with strict unitality) weak equivalences
preserve homotopy unitality for minimal A∞-algebras. Then it is proved in [20] that
any minimal homotopy unital A∞-algebra is weakly equivalent to a (strictly) unital
one. This result combined with the previous remark and Proposition 3.14 shows
that the classification problem of (minimal) homotopy unital A∞-algebras up to a
nonunital weak equivalence is equivalent to classification of unital A∞-algebras up
to a unital weak equivalence.

For the next result we will need a slightly more general definition of Hochschild
cohomology than the one already given. Let (A,mA), (C,mC) be two A∞-algebras
and i : BA → BC an A∞-morphism between them. We say that a map f : BA →
BC is a coderivation of the coalgebra BA with values in the coalgebra BC if the
following diagram is commutative:

BA

f

²²

∆BA // BA⊗BA

f⊗i+i⊗f

²²
BC

∆BC // BC ⊗BC

Here ∆BA and ∆BC denote the diagonals in the coalgebras BA and BC. Then
the space Coder(BA, BC) becomes a complex with the differential df = mC ◦ f −
(−1)|f |f ◦mA. We will denote this complex by C∗(A,C).

Now let c ∈ C∗(A,A) be a Hochschild cochain. Define the cochain i∗(c) ∈
C∗(A,C) by the formula i∗(c) = i ◦ c : BA → BC. Likewise for a cochain c′ ∈
C∗(C,C) define the cochain i∗(c′) ∈ C∗(A,C) by the formula i∗(c′) = c′ ◦ i. It is
straightforward to check i∗ and i∗ give maps of cochain complexes:

i∗ : C∗(A,A) → C∗(A, C) ← C∗(C,C) : i∗.

Proposition 4.7. For two weakly equivalent A∞-algebras A and C their Hochschild
complexes C∗(A, A) and C∗(C,C) are quasi-isomorphic as complexes of R-modules.
In particular, H∗(A,A) ∼= H∗(C, C).

Proof. Let i : BA → BC be an A∞-morphism establishing a weak equivalence
between A and C. Since the cochain map i∗ : C∗(A,A) → C∗(A,C) is a filtered
map it induces a map on associated spectral sequences. Since i induces a quasi-
isomorphism A → C we see that i∗ induces an isomorphism of the E1-terms of
the corresponding spectral sequences. Therefore i∗ is itself a quasi-isomorphism.
Similar considerations show that the cochain map i∗ : C∗(C, C) → C∗(A,A) is a
quasi-isomorphism and our proposition is proved.

Remark 4.8. In general the complex C∗(A,A) as well as its cohomology H∗(A,A)
is not functorial with respect to A. It is possible to define the Hochschild complex
C∗(A,M) of an A∞-algebra with coefficients in a A∞-bimodule M , cf. for example,



Homology, Homotopy and Applications, vol. 5(1), 2003 88

[6]. Then C∗(A,M) is contravariant in the variable A and covariant in the variable
M . However we don’t need such level of generality here and the discussion of A∞-
bimodules would take us too far afield.

Now let A be an A∞-algebra. Propositions 4.7 and 3.18 shows that the complex
C∗(A,A) is quasi-isomorphic to the complex C∗(Ã, Ã) where Ã is a differential
graded (unital) algebra weakly equivalent to A. The complex C∗(Ã, Ã) is the usual
Hochschild complex of the dga Ã and it is well-known that it possesses itself a
structure of a homotopy commutative dga; something that we did not see from
the point of view of the A∞-algebra A. The Hochschild complex of a dga admits a
different (but of course equivalent) description. Namely, we can define the complex
C∗(Ã, Ã) as an object in the derived category of Ã⊗ Ãop-modules:

C∗(Ã, Ã) := RHomÃ⊗LÃop(Ã, Ã).

Here Ãop is the differential graded algebra having the same underlying R-module
and differential as Ã but the opposite multiplication. Since Ã has the same homology
algebra as A we get the following result:

Proposition 4.9. There exists a spectral sequence of R-modules

Ext∗∗H∗(A∗⊗LAop
∗ )(H∗(A),H∗(A)) =⇒ H∗(A, A).

It is of standard cohomological type, lies in the right half plane and converges con-
ditionally.

5. Moore algebras

In this section we introduce and study a class of A∞-algebras which will be
called Moore A∞-algebras or just Moore algebras. The terminology comes from
stable homotopy theory - a Moore algebra is analogous to the Moore spectrum
which is a cofibre of the map S

p→ S where S is the sphere spectrum. In some sense
Moore algebras are the simplest nontrivial examples of A∞-algebras which are not
differential graded algebras.

Definition 5.1. An A∞-algebra over a commutative evenly graded ring R is called
a Moore algebra if its underlying complex is A = {ΣdR

∂→ R} for some differential
∂ . The integer d is called the degree of A.

Obviously the generator in degree 0 is 1 ∈ R. We will denote the generator in
ΣdR by y, so |y| = d+1. The structure of an A∞-algebra on A is clearly determined
by the collection mi[y]⊗i, i = 1, 2, . . .. Notice that the map ∂ is necessarily given
by a multiplication by some x ∈ R so that ∂(y) = x · 1. If d is odd, then ∂ = 0.
If d is even and x is not a zero divisor in R, then the (internal) homology of A is
simply R/x. For an E∞ ring spectrum R the structure of the (homotopy) associative
algebra on R/x was investigated in [4] and [28]. This parallel topological theory
was our original motivation for introducing the notion of a Moore algebra.

Let R′ be another evenly graded commutative ring and f : R → R′ be a ring
map. Consider a Moore algebra A over R specified by the collection {mi[y]⊗i ∈ R}.
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Then the collection {f(mi[y]⊗i) ∈ R′} will determine a Moore algebra f∗A over R′.
In other words the set S(d) which associates to any evenly graded commutative ring
R the set of Moore algebras over R of degree d is a functor of R.

Theorem 5.2. (i). Let d be even. Then the functor S(d) is representable by the
polynomial algebra Re = Z[u1, u2, . . .] where |ui| = i(d+2)−2. More precisely there
exists a Moore algebra Ae over Re of degree d such that for any R and any Moore
algebra A over R of degree d there exists a unique ring map Ro → R for which
f∗Ae = A. The universal Moore algebra Ae is specified by the formulae mi[y]⊗i =
ui[1], i = 1, 2, . . ..

(ii). Let d be odd. Then S(d) is represented by the polynomial algebra Ro =
Z[v1, v2, . . .]⊗ Z[w1, w2, . . .] where |vi| = 2i(d + 2)− d− 3 and |wi| = 2i(d + 2)− 2.
More precisely there exists a Moore algebra Ao over Ro of degree d such that for
any R and any Moore algebra A over R of degree d there exists a unique ring map
Ro → R for which f∗Ao = A. The universal Moore algebra Ao is specified by the
formulae m2i−1[y]⊗2i−1 = 0 and m2i[y]⊗2i = vi[y] + wi[1], i = 1, 2, . . ..

Proof. In both cases (i) and (ii) the universality is obvious and we only need to
prove that m ◦m = 0. Note that apriori the latter equation could impose nontrivial
relations on the generators ui, vi and wi; the theorem effectively states that no such
relations except commutativity are in fact present.

The equality m ◦m = 0 could be checked directly using the composition formula
(2.2). However this path is rather long-winded and unenlightening and we will choose
the approach via the cobar-construction. So consider the algebra (TΣA)∗ = R〈〈τ, t〉〉
where τ and t are dual to [1] and [y] respectively so |τ | = −1, |t| = −d − 2. Then
the coderivation m of TΣA determines the continuous derivation m∗ of (TΣA)∗.
Routine inspection shows that in the case (i)

m∗ =
∞∑

i=1

uit
i∂τ + adτ − τ2∂τ

whereas in the case (ii) we have

m∗ =
∞∑

i=1

vit
2i∂t +

∞∑

i=1

wit
2i∂τ − τ2∂τ + adτ.

For (i) we compute

(m∗ ◦m∗)(t) = m∗([τ, t]) = [
∞∑

i=1

uit
i + τ2, t]− [τ, [τ, t]].

The elements t and
∑∞

i=1 uit
i are both even and therefore [

∑∞
i=1 uit

i, t] = 0. Clearly
[τ2, t]− [τ, [τ, t]] = 0 This implies that (m∗ ◦m∗)(t) = 0. Next,

(m∗ ◦m∗)(τ) = m∗(
∞∑

i=1

uit
i + τ2)

= [τ,
∞∑

i=1

uit
i] + m∗(τ2) = [τ,

∞∑

i=1

uit
i] +

∞∑

i=1

uit
i∂τ (τ2) = 0
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It proves that m∗ ◦m∗ = 0. Similarly for (ii) we have

(m∗ ◦m∗)(t) = m∗(
∞∑

i=1

vit
2i + [τ, t])

= (
∞∑

i=1

vit
2i∂t)(

∞∑

i=1

vit
2i)− [τ,

∞∑

i=1

vit
2i] + [τ,

∞∑

i=1

vit
2i] + [τ2, t]− [τ, [τ, t]].

Since now the element t is odd the derivation
∑∞

i=1 vit
2i∂t is also odd while∑∞

i=1 vit
2i is even and it follows that (

∑∞
i=1 vit

2i∂t)(
∑∞

i=1 vit
2i) = 0. Just as before

we have [τ2, t]− [τ, [τ, t]] = 0. Therefore (m∗ ◦m∗)(t) = 0. Further

(m∗ ◦m∗)(τ) = m∗(
∞∑

i=1

wit
2i + τ2)

= (
∞∑

i=1

vit
2i∂t)(

∞∑

i=1

wit
2i) + (

∞∑

i=1

wit
2i∂τ )(τ2) + [τ,

∞∑

i=1

wit
2i)].

Arguing as before we see that the first term in the last expression is zero whereas
the second and third cancel each other out. Therefore (m∗ ◦m∗)(τ) = 0 and we are
done.

Remark 5.3. For an odd d the differential on the underlying complex
A = {ΣdR → R} is zero and therefore its homology is fixed. For d even the differ-
ential is given by multiplication with u1 = x ∈ Re. The element u1 plays a special
role among ui’s fixing the homology of the Moore algebra. We will be interested
mostly in the case when x is a nonzero divisor in R in which case H∗(A) = R/x.

Remark 5.4. The universal odd Moore algebra has an ideal generated by the el-
ement y. This is a nonunital A∞-algebra over Ro such that m2i[y]2i = vi[y] and
m2i−1 = 0. This A∞-algebra was introduced in the early nineties by M.Kontsevich.
It turns out to be related to Morita-Miller-Mumford classes in the cohomology of
moduli spaces of algebraic curves, cf. [14]. It would be interesting to understand
whether our more general constructions can yield new information about cohomolo-
gies of these moduli spaces.

We see, therefore, that an arbitrary even Moore algebra A over a ring R is
specified by the collection {uA

i } ∈ R where uA
i is the image of ui under the classifying

map Re → R. In that case the A∞ structure on A is the following derivation m∗
A

of the algebra (TΣA)∗ = R〈〈τ, t〉〉:

m∗
A =

∞∑

i=1

uA
i ti∂τ + adτ − τ2∂τ .

Similarly an odd Moore algebra over R is determined by the collection {vA
i , wA

i ∈
R}, the images of vi and wi under the classifying map Ro → R. The A∞ structure
on A is the following derivation m∗

A of the algebra (TΣA)∗:

m∗
A =

∞∑

i=1

vA
i t2i∂t +

∞∑

i=1

wA
i t2i∂τ − τ2∂τ + adτ.
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We see that an even (odd) Moore algebra is completely characterized by a power se-
ries uA(t) :=

∑∞
i=1 uA

i ti (by a pair of power series (vA(t), wA(t)) :=
(
∑∞

i=1 vA
i t2i,

∑∞
i=1 wA

i t2i) respectively). We will call these power series charac-
teristic power series for corresponding Moore algebras.

Remark 5.5. The notion of a characteristic power series is similar to that of a
formal group law. Further the universal (even or odd) Moore algebra is analogous
to the universal formal group law over the Lazard ring (which is also a polynomial
ring in infinitely many variables). The Moore algebras corresponding to different
points of Re or Ro could still be weakly equivalent (note that this is exactly what
happens also for formal groups). Moreover we have certain infinite-dimensional Lie
groups acting on Ro and Re whose orbits correspond to weakly equivalent Moore
algebras. These actions are far from being free which means that there are moduli
stacks rather than moduli spaces of Moore algebras. We will see in the next section
that in the even case the corresponding group is just the group of formal power
series in one variable with vanishing constant term. This again forces one to think
of the analogy with formal groups.

6. Classification problem

It is an interesting and nontrivial problem to classify Moore algebras over a given
ring up to a (unital) weak equivalence. In this paper we will consider only the even
case. An even Moore algebra A of degree d has the characteristic series

uA(t) = u(t) =
∞∑

i=1

uit
i (6.1)

Here |t| = −(d+2) and |ui| = i(d+2)−2 from which we conclude that |u(t)| = −2.
Conversely any such power series determines an even Moore algebra. It is easy to see
that if f = (f1, f2, . . .) : BA → BC is a weak equivalence between two even Moore
algebras then f1 is an isomorphism so f is invertible (even though A and C need
not be minimal). It follows that the set of weak equivalence classes of even Moore
algebras coincides with the set of orbits of the group Aut(R〈〈τ, t〉〉) on the set of
(unital) A∞ structures on A which could be identified with the set of power series
(6.1). According to Remark 3.17 the group Aut(R〈〈τ, t〉〉) is the group of formal
power series f(t) = f1t+f2t

2 + . . ., where f1 is invertible and the group operation is
composition. (Notice that the condition that Aut(R〈〈τ, t〉〉) consists of morphisms
of zero degree imposes some restrictions on fi, namely |fi| = (i − 1)(d + 2).) The
action is given by substitution of power series. To summarize we have the following

Theorem 6.1. The set of equivalence classes of even Moore algebras over R is in
1 − 1 correspondence with the set of orbits of the group Aut(R〈〈τ, t〉〉) acting on
the set of formal power series with coefficients in R of degree −2 with vanishing
constant term. The action of the group element f(t) on the power series u(t) is
given by the formula u(t) → u(f(t)).

Remark 6.2. Suppose that the ring R is 2-periodic, i.e. it possesses an invertible
element v of degree 2. In that case the group Aut(R〈〈τ, t〉〉) is isomorphic to the
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group of formal power series with coefficients in R0, the zeroth component of R
and having vanishing constant term. The set of characteristic series becomes the
set of all power series with coefficients in R0 without constant term and the action
is given by substitution as above. In other words there are no degree restrictions on
the coefficients of power series.

Just as for formal groups it seems hopeless to try to make the classification over
an arbitrary ring. The restriction that we place on R is that we assume that R is
either a (graded) field or a (graded) complete discrete valuation ring. We refer the
reader to the book [25] by Serre for an account on discrete valuation rings. In this
book the ungraded rings are treated but passage to the graded case is automatic.

Next we introduce the notion of the height of a formal power series which will
be one of the invariants of the associated Moore algebra.

Definition 6.3. Let u(t) =
∑∞

i=1 uit
i be a formal power series without a constant

term. Then we say that u(t) has height n if un is the first nonzero coefficient of
u(t). The height of the characteristic series of an even Moore algebra A is called the
height of A.

Proposition 6.4. Let R be a graded field of characteristic zero, A and C be two even
Moore algebras over R with characteristic series uA(t) =

∑∞
i=1 uA

i ti and uC(t) =∑∞
i=1 uC

i ti. Then A is weakly equivalent to C if and only if n =height(A) =height(C)
and rnuA

n = uC
n for some r ∈ R0. Thus the equivalence class of an even Moore

algebra of degree d is determined by a pair (n, r) where n is the height and r ∈
R×0 /R×0

n
is an element in R×0 modulo the subgroup of nth powers.

Proof. Let A have height n. Then uA(t) =
∑∞

i=n uA
i ti. First we prove that there

exists a power series h(t) such that uA(h(t)) = uA
n tn. Let k1 ∈ Z the smallest integer

for which uA
k1
6= 0 and k1 > n. If no such integer exists then uA(t) is already in the

desired form uA(t) = uA
n tn. Otherwise consider the polynomial

h1(t) = t− tk1−(n−1)uA
k1

nuA
n

.

Then by Taylor’s formula

uA ◦ h1(t) = uA(t)− [
d

dt
uA(t)]

tk1−(n−1)uA
k1

nuA
n

mod (tk1+1)

= uA
n tn mod (tk1+1).

Now let k2 > n be the smallest integer for which the coefficient at tk2 in uA ◦ h1(t)
is nonzero. Clearly k2 > k1. Then just as before we could find h2(t) for which
uA◦h1◦h2(t) = uA

n tn mod (tk2). Continuing this process we construct the sequence
h1, h2, . . . of polynomials of the form hi = t + ait

ki for some ai ∈ R. The sequence
{h1 ◦ h2 ◦ . . . ◦ hi} clearly converges in the t-adic topology and denoting its limit by
h(t) we obtain uA(h(t)) = uA

n tn.
In other words we proved that A is weakly equivalent to the Moore algebra A′

having the characteristic series uA′(t) = uA
n tn. Similarly C is equivalent to a Moore
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algebra C ′ with characteristic series uC′(t) = uC
mtm. The rest is clear: A′ and C ′

are equivalent if and only if
1. n = m and
2. uA′(rt) = rnuA

n tn = uC′(t) = uC
n tn for some r ∈ R×0

which means that rnuA
n = uC

n .

Remark 6.5. The assumption that R has characteristic 0 could be replaced with
the assumption that height(A)=height(C) does not divide char(R). The proof is
the same verbatim.

Remark 6.6. Notice that the statement of Theorem 6.4 is vacuous in the case of
height 1. Indeed, an even Moore algebra having the characteristic series

∑∞
i=1 uit

i

with u1 invertible is trivial since the underlying complex ΣdR → R is contractible.
To get a nontrivial even Moore algebra of height 1 we have to have nonzero non-
invertible (homogeneous) elements in the ground ring R. This is the situation that
arises in the study of MU -modules and MU -algebras in stable homotopy theory, cf.
[28] and [18]. In order to obtain reasonable classification results we need to impose
certain conditions on R.

Definition 6.7. Let R be a (graded) complete discrete valuation ring with uni-
formizer π and u(t) =

∑∞
i=1 uit

i is a power series with coefficients in R. We will call
u(t) trivial if u(t) = πt and canonical if there exists an n for which

1. u1 = π;
2. π divides u2, u3, . . . , un−1;
3. un is invertible;
4. un+1 = un+2 = . . . = 0.

Remark 6.8. A canonical power series u(t) could be defined equivalently as tP (t)
where P (t) is an Eisenstein polynomial.

Proposition 6.9. Let R be a graded complete discrete valuation ring with residue
field of characteristic 0 and uniformizer π. Let A be an even Moore algebra hav-
ing characteristic series uA(t) =

∑∞
i=1 uA

i ti where uA
1 = rπ, r ∈ R×. Then A is

weakly equivalent to the algebra having either trivial or canonical characteristic se-
ries. Moreover two Moore algebras having canonical characteristic series are weakly
equivalent if and only if these series coincide.

Remark 6.10. Recall, that a complete discrete valuation ring R with residue field
R/π of characteristic zero is isomorphic to the formal power series ring R/π[[T ]], in
particular R is a vector space over R/π.

Proof. In the interests of readability we suppress the superscript A and will write
u(t) =

∑∞
i=1 uit

i for uA(t) =
∑∞

i=1 uA
i ti. First we could assume that u1 = π or else

use the substitution u(t) → u(r−1t) to reduce u(t) to the desired form. Next suppose
that all coefficients of u(t) are divisible by π. Then clearly using substitutions u(t) →
u(t + antn) for suitable n and an we could eliminate these coefficients one by one
and reduce u(t) to the trivial form. Now assume that not all ui are divisible by π
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and denote by uk the first such. In other words u(t) =
∑k

i=1 uit
i mod (tk+1) where

ui = 0 mod (π) for i = 1, 2, . . . , k − 1 and uk is invertible in R.
If for i > k the coefficients ui are zero we are done since u(t) is already in the

canonical form. If not let l(u) be the maximal integer l for which ui = 0 mod (πl),
i = k + 1, k + 2, . . .. Notice that l(u) could be zero. Our first step would be to find
an appropriate substitution u(t) → u(h1(t)) such that l(u(h)) > l(u). Set

s1 := min{i : i > k, πl(u) divides ui but πl(u)+1 does not divide ui}.
Then we have

u(t) =
k∑

i=1

uit
i + us1t

s1 mod (tkπ1(u)+1 + ts1+1πl(u)).

Let h1(t) := t − us1
kuk

ts1−(k−1) (recall that uk is invertible). Then Taylor’s formula
implies that

u ◦ h1(t) =
k∑

i=1

vit
i mod (tkπ1(u)+1 + ts1+1πl(u))

where v(t) :=
∑k

i=1 vit
i is a canonical polynomial. Notice that l(v) > l(u). If l(v) >

l(u) then our first step is completed. Assuming that l(v) = l(u) set

s2 := min{i : i > k, πl(v) divides vi but πl(v)+1 does not divide vi}.
Observe that l(u) = l(v) implies s2 > s1. It follows that

v(t) =
k∑

i=1

vit
i + us2t

s2 mod (tkπ1(u)+1 + ts2+1πl(u)).

Then just as before set h2(t) := t − vs2
kvk

ts2−(k−1) and consider the series w(t) :=
v(h2(t)) = u ◦ h1 ◦ h2. Continuing in this way we construct a sequence of power
series {u◦h1 ◦h2 ◦ . . .◦hn}. This is clearly a Cauchy sequence in the t-adic topology
and converges (or perhaps stops at a finite stage) to a power series u1(t) having the
property that l(u1) > l(u). Notice that u1(t) = u(h1(t)) where h(t) = h1 ◦ h2 ◦ . . ..
Moreover we have h1(t) = t mod (πl(u)). This completes the first step. It is clear
how to proceed further. Repeating the above procedure we find power series h2(t)
and u2(t) := u1(h2(t)) such that h1(t) = t mod (πl(u1)) and l(u2) > l(u1). The
sequence {h1◦h2◦. . .◦hn} is a Cauchy sequence in the π-adic topology and converges
to h(t). Then u(h(t)) is a canonical polynomial.

We still need to prove that two even Moore algebras having different canonical
polynomials cannot be equivalent. In other words we have to show that if u(t) =∑n

i=1 uit
i and v(t) =

∑m
i=1 vit

i are two canonical polynomials and h(t) =
∑∞

i=1 hit
i

is such that

u(h(t)) = v(t) (6.2)

then u(t) = v(t). Indeed since u1 = v1 = π the equality (6.2) implies that h1 =
1 so we have h(t) = t + h̃(t) where h̃(t) = 0 mod (t2). Further from (6.2) we
obtain un(h(t))n = vmtm mod (π). It follows that m = n, un = vm mod (π)
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and (h(t))n = tn mod (π). Since the residue field R/π has characteristic 0 the last
equality implies h(t) = t mod (π) or equivalently h̃(t) = 0 mod (π). Now suppose
that h̃ 6= 0 and let k be the unique integer for which πk divides h̃(t) and πk+1 does
not divide h̃(t). By Taylor’s formula

u(h(t)) = u(t + h̃(t)) = u(t) + u′(t)h̃(t) mod (πk+1).

Since uk 6= 0 mod (π) the series u′(t)h̃(t) mod (πk+1) will necessarily have
nonzero terms of order > k in t. This is a contradiction with our assumption that
u(h(t)) = v(t) is a canonical polynomial of degree k. With this our proposition is
proved.

Remark 6.11. One would naturally like to know to whether Proposition 6.9 re-
mains true if the residue field R/π has characteristic p. Suppose that is the case
and let A be an even Moore algebra having characteristic series uA(t) =

∑∞
i=1 uA

i ti

with u1 = rπ, r ∈ R×. If all coefficients ui, i = 2, 3, . . . of uA(t) are divisible by
π then exactly as in the proof of Proposition 6.9 one shows that A is equivalent
to a Moore algebra having characteristic series u(t) = t. If not, let uA

k be the first
invertible coefficient in u(t). If p does not divide k then the proof of Proposition 6.9
carries over verbatim to show that uA(t) can be reduced to a canonical form and
this canonical form is unique. Therefore in this case we have an exact analogue of
Proposition 6.9. If p does divide k the classification seems to be much more subtle.

7. Cohomology of Moore algebras

In this section we compute Hochschild cohomology of Moore algebras of even
degree subject to the condition that the first coefficient of its characteristic series
is a nonzero divisor and discuss their connection with totally ramified extensions
of local fields. It would be interesting to calculate Hochschild cohomology for odd
Moore algebras. In principle the same method should apply, however in order to get
a sensible answer one has to place some restrictions on characteristic series and it
is not immediately clear what these restrictions should be.

Proposition 7.1. Let A be the Moore algebra of even degree over R with charac-
teristic series u(t) = uA(t). Let us assume that the coefficient u1 = uA

1 of u(t) is
not a zero divisor in R. Then there is an isomorphism of R-modules HH∗(A,A) ∼=
R[[t]]/(u′(t)) where u′(t) denotes the derivative of the power series u(t).

Proof. We will compute HH∗(A,A) as the homology of the operator [?,m∗] on the
space of normalized (continuous) derivations of TΣA∗ = R〈〈τ, t〉〉. Recall that m∗ =
u(t)∂τ +adτ − τ2∂τ . Let ξ be a normalized derivation so ξ = A(t)∂τ +B(t)∂t. Then
completely automatic calculations show that [ξ, m∗] = u′(t)B(t)∂τ . The condition
that u1 is not a zero divisor in R implies that u′(t) is not a zero divisor in R[[t]].
Therefore the kernel of the operator [?,m∗] consists of derivations of the form A(t)∂τ

whereas its image is precisely the derivations of the form u′(t)B(t)∂τ and we are
done.

Let us now look at the Hochschild cohomology of an even Moore algebra A from
the point of view of the associated dga Ã. Without loss of generality we may suppose
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that Ã is a cell R-module. Again, our standing assumption is that uA
1 is not a zero

divisor in R so the internal homology of A is R/uA
1 . We have the classical Hochschild

(bi)complex C∗(Ã, Ã):

Ã → Hom(Ã, Ã) → . . . → Hom(Ã⊗n, Ã) → . . . (7.1)

Associated to this bicomplex is the spectral sequence with the E1-term E1
∗n =

H∗(Hom(Ã⊗n, Ã)). Since Ã is weakly equivalent to a finite cell R-module the nat-
ural map Hom(Ã, R)⊗ Ã → Hom(Ã, Ã) is a homology isomorphism. We have the
following sequence of homology isomorphisms:

Hom(Ã⊗2, Ã) ' Hom(Ã, R)⊗Hom(Ã, Ã)
' Hom(Ã, R)⊗ Ã⊗Ã Hom(Ã, Ã) ' Hom(Ã, Ã)⊗Ã Hom(Ã, Ã).

More generally we have the following homology isomorphism

Hom(Ã⊗n, Ã) ' Hom(Ã, Ã)⊗Ã Hom(Ã, Ã)⊗Ã . . .⊗Ã Hom(Ã, Ã) (n times).

Further a straightforward computation shows

H∗Hom(Ã, Ã) = Ext∗R(R/uA
1 , R/uA

1 ) = ΛR/uA
1
(z)

where ΛR/uA
1
(z) denotes the exterior algebra over R/uA

1 on one generator z of degree
−|uA

1 | − 1 = −d− 1. So the E1-term of our spectral sequence has the form

H∗(A) = R/uA
1 → ΛR/uA

1
(z) → . . . → (ΛR/uA

1
(z))⊗n → . . .

This is the usual cobar complex for the Hopf algebra H∗Hom(Ã, Ã) = ΛR/uA
1
(z)

and its homology is

E∗∗
2 = Ext∗∗Λ

R/uA
1

(z)(R/uA
1 , R/uA

1 ) = R/uA
1 [[t]] (7.2)

where t has degree −d − 2. For dimensional reasons E2 = E3 = . . . = E∞. Next
notice that the the spectral sequence E∗∗

1 is multiplicative via the pairing

Hom(Ãi, Ã)⊗Hom(Ãj , Ã) → Hom(Ãi+j , Ã⊗ Ã) → Hom(Ãi+j , Ã)

where the second map is induced by the multiplication Ã ⊗ Ã → Ã. This pairing
turns E∗∗

1 into a graded ring and it follows that (7.2) is in fact an isomorphism of
rings.

So we proved the following

Proposition 7.2. The Hochschild cohomology ring of an even Moore algebra of
degree d over R with uA

1 ∈ R a nonzero divisor is a complete filtered ring whose
associated graded ring is a formal power series algebra over R/uA

1 on one generator
in degree −d− 2.

Remark 7.3. The arguments above would be considerably simpler if we knew that
the spectral sequence of Proposition 4.9 were multiplicative. Unfortunately this is
not known yet.

Now let R be a (graded) discrete valuation ring with the uniformizer π = u1 and
consider the unit map f : R → H∗(A,A) where A is as in Proposition 7.2. Since
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the filtered ring H∗(A,A) has a formal power series ring over the field R/(π) for its
associated graded ring we conclude that H∗(A,A) has no zero divisors. Therefore the
map f is either an injection or its kernel is the maximal ideal (π) ⊂ R. Furthermore
the ring H∗(A,A) is itself a graded discrete valuation ring. Using Proposition 7.1
we see that the kernel of f is (π) if and only if u′(t) = 0 mod (π). The last equality
is equivalent to u(t) = 0 mod (π) if char(R/π) = 0 or to u(t) = v(tp) mod (π)
for some power series v(t) if char(R/π) = p.

Now suppose that f is injective. Then Proposition 7.2 implies that u′(t) is not
divisible by π which means that there exists n ∈ Z for which nun is invertible in
R. Consider the smallest such n; it obviously equals the height of the series u(t)
reduced mod (π). By the Weierstrass Preparation Theorem the ring H∗(A, A) is
free of rank n over R. Therefore we obtain the following

Corollary 7.4. Let R be a graded discrete valuation ring with uniformizer π and
residue field R/π of characteristic p. Let A be an even Moore algebra over R with
characteristic series u(t) =

∑∞
i=1 uA

i ti where uA
1 = π. Then

(i) The ring H∗(A, A) is either an R/π-algebra or a totally ramified extension of
R whose ramification index equals the height of the series u(t) mod (π).

(ii)The ring H∗(A,A) is an R/π-algebra if and only if u(t) = v(tp) mod (π) for
some polynomial v(t).

Remark 7.5. Varying u(t) we could get ramified extensions of arbitrary index that
is coprime to p. In particular if charR/π 6= 2 the inclusion f : R ↪→ H∗(A, A) could
be an isomorphism. A∞-algebras having the property that f is an isomorphism
are analogous to central separable algebras which were studied extensively in ring
theory, cf. [2] and we hope to return to them in the future.

We conclude this section with a few simple examples illustrating our results. Let
R = Ẑp[v, v−1] where Zp is the ring of p-adic integers for p 6= 2 and v is a formal
Laurent variable of degree 2. Consider two A∞ structures m1 and m∞ on the com-
plex A = {R p→ R}. These will in fact be differential graded algebra structures, i.e.
m1

i = m∞
i = 0 for i > 2. Namely, set m∞

2 [y|y] = 0 and m1
2[y|y] = v[1]. In other

words (A,m∞) is just the exterior algebra on y in degree 1 with differential dy = p
while (A,m1) is the dga generated by y with the same differential dy = p but with
the relation y2 = v. Then Hochschild cohomology of (A,m∞) is just the algebra
R/p[[t]] = Fp[v, v−1][[t]] while Hochschild cohomology of (A, m1) is the ring R itself
(the ramification index equals 1 in this case). The notations m1 and m∞ suggest
that there are also mn’s for finite n. These indeed exist and could be obtained by
setting mn

i [y]⊗i = 0 for i 6= n and mn
n[y]⊗n = vn[1]. The Hochschild cohomology of

(A,mn) realizes a totally ramified extension of the p-adic integers of index n which
is not divisible by p.

Concluding remarks. It should be noted that our present approach to the mod-
uli problem is rather ad hoc and it would be valuable to consider it from the more
general point of view. Here we mention the (still unpublished) preprint of M. Sch-
lessinger and J. Stasheff [27] where this program is carried out for rational homotopy
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types. These authors effectively study the commutative A∞ structures on a com-
plex with fixed homology ring H over the field of rationals. They replace H with
its multiplicative resolution ΛZ, and consider the graded Lie algebra Der(ΛZ) of
derivations of H. Then it turns out that the moduli space under consideration is
represented by the standard construction A(Der(ΛZ)) which computes homology
of the Lie algebra Der(ΛZ). This simple and elegant approach is very appealing
and we feel that it is possible to extend it in the context of A∞-algebras. The role
of Der(ΛZ) should be played by the Hochschild complex C∗(H, H).

It is now clear that the set of homotopy types of dga’s with a fixed homology
algebra is only π0 of the ‘true’ moduli space. The other invariants are picked up by
monoids of homotopy self-equivalences corresponding to different path components
of the moduli space. This point of view is developed in [3]. However in this context
the problem of computing π0 differs sharply from that of computing the higher
homotopy groups. Indeed, in [19] we showed that, essentially, higher homotopy
groups of mapping spaces could be reduced to (a version of) Hochschild cohomology.
In fact in the cited reference the result is obtained for S-algebras but the arguments
are still valid for dga’s.

Also relevant to this problem is the recent paper by V. Hinich [11] where ho-
motopy invariant deformation theory was constructed in the abstract setting of an
algebra over an operad. However the approach in the cited reference is restricted
by working in characteristic 0 and considering connected algebras only.

Another problem is to extend our results to the category of R-algebras in the
sense of [4]. In the simplest case, which is already highly nontrivial, one is asked to
classify the structures of KU -algebra structures on KU/p. Here KU is the spectrum
of topological K-theory which is known to be a commutative S-algebra. The related
problem is to compute THH(KU/p,KU/p), the topological Hochschild cohomology
of KU/p. We saw that in the algebraic case we obtain tamely ramified extensions of
the p-adics. Perhaps in the topological case one could get wildly ramified extensions?

References

[1] M.Ando, M.Hopkins, N.Strickland, Elliptic spectra, the Witten genus and the
theorem of the cube. Invent. Math. 146 (2001), no. 3, 595–687.

[2] M.Auslander, O.Goldman, The Brauer group of a commutative ring. Trans.
Amer. Math. Soc. 97 1960 367–409.

[3] W.Dwyer, D. Blanc and P. G. Goerss, The realization space of a PI-algebra:
a moduli problem in algebraic topology, preprint,
http://hopf.math.purdue.edu/cgi-bin/generate?/Blanc-Dwyer-Goerss/moduli.

[4] A. Elmendorf, I. Kriz, M. Mandell & P. May, Rings, modules, and algebras in
stable homotopy theory, with an appendix by M. Cole, Mathematical Surveys
and Monographs, 47, Amer. Math. Soc. (1997).

[5] M. Gerstenhaber, On the deformation of rings and algebras. Ann. of Math.
(2) 79 1964 59–103.

[6] E.Getzler, J.D.S.Jones, A∞-algebras and the cyclic bar complex. Illinois J.
Math. 34 (1990), no. 2, 256–283.



Homology, Homotopy and Applications, vol. 5(1), 2003 99

[7] E.Getzler, J.D.C.Jones, Operads, homotopy algebras and iterated integrals for
double loop spaces, preprint hep-th/9403055.

[8] P.Goerss, Associative MU -algebras, preprint,
http://www.math.northwestern.edu/∼pgoerss/.

[9] M.Hazewinkel, Formal groups and applications. Pure and Applied Mathemat-
ics, 78, Academic Press, Inc. 1978.

[10] V. Hinich,DG coalgebras as formal stacks. J. Pure Appl. Algebra 162 (2001),
no. 2-3, 209–250.

[11] V.Hinich, Deformations of homotopy algebras, preprint math.AG/9904145.

[12] B.Keller, Introduction to A-infinity algebras and modules. Homology, Homo-
topy and Applications 3 (2001), 1-35.

[13] M.Kontsevich, Formal (non)commutative symplectic geometry. The Gelfand
Mathematical Seminars, 1990–1992, 173–187, Birkhäuser, Boston, MA, 1993.
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