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DESCENT IN CATEGORIES OF (CO)ALGEBRAS
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(communicated by George Janelidze)

Abstract
The paper is devoted to the investigation of effective descent

morphisms in categories of (co)algebras.

1. Introduction

Given a category A and an object a ∈ A, one has the slice category A/a, an
object of which is a morphism f : x → a in A, and a morphism f → f ′ in which
is a morphism h : x → x′ in A with f ′h = f . Composition and identity morphisms
are as in A.

An arbitrary morphism p : a′ → a in A induces a functor p! : A/a′ → A/a
sending f : x → a′ to pf : x → a; and when A has pullbacks, this functor has
the right adjoint p∗ : A/a → A/a′ (known as the change-of-base functor) given by
pulling back along p. If, in addition, p∗ is monadic, then one says that the morphism
p : a′ → a is an effective A-descent morphism.

In the present paper, we study conditions under which a morphism in the category
of (co)algebras with respect to a given endofunctor is effective for descent.

We refer to M. Barr and C. Wells [1] and F. Borceux [3] for terminology and gen-
eral results on monads, and to G. Janelidze and W. Tholen [5], [6] for Grothendieck
descent theory; we give, however, full details of all auxiliary results that are not
mentioned there explicitly.

2. Preliminaries on Slice Categories

In this section, we collect some basic facts on slice categories. We begin by recall-
ing that, for any object a of a category A, the underlying object functor A/a → A
is conservative and preserves and reflects any colimit that exists in A. Moreover, if
A is (finitely) complete, then A/a is (finitely) complete as well.

Let U : A → X be a functor. Since, for any object a ∈ A, the functor

Ua : A/a → X/U(a)

(f : x → a) −→ (U(f) : U(x) → U(a)),
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makes the diagram

A/a
Ua //

²²

X/U(a)

²²
A

U
// X

(where the vertical arrows are the forgetful functors) commute, it follows immedi-
ately from the above that:

Proposition 1. Let U : A → X be a functor. If U is conservative, then so is the
functor Ua : A/a → X/U(a). Moreover, given a small category J , if A admits and
U preserves J-colimits, then A/a has and Ua preserves J-colimits. In particular, if
A has and U preserves coequalizers of U -split pairs, then the category A/a has and
Ua : A/a → X/U(a) preserves coequalizers of Ua-split pairs.

Moreover, it is straightforward to check that:

Proposition 2. Suppose that both A and X have pullbacks and that U preserves
them. Then, for any morphism p : a′ → a in A, the diagram

A/a
p∗ //

Ua

²²

A/a′

Ua′
²²

X/U(a)
U(p)∗

// X/U(a′)

(1)

commutes up to isomorphism. Moreover, if the morphism U(p) is a split epimor-
phism, then the natural transformation

Ua · ε : Ua ◦ p! ◦ p∗ → Ua,

were ε : p! ◦ p∗ → 1 is the counit of the adjunction p! a p∗, is a split epimorphism.

Recall that a morphism is an extremal epimorphism when it does not factor
through any proper subobject of its codomain.

Proposition 3. Let U : A → X be a conservative functor preserving monomor-
phisms. If p : a′ → a is a morphism in A such that the morphism U(p) : U(a′) →
U(a) in X is an extremal epimorphism, then p is an extremal epimorphism as well.
In other words, U reflects extremal epimorphisms.

Proof. If p : a′ → a factorizes through a monomorphism i : b → a, then, since U
preserves monomorphisms by assumption, U(p) factorizes through the monomor-
phism U(i); hence (U(p) being an extremal epimorphism) U(i) is an isomorphism in
X , whence i is an isomorphism as well because U is conservative by hypothesis.

Corollary 4. Let A and X be categories with pullbacks, and let U : A → X be
a conservative functor that preserves pullbacks. If p : a′ → a is a morphism in A
such that the morphism U(p) : U(a′) → U(a) in X is a stably-extremal epimorphism
(and so in particular if U(p) is a split epimorphism), then p is a stably-extremal
epimorphism as well.
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Proof. First observe that, since any pullback-preserving functor in particular pre-
serves monomorphisms, it follows from the above proposition that U reflects ex-
tremal epimorphisms.

Next, since U preserves pullbacks by hypothesis, the image under U of the pull-
back of p along an arbitrary morphism is (isomorphic to) the pullback of U(p), which
is an extremal epimorphism by our assumption on p. But, as we just observed, the
functor U reflects extremal epimorphisms; so that the pullback of p is an extremal
epimorphism. Hence p is a stably-extremal epimorphism.

Since, for any morphism p : a′ → a, the functor p∗ : A/a → A/a′ is conservative
if and only if the morphism p is an stably-extremal epimorphism (see, for instance,
[4]), we have:

Proposition 5. In the situation of Corollary 2.4, the change-of-base functor p∗ :
A/a → A/a′ is conservative.

3. Criteria for Effective Descent

We begin with

Theorem 6. Let V : A → B be a conservative functor with a left adjoint G : B →
A. Suppose that there exists a commutative (up to isomorphism) diagram

A
I

²²

V // B
I′

²²
C

V ′
// D

such that
(i) A has coequalizers of I-split pairs and I preserves them;
(ii) C is Cauchy complete (or, equivalently, idempotents split in C; that is, every

idempotent endomorphism e in C has a factorization e = ir where ri = 1);
(iii) I ′ is conservative;
(iv) the natural transformation

Iε : IGV → I,

were ε : GV → 1 is the counit of the adjunction G a V , is a split epimorphism.
Then the functor V is monadic.

Proof. Suppose that a
f //
g

// a′ is a V -split pair of morphisms in A. Then the mor-

phisms V (f) and V (g) have a split coequalizer in B; so that the pair (V (f), V (g)) is
contractible (see [1]). Since the natural transformation Iε : IGV → I is a split epi-
morphism, the pair (I(f), I(g)) of morphisms in C is also contractible by Corollary
1.3 of [7]. Then, since idempotents split in C by hypothesis, I(f) and I(g) have a
split coequalizer (see, for instance, [2]); hence applying our assumption (i), we get
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that f and g have a coequalizer and this coequalizer is preserved by I. Moreover,
the same argument as in the proof of Theorem 2.3 of [7] shows that this coequalizer
is also preserved by V .

So, we know that
• V is conservative and has the left adjoint G;
• A has and V preserves coequalizers of V -split pairs.

Applying Beck’s theorem (in the form given by Barr and Wells as Theorem 10 in
[7]) now gives the monadicity of V .

Note that when A and B are categories with coequalizers, one may drop the
condition (ii) and then our theorem is exactly the same as Theorem 2.3 in [7].

With the aid of the above theorem, we can now prove:

Theorem 7. Let A and X be categories with pullbacks, and let U : A → X be a
conservative functor that preserves pullbacks. Suppose furthermore that
• A has and U preserves coequalizers of U -split pairs;
• X has coequalizers.

Then, if the image under U of a morphism p : a′ → a in A is a split epimorphism,
then p is an effective A-descent morphism.

Remark 8. Observe that, under the given assumption on U(p) : U(a′) → U(a), it
follows from Theorem 2.2 of [7] that the morphism U(p) is an effective X -descent
morphism.

Proof. Let us first observe that, for any object a ∈ A, the diagram (1) commutes
(up to isomorphism), since A and X have pullbacks and U preserves them by
assumption. We also have that
• p∗ has the left adjoint p!;
• p∗ is conservative (see Proposition 2.5);
• X/U(a) is Cauchy complete, since any category admitting coequalizers is

Cauchy complete (and X/U(a) admits coequalizers, since so does X by as-
sumption).

• since A has and U preserves coequalizers of U -split pairs by hypothesis, Propo-
sition 2.1 tells us that A/a has and Ua : A/a → X/U(a) preserves coequalizers
of Ua-split pairs;

• the functor Ua′ : A/a′ → X/U(a′) is conservative by Proposition 2.1;
• the natural transformation

Ua · ε : Ua ◦ p! ◦ p∗ → Ua,

were ε : p!◦p∗ → 1 is the counit of the adjunction p! a p∗, is a split epimorphism
by Proposition 2.2.

The desired result now follows from Theorem 3.1 applied to the commutative dia-
gram (1).
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The next result gives another criterion for a functor to be monadic.

Theorem 9 ([8]). Let A and B be categories with coequalizers. A conservative
functor V : A → B with a left adjoint is monadic if and only if there exists a
commutative (up to isomorphism) diagram

A V //

I

²²

B
I′

²²
C

V ′
// D

such that

(i) I preserves coequalizers of V -split pairs;
(ii) I ′ is conservative;
(iii) V ′ preserves coequalizers of V ′-split pairs.

Based on this result, we are now able to prove:

Theorem 10. Let A, X be categories with pullbacks and coequalizers, and let U :
A → X be a conservative functor that preserves pullbacks and coequalizers. Then U
reflects effective descent morphisms.

Proof. We have to show that any morphism, whose image under U is an effective
X -descent morphism, is an effective A-descent morphism. Suppose therefore that
p : a′ → a is morphism in A such that the morphism U(p) : U(a′) → U(a) is an
effective X -descent morphism.

Note that, for any object a ∈ A, both A/a and X/U(a) admit pullbacks and
coequalizers because A and X do so by assumption. Note also that, as in the proof
of Theorem 3.2, Proposition 2.2 yields the commutative diagram (1).

Next, we have:

• p∗ has a left adjoint, namely the functor p!;
• since U preserves all coequalizers by assumption, so does the functor Ua :
A/a → X/U(a) (see Proposition 2.1.);

• Ua′ is conservative by Proposition 2.1;
• by hypothesis, U(p)∗ is monadic, and hence in particular it preserves coequal-

izers of U(p)∗-split pairs.

According Theorem 3.4, it remains to show that the functor p∗ : A/a → A/a′ is
conservative. But the functor U(p)∗, being monadic by assumption, is conservative,
while Ua is conservative, since (see Proposition 2.1) U is so by hypothesis. But
conservativeness is a composite property (i.e. if the class of conservative functors
contains U2 ◦U1, then it contains U1), so that the composite U(p)∗ ◦Ua, and hence
also the composite Ua′ ◦ p∗, are conservative; therefore p∗ is conservative. This
completes the proof.
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A corollary is immediate:

Corollary 11. Suppose, in addition of the hypothesis of Theorem 3.5, that the
category X satisfies the axiom of choice (i.e., each regular epimorphism in X splits),
then a morphism in A is an effective A-descent morphism if and only if its image
under U is an effective X -descent morphism.

4. Effective Descent Morphisms in Categories of (Co)algebras

In this section we apply the results of the previous section to obtain criteria
for morphisms in a category of (co)algebras to be effective descent. We begin by
recalling the definitions of algebra and coalgebra for an endofunctor.

Let X be a category, and let Γ : X → X be an endofunctor. A Γ-algebra is a
pair (x, α), where x is an object in X and α : Γ(x) → x is a morphism in X . Given
two Γ-algebras (x, α) and (x′, α′), a Γ-morphism p : (x′, α′) → (x, α) is a morphism
p : x′ → x in X for which

Γ(x′)
Γ(p) //

α′

²²

Γ(x)

α

²²
x′ p

// x

commutes. The Γ-algebras and their morphisms form a category, denoted XΓ. Du-
ally, one has the category of Γ-coalgebras and their morphisms, denoted XΓ.

For a given endofunctor Γ : X → X , the categories XΓ and XΓ are equipped with
the evident forgetful functors

UΓ : XΓ → X
and

UΓ : XΓ → X
respectively.

The following results are mentioned for example in [1]:

Proposition 12. Let Γ : X → X be an endofunctor on a category X . Then
(i) the forgetful functor UΓ is conservative;
(ii) the category XΓ has and the functor UΓ preserves coequalizers of UΓ-split

pairs;
(iii) the functor UΓ creates (and hence preserves) whatever limits that exist in X .

Note that the functor UΓ is obviously monadic if it has a left adjoint.

Just as in the case of algebras for monads (see, for example, [3]), one can prove
that:
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Proposition 13. Let Γ : X → X be an endofunctor on a category X . Then the
forgetful functor UΓ : XΓ → X creates (and hence preserves) any types of limits
which exist in X and are preserved by Γ.

We shall assume from now on that our category X admits pullbacks and coequal-
izers.

Applying Theorem 3.2 and Proposition 4.1, we obtain:

Theorem 14. Let Γ : X → X be an endofunctor on X . Then any morphism of
the category XΓ whose image under the functor UΓ is a split epimorphism is an
effective XΓ-descent morphism.

Consider now the case where Γ preserves pullbacks.

Theorem 15. If Γ : X → X preserve pullbacks, then the functor UΓ : XΓ → X
reflects effective descent morphisms.

Proof. We observe that
• UΓ : XΓ → X is conservative (by the dual of Proposition 4.1 (i));
• XΓ has and UΓ : XΓ → X preserves all coequalizers (by the dual of Proposition

4.1 (iii));
• XΓ has and UΓ : XΓ → X preserves pullbacks (by the dual of Proposition 4.2,

since X has and Γ preserves pullbacks by assumption).
This means that, for the functor UΓ : XΓ → X , we have verified all the hypothesis of
Theorem 3.5. Hence any morphisms in XΓ whose image under the functor UΓ : XΓ →
X is an effective X -descent morphism, is an effective descent XΓ-morphism.

Suppose now that Γ : X → X preserves reflexive coequalizers. Then, by Proposi-
tion 4.2, the category XΓ has and the functor UΓ : XΓ → X preserves all reflexive
coequalizers. We now put together Proposition 4.1 and Theorem 3.5 to obtain the
following

Theorem 16. Suppose that Γ : X → X preserve reflexive coequalizers. Then the
functor UΓ : XΓ → X reflects effective descent morphisms.

Note that when X is a (Barr) exact category, the characterization of effective
descent morphisms of algebras is obtained in [9].

Finally we note that the results of this section remain true if one replaces Γ by
the functor-part of a (co)monad on X and the category of Γ-(co)algebras by the
category of (co)algebras with respect to the given (co)monad.
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