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REAL COBORDISM AND GREEK LETTER ELEMENTS IN THE
GEOMETRIC CHROMATIC SPECTRAL SEQUENCE

PO HU and IGOR KRIZ

(communicated by Gunnar Carlsson)

Abstract
In this paper, we give a basic application of our Adams-

Novikov spectral sequence analogue based on Real cobordism.
Concretely, using that technique, we prove restrictions on
Greek letter elements which can be permanent cycles or targets
of differentials in the geometric chromatic spectral sequence.

1. Introduction

In a previous paper [5], the authors investigated extensively the Landweber-
Araki Real cobordism spectrum MR ([1, 7]), and its stable summand at p = 2
called BPR. An Adams-like spectral sequence based on BPR was constructed, and
homotopy groups of many spectra related to BPR were calculated.

The goal of the present note is to begin investigating the question as to how
BPR-theory contributes to the known information about stable homotopy groups
of spheres. This question is not easy. The dimension to which stable stems have been
calculated to date is, (if somewhat hazy), certainly high enough to make calculating
past that point from scratch a substantial challenge for any new method. At this
point, the authors did not get far enough in calculating with BPR to get any new
information that way. On the other hand, any effort to compare the BPR-based
spectral sequence with other known spectral sequences is fraught with the usual
difficulty: elements can get renamed.

Nevertheless, there is one basic case when a rigorous comparison can be made,
namely on the edge of a spectral sequence. To illustrate this, assume we have a series
of cofibrations

Xn−1 → Yn−1 → Xn (1.1)

where X−1 = S0. Then we have a spectral sequence

E1 = π∗Yn−1 ⇒ π∗S0. (1.2)

An element ω ∈ π∗Yn−1 is a permanent cycle if it lifts to π∗Xn−1. Now however it
may not even be easy to know π∗Yn−1 explicitly, and suppose we use the Adams-
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Novikov spectral sequence to calculate it. Suppose further that in this spectral
sequence, ω has filtration degree 0, i.e. has non-trivial Hurewicz homomorphism
image ω0 ∈ BP∗Yn. Suppose further that in BP -homology, (1.1) induce short exact
sequences, so we cannot use BP to obtain a necessary condition for ω to lift. But
now we have a factorization of the unit 1 ∈ π∗BP of the form

S0 // BPR κ // BP

(actually, BPR is a Z/2-equivariant spectrum, so we should really write BPRZ/2,
but that is a detail for now). Suppose we can completely calculate the map

BPR∗Xn → BPR∗Yn (1.3)

and suppose we know that no element ω1 ∈ BPR∗Yn with κ∗ω1 = ω0 is in the
image of (1.3). Then ω cannot be a permanent cycle in the spectral sequence (1.2).

On the other hand, suppose we know that there is a lift ω2 ∈ BPR∗Xn, and that
further any such lift (of any choice of ω1) has the property that

δ∗ω2 6= 0

where δ∗ : BPR∗Xn−1 → ΣnBPR∗S0 is the connecting map. Then the in particular
the same must hold for any ω2 which lifts to stable homotopy, and we conclude that
ω cannot be a target of a differential in (1.2).

In this note, we shall apply this simple method to the geometric chromatic spec-
tral sequence, where we shall see that strikingly, it does give new information on
possible permanent cycles in all families of Greek-letter elements, thus generalizing,
and in fact even somewhat explaining, the numerology of the known permanent
cycles in α, β, γ. This signals that however difficult to extract it may be, BPR does
contain new useful information about the stable stems. Throughout this note, we
work locally at the prime 2, as BPR is just BP at odd primes. Nevertheless, al-
gebraic cobordism (cf. [6]) gives tantalizing hints of some possible analogues of the
present method at odd primes. Such extension, however, at present is unknown, as
is the equally interesting question of possible connections of BPR with the root
invariant.

To state our results, we must recall the chromatic spectral sequence of Miller-
Ravenel-Wilson [8]:

E1 = ⊕
n

ExtBP∗BP (BP∗, v−1
n BP∗/(v∞0 , ..., v∞n−1)) ⇒ ExtBP∗BP (BP∗, BP∗).

(1.4)
In the E1-term (1.4), an element of Ext0BP∗BP (BP∗, v−1

n BP∗/(v0, ..., vn−1)) repre-
sented by

vk
n

v
in−1
n−1 v

in−2
n−2 · ... · vi0

0

mod (v0, ..., vn−1) (1.5)

is denoted by

α
(n)
k/in−1,in−2,...,i0

(1.6)
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where α(n) is the n-th Greek letter. If the numbers i0, ...i`−1 are equal to 1, they
are omitted.

In [9], Ravenel constructed BP -local spectra Yn such that

BP∗Yn = v−1
n BP∗/(v∞0 , ..., v∞n−1),

and a geometric chromatic spectral sequence

E1 = ⊕
n

π∗Yn ⇒ π∗(S0)∧2 . (1.7)

At this point, relatively little is known about the spectral sequence (1.7). However,
call the element (1.5) a geometric Greek letter element if it is the image of an element
of π∗Yn via the Hurewicz map π∗Yn → BP∗Yn, i.e. an element of the E1-term of the
geometric chromatic spectral sequence (1.7). In that case, we also use the notation
(1.6) for that element. Then the main results of this paper are:

Theorem 1.8. If α
(n)
k/in−1,in−2,...,i`

is a geometric Greek letter element which is a
permanent cycle in the geometric chromatic spectral sequence, then there exists a j,
0 6 j 6 ` (we can have ` = n) such that

k(2n − 1) ≡
n−1∑
m=0

im(2m − 1) + 2j − 1 mod 2j+1.

Theorem 1.9. Let

kn = n + 2 if n is even
2n + n + 2 if n is odd.

Then a geometric Greek letter element α
(n)
k is not a target of a differential in the

geometric chromatic spectral sequence if k ≡ kn mod 2n+1, and supports a differ-
ential in the geometric chromatic spectral sequence if k ≡ kn + 2n mod 2n+1.

For n = ` = 1, Theorem 1.8 says that if αk is a permanent cycle then k is not
congruent to 3 mod 4, which is well known.

For n = ` = 2, Theorems 1.8, 1.9 imply that βk is not a permanent cycle when k
is divisible by 8. For n = 2 and ` = 1, Theorem 1.8 says that if βk/i1 is a permanent
cycle, then k + i1 is not congruent to 1 mod 4. Doug Ravenel points out that
the first examples of these elements are β8 and β8/5, and conjectures that we have
d3(β8) = η3β8/3 and d3(β8/5) = η3η5 in the Adams-Novikov spectral sequence.

For n = ` = 3, Theorem 1.8 implies that if γk is a permanent cycle, then k is not
congruent to 5 mod 16. The first element excluded is γ5, in dimension 59.

Theorems 1.8, 1.9 should not be thought of as results directly about the stable
2-stems (π∗S0)(2), since they do not give any sufficient condition when the said ele-
ments are permanent cycles in the geometric chromatic spectral sequence. However,
the nilpotence and periodicity theorems of Devinatz, Hopkins and Smith [2], [3] give
a general existence theorem for geometric Greek letter elements as elements of sta-
ble 2-stems. There was, as far as we know, no detection theorem for such elements
beyond the γ family, and this was a well known problem (although it is usually
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phrased in terms of the Adams-Novikov spectral sequence). The present paper does
contribute to answering this question. The difficulty is that the existence theorems
[2],[3] are phrased globally, and as far as we know, concrete names of elements which
these theorems construct have not been worked out. Therefore we still do not know
what, if any, is the intersection between the existence and uniqueness theorems.

The present paper is organized as follows: Preliminaries, including the construc-
tion of the spectra Yn, are recalled in Section 2. The necessary BPR-homology
calculations are presented in Section 3, and proofs of Theorems 1.8, 1.9 following
the method we outlined are deduced. The BPR-calculations are proved in Section
4.

2. Preliminaries

First we shall recall the construction of the spectra Yn in (1.7) ([9]). We refer
the reader to [3] for the definition of vn−1-spectra and vn-self maps.

Lemma 2.1. Let f : V → V ′ be any map of vn−1-spectra (see [3]). Let v : ΣkV →
V , v′ : ΣkV ′ → V ′ be vn-self maps. Then there exists an N such that the following
diagram commutes up to homotopy:

ΣNkV
f //

vN

²²

ΣNkV ′

v′N

²²
V

f // V ′.

(2.2)

Proof: Consider the two maps

Dv ∧ 1, 1 ∧ v′ : ΣkDV ∧ V ′ → DV ∧ V ′.

They are both vn-self maps, so by Hopkins-Smith [3], there is an N such that

(Dv ∧ 1)N ' (1 ∧ v′)N .

Therefore, considering f as an element of π∗(DV ∧ V ′), we have

(Dv ∧ 1)N
∗ (f) = (1 ∧ v′)N

∗ (f). (2.3)

But the two sides of (2.3), considered as maps ΣNkV → V ′, are the two ways around
the diagram (2.2). ¤

Now Ravenel’s construction is essentially as follows: One constructs a spectrum
X ′

n−1 as a telescope of vn−1-spectra

Vn−1,1
fn−1,1 // Vn−1,2

fn−1,2 // Vn−1,3
fn−1,3 // . . . (2.4)

For n = 0, let X ′
−1 = S0 = V−1,i for all i, where the maps f−1,i are equal to the

identity. Provided (2.4) is constructed, we next construct a spectrum Y ′
n−1 and a

cofibration sequence of the form

X ′
n−1 → Y ′

n−1 → X ′
n. (2.5)
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Concretely, by Lemma 2.1, we can inductively find vn-self maps

vn,i : Σkn−1,iVn−1,i → Vn−1,i

and numbers Nn−1,i > 1 such that

kn−1,i+1 = Nn−1,ikn−1,i

and the following diagrams commute:

Σkn−1,i+1Vn−1,i

fn−1,i//

(vn,i)
Nn−1,i

²²

Σkn−1,i+1Vn−1,i+1

vn,i+1

²²
Vn−1,i

fn−1,i // Vn−1,i+1.

Then consider the diagram

Vn−1,1
fn−1,1 //

vn,1

²²

Vn−1,2
fn−1,2 //

vn,2

²²

Vn−1,3
fn−1,3 //

vn,3

²²

. . .

Σ−kn−1,1Vn−1,1
f ′n−1,1

// Σ−kn−1,2Vn−1,2
f ′n−1,2

// Σ−kn−1,3Vn−1,3
f ′n−1,3

// . . . .

(2.6)

where

f ′n−1,i = fn−1,i(vn,i)Nn−1,i−1.

The cofiber of the vertical rows of (2.6) is, by definition,

Vn,1
fn,1 // Vn,2

fn,2 // Vn,3 // . . . . (2.7)

Now let Y ′
n−1 be the telescope of the bottow row (2.6), and let X ′

n be the telescope
of (2.7). Thus, we have (2.5). One easily proves by induction that when smashing
(2.5) with BP , one obtains the cofiber sequence of MU -modules

BP/(v∞0 , ...v∞n−1) → v−1
n BP/(v∞0 , ..., v∞n−1) → BP/(v∞0 , ..., v∞n ). (2.8)

Now absent a proof of the telescope conjecture, we do not know that the Adams-
Novikov spectral sequence converges for X ′

n, Y ′
n, n > 1. However, Ravenel [9] proved

that if we denote by Xn, Yn the Bousfield localizations of X ′
n, Y ′

n at BP , then the
Adams-Novikov spectral sequence

ExtBP∗BP (BP∗, v−1
n BP∗Yn−1/(v∞0 , ..., v∞n−1)) ⇒ π∗(Yn−1) (2.9)

converges. We call (2.9) the Chromatic Adams-Novikov spectral sequence). Also,
since stable Bousfield localization preserves cofibration sequences, we have cofibra-
tions

Xn−1
αn−1 // Yn−1

γn−1 // Xn. (2.10)

Applying π∗ to (2.10), we obtain an exact couple, which leads to the spectral se-
quence (1.7). Ravenel [9] proved that this spectral sequence converges. Note that
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we now have the following diagram of spectral sequences

⊕ExtBP∗BP (v−1
n BP∗/(v∞0 , ...v∞n−1))

px iiiiiiiiiiiiiiii

iiiiiiiiiiiiiiii
CANSS,E2

'/VVVVVVVVVVVVVVVV

VVVVVVVVVVVVVVVV
CSS,E1

⊕π∗Yn−1

&.UUUUUUUUUUUUUUUUU

UUUUUUUUUUUUUUUUU

GCSS,E1

ExtBP∗BP (BP∗)

ow hhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhh

ANSS,E2

(π∗S0)∧2 .

(2.11)
The superscript of each arrow indicates the abbreviated name of the spectral se-
quence, and its initial term. The Greek letter elements (1.6) are native in the top
corner of (2.11). Geometric Greek letter elements are those which are permanent
cycles in the CANSS, and therefore live in the left corner of (2.11). Theorems 1.8,
1.9 concern aspects of the behaviour of these elements in the GCSS, caused by
Real cobordism. This will be discussed in the next section. Note, however, that the
statements of the Theorems would be stronger if we could phrase them in terms of
Greek letter elements of the Adams-Novikov spectral sequence, i.e. those which are
permanent cycles of the CSS, and therefore live in the right corner of (2.11). The
reason this would be better is that the CSS is purely algebraic, and hence in prin-
ciple completely computable. Unfortunately, we were unable to prove such stronger
results using the present methods. Without referring to the methods, we can say
that is possible for renaming to occur in the ANSS, so that elements labelled as
Greek letters do not correspond to such elements in the GCSS.

3. Real cobordism and proof of the main results

We begin by recalling some facts about Real cobordism, proved in [5]. The Real
cobordism spectrum MR is a Z/2-equivariant spectrum obtained by considering the
Z/2-action on MU by complex conjugation. This can be taken almost literally, if
we consider the usual prespectrum defining MU , consisting of Thom spaces of n-
dimensional universal complex bundles. Then complex conjugation acts non-trivially
on both the spaces and structure maps of the prespectrum: denoting by α the 1-
dimensional real sign representation of Z/2, then the 1-point compactification of
C with respect to complex conjugation is S1+α. As a result, MR is an RO(Z/2)-
graded spectrum, or spectrum indexed by a complete Z/2-universe. The reader is
referred to [5] for details and other relevant references.

Before proceeding further, we will make certain crucial conventions: First of all,
all Z/2-equivariant spectra will be RO(Z/2)-graded, and we will use the subscript
? to denote RO(Z/2)-graded coefficients; therefore, the possible dimensions repre-
sented by ? are k + `α, k, ` ∈ Z. We will use the subscript ∗ if we are referring only
to the “twist 0” dimensions, i.e. k + 0α.

Next, we will make notational conventions of certain RO(Z/2)-graded homotopy
and homology elements. First, let a be the element of π−αS0

Z/2 represented by the
non-trivial unstable map S0 → Sα. Next, recall from [5] that the Z/2-equivariant
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Borel cohomology ring with coefficients in Z/2 is

Z/2[σ, σ−1][a].

The element σ has dimension α − 1. This element does not lift to the coefficients
of S0

Z/2 (or MR), but as we shall see, its powers survive as multipliers of certain
elements of MR?. Also, using the fact that Milnor manifolds are defined over R, we
get a map

BP? → MR?

where by BP? we mean Z[v1, v2, ...], but where vi is in dimension (2i − 1)(1 + α).
We will also denote by In the ideal (v0, v1, ...vn−1) in BP?. We will rely on the ?
to indicate the fact that we are working in the RO(Z/2)-graded dimensions (this
notation was also used in [4]).

Araki [1], [5] has developed a theory of Real-oriented Z/2-spectra very parallel
with the classical theory of complex-oriented spectra. In particular, 2-locally, there is
a Quillen-idempotent e : MR→ MR. The spectrum eMR is denoted by BPR, and
is easier to work with. When forgetting Z/2-equivariant structure, BPR becomes
just BP , but when applying the geometric fixed point functor to BPR, one obtains
HZ/2. Recall that a G-spectrum E is called complete with respect to G-action if the
canonical map E → F (EG+, E) is an equivalence. A crucial result stated in [5] is

Theorem 3.1. The spectrum BPR is complete with respect to Z/2-action and we
have

BPR? =

⊕
`=(2s+1)2n∈Z

Ker(BP?[a]/(a2i+1−1vi|i > 0) →

BP?[a]/(v0, ..., vn, a2i+1−1vi|i > n + 1)) · σ2`

In the summand for ` = 0, we count n as ∞. Moreover, the multiplicative structure
is the obvious one, i.e. as a subring of

BP?[σ, σ−1, a]/(a2i+1−1vi|i > 0).

¤

We now recall from [5] that MR is also a Z/2-equivariant E∞ ring spectrum,
and therefore we can construct cofiber sequences of MR-modules

BPR/(v∞0 , ..., v∞n−1) → v−1
n BPR/(v∞0 , ..., v∞n−1) → BPR/(v∞0 , ..., v∞n ). (3.2)

Here we consider vi ∈ BP?. The significance of these Z/2-equivariant spectra for
our purposes is in the following

Proposition 3.3. When smashing (2.10) with BPR, we obtain the cofibration se-
quence of Z/2-equivariant spectra (3.2).

Our main calculational result on (3.2) is contained in the following
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Proposition 3.4. The spectrum BPR/(v∞0 , v∞1 , ..., v∞n−1) is complete with respect
to Z/2-action and we have

(BPR/(v∞0 , ..., v∞n−1))? =
n−1⊕
k=0

BP?/(v0, ..., vk−1, v
∞
k , ...v∞n−1)[σ

±2k+1
][a]/(a2k+1−1)

·{v−1
0 · ... · v−1

k−1σ
−2k+1}

⊕BPR?/(σ2`0v0, σ
4`1v1, ..., σ

2n`n−1vn−1){v−1
0 · ... · v−1

n−1σ
−2n+1}.

(3.5)

We should explain that in our notation, when we are writing algebra, elements
enclosed in the braces {} indicate additive generators, while elements enclosed in the
brackets [] indicate multiplicative (polynomial) generators. While the notation for
the generators in (3.5) indicates their origin in the computation, at the moment the
significance of introducing additive generators is just suspension by their dimension.

Corollary 3.6. The coimage of the forgetful map

(BPR/(v∞0 , ..., v∞n−1))?
λ // (BP/(v∞0 , ...v∞n−1))? (3.7)

is spanned by the following elements:

n−1⊕
j=0

BP?/(v0, ..., vj−1, v
∞
j , ..., v∞n−1){v−1

0 · ... · v−1
j−1 · σ−2j+1}[σ±2j+1

]

∞⊕
j=n

BP?/(v0, ..., vj−1){v−1
0 · ... · v−1

n−1 · vj · σ−2n+1}[σ±2n+1
]

(3.8)

where, as before, dim(vk) = (2k − 1)(1 + α) and dim(σ) = α− 1.

Proof: It will be obvious from the proof of Proposition 3.4 via the Borel cohomology
spectral sequence (see next section) that the elements (3.8) map non-trivially, while
all other elements are multiples of a. ¤

Finally, we shall need information on the connecting maps of the cofibration
sequences (3.2). This is given by

Proposition 3.9. The connecting map

∂n : (BPR/(v∞0 , ..., v∞n ))? → Σ(BPR/(v∞0 , ..., v∞n−1))? (3.10)

associated with (3.2) is a map of BPR?-modules given by

∂n : σ−2n

v−1
n 7→ a2n+1−1 (3.11)

on the last summand (3.5), and by 0 on the other summands.

Propositions 3.4, 3.9, 3.3 will be proved in the next section. We will now apply
these propositions to prove our main results.
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Proof of Theorem 1.8: Consider the diagram

π∗Xn−1
ι //

π∗αn−1

²²

BP∗Xn−1 = BP∗/(v∞0 , ..., v∞n−1)

BP∗αn−1

²²
π∗Yn−1

κ // BP∗Yn−1 = v−1
n BP∗/(v∞0 , ..., v∞n−1)

(3.12)

where ι, κ are Hurewicz maps. The Greek letter element (1.5) is an element of
BP∗Yn−1. Now assuming that (1.5) is a geometric Greek letter element is equivalent
to the existence of an element y ∈ π∗Yn−1 such that (1.5) is equal to κ(y). Assuming
further that y is a permanent cycle in the GCSS is equivalent to the existence of an
element x ∈ π∗Xn−1 such that

π∗αn−1(x) = y.

Since BP∗αn−1 is injective, this implies that

ι(x) =
vk

n

v
in−1
n−1 v

in−2
n−2 · ... · vi`

` v`−1 · ... · v0

(3.13)

(provided we are considering the Greek letter element figuring in the statement of
the Theorem).

But now the map ι factors as

π∗Xn−1
ν // BPR∗Xn−1

λ // BP∗Xn−1. (3.14)

Therefore, (3.13) must be in the image of λ in twist 0, i.e. of the form

λ(z), z ∈ BPR∗+0αXn−1. (3.15)

Inspecting (3.8), we find that by Corollary 3.6, the leading term of z must be of the
form

vk
n

v
in−1
n−1 v

in−2
n−2 · ... · vi`

` v`−1 · ... · v0

σ−2j+1+m·2j+1
(3.16)

with dimensional conventions as in Corollary 3.6. The requirement that (3.16) be
of twist 0 then gives the condition of the Theorem. ¤

Lemma 3.17. Let z ∈ BPR∗Xn−1 be such that

λ(z) =
vk

n

vn−1vn−2 · ... · v0
(3.18)

where

2n+1 | k(2n − 1)−
n∑

m=0

(2m − 1). (3.19)

Then the image of z under the connecting map

δ∗ : BPR?Xn−1 → ΣBP?Xn−2 → ... → ΣnBPR?S
0 (3.20)

is non-zero.
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Proof: Corollary 3.6 implies that under the condition (3.19),

z =
vk

n

vn−1vn−2...v0
σ−2n+1+m2n+1

mod (a) (3.21)

for some m ∈ Z. Note that the element on the right hand side of (3.21) is in the
summand of (3.8) which has j = n.

But by Proposition 3.9,

δ∗
(

vk
n

vn−1vn−2...v0
σ−2n+1+m2n+1

)
= vk

nσm2n+1
a

n−1∑
m=0

(2m+1−1)

, (3.22)

and, moreover,

Im(δ∗) ⊂ (a)

n−1∑
m=0

(2m+1−1)

. (3.23)

We conclude that the a-multiples in (3.21) map to

(a)

1+

n−1∑
m=0

(2m+1−1)

by δ∗, and hence cannot cancel the non-zero element (3.22). The Lemma follows. ¤

Proof of Theorem 1.9: We begin with the second statement, which is a conse-
quence of Theorem 1.8. To this end, note that for i0 = ... = im−1 = 1, the condition
of Theorem 1.8 reads

2j+1 | k(2n − 1)−
n−1∑
m=0

(2m − 1)− 2j + 1 (3.24)

for some 0 6 j 6 n. Processing (3.24) further gives

2j+1 | (k − 1)(2n − 1) + (n + 1)− 2j . (3.25)

Note that the subsets of Z/2n+1Z satisfying (3.25) for different j = 0, ..., n are
disjoint, and the class for j has 2n−j elements, which form a congruence class mod
2j+1. It follows that there is precisely one class q + 2n+1Z which does not satisfy
(3.25) for any j = 0, ..., n, and it is

q = 2n + k (3.26)

where k satisfies (3.25) with j = n. To determine k, note that

−(2n + 1) = (2n − 1)−1 ∈ (Z/2n+1Z)×,

so (3.25) with j = n gives

k − 1 ≡ ((n + 1)− 2n)(2n + 1) ≡ n + 1 mod 2n+1 for n even
≡ 2n + n + 1 mod 2n+1 for n odd. (3.27)
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It follows from (3.26) that q ≡ kn + 2n mod 2n+1, as claimed.
To prove the first statement of Theorem 1.9, we turn to Lemma 3.17. The condi-

tion 3.19 is clearly equivalent to 3.25 with j = n, and hence to k ≡ kn mod 2n+1.
But under this condition, Lemma 3.17 implies

δ∗ν(x) = δ∗(z) 6= 0 ∈ BPR?S
0. (3.28)

Therefore, if we denote also by δ∗ the connecting map

δ∗ : π∗Xn−1 → Σπ∗Xn−2 → ... → Σnπ∗S0,

we conclude from (3.28) that

δ∗(x) 6= 0 ∈ π∗S0 (3.29)

(since δ∗ obviously commutes with Hurewicz maps). But (3.29) occuring for every
lift xof y is equivalent to y not being hit by a differential in the GCSS. ¤

4. BPR-homology calculations

The purpose of this section is to prove Propositions 3.4, 3.9, 3.3. We begin with
Proposition 3.4.

Lemma 4.1. We have
BPR/(v0, ..., vn−1)? =
BPR?/(σ2`0v0, σ

4`1v1, ..., σ
2n`n−1vn−1) · {1, σ−1, ..., σ−2n+1}. (4.2)

On the right hand side of (4.2), we quotient out over all values of `i ∈ Z. More-
over, BPR/(v0, ..., vn−1) is a complete spectrum with respect to Z/2-action, and the
differentials of its Borel cohomology spectral sequence have the form

d2m+1−1σ
−2m · q · σ−i = vma2m+1−1q · σ−i (4.3)

where 0 6 i 6 2n − 1, m > n and q = σ`2m+1
vR where ` ∈ Z and R = (0, 0, ..., 0,

rm, rm+1, ...).

Here we denote
v(r0,r1,...) = vr0

0 vr1
1 ...

(of course, only finitely many of the ri’s are allowed to be non-zero).

Proof: To establish completeness, recall from [5] that BPR is complete with respect
to Z/2-action, and that we have cofibrations of MR-modules

Σ(2n−1)(1+α)BPR/(v0, ..., vn−1)

vn

²²
BPR/(v0, ..., vn−1)

²²
BPR/(v0, ..., vn).

(4.4)
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The differentials (4.3) are established exactly in the same way as in the case n = 0,
which is done in [5]. ¤
Proof of Proposition 3.4: First consider the cofibration sequence of MR-modules
(3.2). Recall from [5] that

ΦZ/2BPR = HZ/2. (4.5)

Since multiplication by vi is 0 on (4.5), we conclude inductively that

ΦZ/2BPR/(v∞0 , ..., v∞n−1) = HZ/2 (4.6)

and
ΦZ/2v−1

n BPR/(v∞0 , ..., v∞n−1) = 0. (4.7)

Therefore, the completeness statement of the Proposition will follow if we can show
that

(v−1
n BPR/(v∞0 , ..., v∞n−1))

∧ = 0 (4.8)

where the hat indicates the Tate spectrum. We will show this by induction on n,
jointly with the following

Claim 4.9. The differentials in the Borel cohomology spectral sequence of

BPR/(v∞0 , ..., v∞n−1)

are as follows:

d2k+1−1(v
−1
0 v−1

1 · ... · v−1
k−1v

−ik

k · .. · v−in−1
n−1 vRσ−2k+1+1+`2k+1

) =
v−1
0 v−1

1 · ... · v−1
k−1v

−ik+1
k v

−ik+1
k+1 · ... · v−in−1

n−1 vRσ−2k+1+`2k+1
a2k+1−1

(4.10)

where 0 6 k 6 n−1, ik > 1, ik+1, ..., in−1 > 1, ` ∈ Z, R = (0, ..., 0, rn, rn+1, ...) and

d2m+1−1(v
−1
0 · ... · v−1

n−1vRσ−2n+1−2m+`2m+1
) =

v−1
0 · ... · v−1

n−1vmvRσ−2n+1+`2m+1
a2m+1−1

(4.11)

where m > n, ` ∈ Z, R = (0, ..., 0, rm, rm+1, ...).

More precisely, we will show that the Claim implies (4.8), and also the Claim
with n replaced by n+1. Note that these statements jointly imply the Proposition,
by computing the Borel cohomology spectral sequence E∞ term via (4.10), (4.11).

Thus, assume the Claim is valid for a fixed n. Then we can compute the Tate
spectral sequence for v−1

n BPR/(v∞0 , ..., v∞n−1) by inverting vn and a (for vn, use the
MR-module structure). Note, however, that then the differential (4.10) wipes out
the k-th summand of (3.5), and (4.11) with m = n wipes out the last summand.
Consequently, the Tate spectral sequence for v−1

n BPR/(v∞0 , ..., v∞n−1) collapses to
E2n = 0, and thus (4.8) follows.

To prove the Claim with n replaced by n+1, we will construct a map of spectral
sequences

E′ ⊕ E′′ → E (4.12)

which will be onto each Er-term. To this end, let E′ be the Borel cohomology
spectral sequence for v−1

n BPR/(v∞0 , ..., v∞n−1) where the map E′ → E is induced
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by the second map (3.2). Let, on the other hand, E′′ be the Borel cohomology
spectral sequence for BPR/(v0, ..., vn) with E′′ → E induced by the obvious map
of MR-modules

{v−1
0 · ... · v−1

n }BPR/(v0, ..., vn) → BPR/(v∞0 , ..., v∞n ).

To examine the map (4.12), write, as usual ([4], [5]), the Borel cohomology spectral
sequence for BPR/(v∞0 , ..., v∞n )? in the form

E1 = BP?/(v∞0 , ..., v∞n )[a][σ±1] ⇒ BPR/(v∞0 , ..., v∞n )?. (4.13)

In this notation, let, for i = 0, ..., n, iE1 be spanned by those monomials in E1

which involve σs where the exponents of v0, ..., vi−1 are −1, and in addition either
s ≡ −2i + 1 mod 2i+1, or s ≡ −2i + 1 ≡ 1 mod 2i and the exponent of vi is
< −1.

Let, further, ∞E1 be the summand of E1 spanned by the remaining monomials,
i.e. those involving σs where s ≡ −2n+1 + 1 ≡ 1 mod 2n+1, and the exponents of
v0, ..., vn are −1.

Now we know inductively that the Borel cohomology spectral sequence for

BPR/(v∞0 , ..., v∞n−1)

splits as a sum of n+1 summands corresponding to the n+1 summands on the right
hand side of (3.5). Inverting vn, v−1

n BPR/(v∞0 , ..., v∞n−1) correspondingly splits into
n + 1 summands, which we will denote by 0E

′
r, ..., nE′

r. Then we find that

iE
′
1

// //
iE1,

where i = 0, ..., n, while

iE
′
2i+1

// // H(iE1, d2i+1−1). (4.14)

On the other hand, recalling Lemma 4.1,

E′′ = 0E
′′ ⊕ ...⊕ 2n−1E

′′

where iE
′′ is the sub-spectral sequence of E′′ involving the factor σ−i in (4.3). We

then see that

2n−1E
′′ ' // ∞E. (4.15)

Now (4.14), (4.15) imply that (4.12) is onto every Er term, completing the induction
step. ¤
Proof of Proposition 3.9: As noted in the preceding proof, the last summand of
(3.5) (with n replaced by n + 1) is in the image of the map

{v−1
0 · ... · v−1

n }(BPR/(v0, ..., vn))? → (BPR/(v∞0 , ..., v∞n ))?, (4.16)

so the connecting map on these summands can be figured out from the connecting
map of the cofibration sequence

{vn}BPR/(v0, ..., vn−1)
vn // BPR/(v0, ..., vn−1) // BPR/(v0, ..., vn).

(4.17)
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The Borel cohomology spectral sequence gives

(BPR/(v0, ..., vn−1))? =
BPR?/(σ2`0v0, σ

4`1v1, ..., σ
2n`n−1vn−1){1, σ−1, ..., σ−2n−1+1}. (4.18)

The target of the connecting map δn of (4.17) is the kernel of the self map vn

in (4.18), which clearly consists of multiples of a2n+1−1. Differentials in the Borel
cohomology spectral sequence of BPR/(v0, ..., vn−1) then give the formula

δn : σ−2n 7→ a2n+1−1(vn)

which remains valid when multiplied by σ−i with 0 6 i < 2n, and hence implies
(3.11).

To show that the target of ∂n is in the last summand of (3.5), note that this
target is the direct limit of the targets of connecting maps of the form

{v−k
n }BPR/(v∞0 , v∞1 , ..., v∞n−1, v

k
n)? → ΣBPR/(v∞0 , ..., v∞n−1)?. (4.19)

But elements in the image of (4.19) must be in the kernel of vk
n, which is clearly

injective on all but the last summand of (3.5). ¤

Proof of Proposition 3.3: Induction on n. Suppose the statement is true with n
replaced by n− 1. Consider a Hopkins-Smith vn−1-spectrum V such that

BP∗V = BP∗/(vk0
0 , ..., v

kn−1
n−1 ),

and the Hurewicz map

η : V → BPR ∧ V. (4.20)

We shall prove that for a vn-self map v : V → V (ignoring suspensions in the
notation), we have a commutative diagram of the form

V
η //

v

²²

BPR ∧ V

vN
n σK

²²
V η

// BPR ∧ V,

(4.21)

for some N and K, at least when v is replaced by its suitable power. Similarly as
above, this can be done by considering η as an element of the BPR cohomology
of V ∧ DV . The question then becomes what map in BPR-cohomology the map
w = v∧ Id : V ∧DV → V ∧DV induces. We can assume by Hopkins-Smith [3] that
w induces a power of vn in BP∗. Thus, by the Borel cohomology spectral sequence,

BPR?w = vN
n σK mod (a).

However, considering the structure of BPR? (Theorem 3.1), we see that for any
finite fixed spectrum X, a is nilpotent on elements of BPRk+`αX with k >> 0
(use the Atiyah-Hirzebruch-type spectral sequence associated with a finite cell-
decomposition of X). Now assume

BPR?w = vN
n σK + at.
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Then

BPR?w2M

= (vN
n σK)2

M

+ aM t2
M

(since, in BPR?, 2a = 0). Now for M >> 0, the second term disappears, thus
proving (4.21).

Now passing to homotopy colimit and BP -localization, we get a commutative
diagram

Xn−1
//

²²

BPR/(v∞0 , ..., v∞n−1)

²²
Yn−1

// v−1
n BPR/(v∞0 , ..., v∞n−1).

(4.22)

(Note that

v−1
n BPR/(v∞0 , ..., v∞n−1) ' (vN

n σK)−1BPR/(v∞0 , ..., v∞n−1),

since each of the elements vn, vN
n σK divides a power of the other.) Using the ring

structure of BPR, we get a diagram

BPR ∧Xn−1
φ //

²²

BPR/(v∞0 , ..., v∞n−1)

²²
BPR ∧ Yn−1

ψ// v−1
n BPR/(v∞0 , ..., v∞n−1)

(4.23)

where the top horizontal arrow φ is an equivalence, and the bottom horizontal arrow
ψ is an equivalence non-equivariantly. But both BPR∧Yn−1, v−1

n BPR/(v∞0 , ..., v∞n−1)
are free spectra (v induces 0 in homology), so ψ is an equivalence. Passing to cofibers
of the vertical arrows of (4.23) gives the induction step. ¤
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