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Abstract
It is the aim of this work to study product structures on four

dimensional solvable Lie algebras. We determine all possible
paracomplex structures and consider the case when one of the
subalgebras is an ideal. These results are applied to the case of
Manin triples and complex product structures. We also analyze
the three dimensional subalgebras.

Introduction

A product structure on a smooth manifold M is an endomorphism E of its
tangent bundle satisfying E2 =Id together with

E[X,Y ] = [EX,Y ] + [X,EY ]− E[EX, EY ] for all vector fields X, Y on M. (1)

A product structure on M gives rise to a splitting of the tangent bundle TM into the
Whitney sum of two subbundles T±M corresponding to the ±1 eigenspaces of E.
The distributions on M defined by T+M and T−M are completely integrable. When
T+M and T−M have the same rank the product structure is called a paracomplex
structure.

Product structures on manifolds were considered by many authors from different
points of view. Examples of Riemannian almost product structures were given in
[Miq] and a survey on paracomplex geometry can be found in [CFG]. The classifica-
tion of Riemannian almost product manifolds according to a certain decomposition
of the space of tensors was done in [N]. In [LM] the authors give a new look at
singular and non holonomic Lagrangian systems in the framework of almost product
structures. Complex product structures on Lie groups were considered in [AS] and
[BV].

In this paper we consider product structures on four dimensional solvable Lie
groups. Such groups provide an important source of applications in geometry. In-
variant structures on the group, for instance, special metrics [Al], [B2], [DS], [F1],
[F2], [J], complex and Kähler structures [ACFM], [AFGM], [O1], [SJ], [FG],
hypercomplex and hypersymplectic structures [An], [B1], can be read off in R4,
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the universal covering group, giving often explicit descriptions of the corresponding
structure.

A left-invariant product structure on a Lie group is determined by its restriction
to the corresponding Lie algebra, considered as the tangent space at the identity. A
product structure on a Lie algebra g is a linear endomorphism E : g −→ g satisfying
E2 =Id (and not equal to ±Id) and

E[x, y] = [Ex, y] + [x, Ey]− E[Ex, Ey] for all x, y ∈ g. (2)

A product structure on g gives rise to a decomposition of g into

g = g+ ⊕ g−, E|g+ = Id, E|g− = −Id, (3)

where both, g+ and g−, are Lie subalgebras of g. This will be denoted g = g+ ./ g−,
since the structure of g is that of a double Lie algebra ([LW]). In case both g+ and
g− have the same dimension we say that g carries a paracomplex structure.

The outline of this paper is as follows. In Section 1 we describe all non-isomorphic
four dimensional solvable Lie algebras over R. This was studied by Mubarakzyanov
[Mu] and Dozias [D]. We found citations of the theorems obtained by Mubarak-
zyanov in [PSWZ], pp. 988 and Dozias in [Ve], pp. 180. We include a proof of the
classification theorem since it will be frequently used to obtain the results through-
out the article. Appendix II contains comparisons with the tables given by the
various authors [Mu], [D], [SJ], [O1], [PSWZ].

In Section 2 we consider product structures on four dimensional Lie algebras.
We determine all four dimensional solvable Lie algebras admitting a paracomplex
structure (see Table 2). Among these, we study the case when one of the subalgebras
is an ideal of g. We also exhibit decompositions where one of the subalgebras is three
dimensional (see Table 3).

An important subclass of paracomplex structures is given by Manin triples and
complex product structures (see Section 3). A paracomplex structure g = g+ ./ g−
is a Manin triple if there exists a non degenerate invariant symmetric bilinear form
on g such that g± are isotropic subalgebras. It is shown that there is only one non
abelian four dimensional solvable Lie algebra giving rise to a Manin triple. On the
other hand, given a product structure E and a complex structure J on g such that
JE = −EJ , {J,E} is called a complex product structure on g. We determine all
four dimensional solvable Lie algebras admitting complex product structures (see
Table 4), giving an alternative proof of a result by Blazić and Vukmirović ([BV]).

1. Classification of four dimensional solvable Lie algebras

In this section we obtain the classification of four dimensional solvable Lie alge-
bras. The proof follows the lines of [Mi] for the classification of three dimensional
solvable Lie algebras, that is, we obtain the four dimensional solvable Lie algebras as
extensions of the three dimensional unimodular Lie algebras R3, the Heisenberg al-
gebra h3, the Poincaré algebra e(1, 1) or the Euclidean algebra e(2). Both, [O1] and
[SJ], obtain the four dimensional solvable Lie algebras as extensions of nilpotent Lie
algebras of dimension at most three. In Appendix I we exhibit matrix realizations
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and Appendix II contains comparisons with the tables given by the various authors
[Mu], [D], [SJ], [O1], [PSWZ].

1.1. Algebraic preliminaries
A Lie algebra g which satisfies the condition tr(ad(x)) = 0 for all x ∈ g will be

called a unimodular Lie algebra. If g is a Lie algebra, then using the Jacobi identity
we see that tr(ad[x, y]) = 0 for all x, y ∈ g. Hence, the map χ : g → R defined by

χ(x) = tr(ad(x)), x ∈ g, (4)

is a Lie algebra homomorphism. In particular, its kernel u = ker(χ) is an ideal
containing the commutator ideal [g, g]. The ideal u will be called the unimodular
kernel of g. It is easy to check that u itself is unimodular.

We now introduce some notation that will be used throughout the paper (com-
pare with [GOV]).
aff(R): [e1, e2] = e2, the two dimensional non-abelian Lie algebra of the group of

affine motions of the real line;
h3: [e1, e2] = e3, the three-dimensional Heisenberg algebra;
r3: [e1, e2] = e2, [e1, e3] = e2 + e3;

r3,λ: [e1, e2] = e2, [e1, e3] = λe3;
r′3,λ: [e1, e2] = λe2 − e3, [e1, e3] = e2 + λe3;

Remark. Observe that r3,−1 is the Lie algebra e(1, 1) of the group of rigid motions
of Minkowski 2-space, r3,0 = R × aff(R) and r3,1 is the Lie algebra of the solvable
group which acts simply and transitively on the real hyperbolic space RH3. Also
r′3,0 is the Lie algebra e(2) of the group of rigid motions of Euclidean 2-space. Other
authors denote aff(R) by sol2 and e(1, 1) by sol3.

We recall the classification of solvable Lie algebras of dimension 6 3. A proof
can be found, for example, in [Mi] or [GOV].

Theorem 1.1. Let g be a real solvable Lie algebra, dim g 6 3. Then g is isomorphic
to one and only one of the following Lie algebras: R, R2, aff(R), R3, h3, r3,
r3,λ, |λ| 6 1 and r′3,λ, λ > 0. Among these, the unimodular ones are R, R2, R3,
h3, r3,−1, and r′3,0.

The proof of Theorem 1.5 in next section is based on the knowledge of the
algebra of derivations of solvable unimodular three dimensional Lie algebras. This
is the content of the next lemma, whose proof is straightforward.

Lemma 1.2. The algebra of derivations of e(2), e(1, 1) and h3 are

Der e(2) =








0 0 0
c a −b
d b a


 : a, b, c, d ∈ R



 , (5)

with respect to the basis ei, i = 1, 2, 3, such that [e1, e2] = e3, [e1, e3] = −e2;

Der e(1, 1) =








0 0 0
c a 0
d 0 b


 : a, b, c, d ∈ R




∼= aff(R)× aff(R), (6)
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with respect to the basis ei, i = 1, 2, 3 such that [e1, e2] = e2, [e1, e3] = −e3;

Der h3 =






 A

0
0

b c tr A


 : A ∈ gl(2,R), b, c ∈ R



 , (7)

with respect to the basis ei, i = 1, 2, 3 such that [e1, e2] = e3.

1.2. Classification theorem
In this section we obtain all four dimensional solvable Lie algebras as semidirect

extensions of three dimensional unimodular Lie algebras. The classification theorem
is then reduced to the study of the derivations of these three dimensional algebras.
The proof will follow the lines of [Mi] for the three dimensional case, but instead
of the rational form, we make use of the Jordan normal form over R.

Given a Lie algebra g and an ideal v of codimension one in g, let e0 ∈ g\v. Then
we denote

g = Re0 nϕ v, (8)

where ϕ : Re0 → Der v is a linear map such that ϕ(e0) = ad(e0). Observe that the
splitting of the short exact sequence

0 → v → g → R→ 0,

is an immediate consequence of the fact that R is one dimensional.
The following result proves the desired decomposition, that is, any four dimen-

sional solvable real Lie algebra is a semidirect product of R and a three-dimensional
unimodular ideal. Thus this proposition is a first step in the classification (compare
with Proposition 2.1 in [DS]):

Proposition 1.3. Let g be a four-dimensional solvable real Lie algebra. Then there
is a short exact sequence

0 → v → g → R→ 0,

where v is an ideal of g isomorphic to either R3, h3, e(1, 1) or e(2), that is, g ∼=
Re0 nϕ v.

Proof. Consider the Lie algebra homomorphism χ : g → R defined in (4). If g is
not unimodular then its unimodular kernel u has dimension three, therefore it is
isomorphic to R3, h3, e(1, 1) or e(2) and the proposition follows with v = u.

We assume now that g is unimodular. The commutator ideal g′ is nilpotent and
dim g′ 6 3, hence it follows that g′ is isomorphic to {0}, R, R2, R3 or h3. In the
last two cases the proposition follows by taking v = g′. If g′ = {0} then g is abelian
so that v = R3 is an ideal of g.

If g′ is isomorphic to R, g′ = Re3, then there exist elements e1, e2 in g such
that [e1, e2] = e3. The set e1, e2, e3 is linearly independent since g is unimodular.
Therefore, the Lie subalgebra generated by e1, e2, e3 is an ideal isomorphic to h3.

If g′ is isomorphic to R2 then either i) there exists x not in g′ such that ad(x)|g′
is non singular, or ii) for all x ∈ g the transformation ad(x) is singular. Making
use of the Jordan form of the corresponding complex transformation we get in both
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cases i) and ii), that χ(x) = λ1 + λ2 = 0, for λi ∈ C, i = 1 or 2. Thus in case i)
there is a basis of g′ such that the action of x is given as follows (up to a nonzero
multiple):

a) ad(x)|g′ =
(

1 0
0 −1

)
or b) ad(x)|g′ =

(
0 1
−1 0

)

where case b) corresponds to the eigenvalues i,−i. Thus Rx ⊕ g′ is an ideal of g
isomorphic to e(1, 1) or to e(2), respectively.

In case ii), since λ1 or λ2 is zero, then the unimodular condition imposes that
both eigenvalues vanish and so, for a fixed x not in g′, there is a basis of g′ such
that the action of ad(x)|g′ takes one of the following forms:

a) ad(x)|g′ = 0 or b) ad(x)|g′ =
(

0 1
0 0

)

Therefore, Rx⊕ g′ is an ideal of g isomorphic to R3 in case a) or h3 in case b). This
completes the proof.

The following lemma will be used in the proof of the classification theorem.

Lemma 1.4. Let g1 = Re0nϕ1 R3 and g2 = Re0nϕ2 R3 such that [gi, gi] = R3, i =
1, 2. Then g1

∼= g2 if and only if there exists γ 6= 0 such that ϕ1(e0) and γϕ2(e0)
are conjugate in GL(3,R).

Proof. Assume first that there exists a Lie algebra isomorphism ψ : g1 → g2; then
ψ : R3 → R3 and ψ(e0) = γe0 + w, where γ ∈ R r {0} and w ∈ R3. If v ∈ R3, we
calculate

[ψ(e0), ψ(v)] = γϕ2(e0)ψ(v),
ψ([e0, v]) = ψ(ϕ1(e0)v),

and therefore γϕ2(e0)ψ(v) = ψ(ϕ1(e0)v) for all v ∈ R3, that is, γϕ2(e0)
= ψϕ1(e0)ψ−1.

The converse is straightforward.

Dozias and Mubarakzyanov gave in [D] and [Mu] a classification of four dimen-
sional solvable Lie algebras. We prove below this result to make this article self
contained. The proof uses Proposition 1.3 together with Lemma 1.2.

Theorem 1.5. Let g be a four-dimensional solvable real Lie algebra. Then g is iso-
morphic to one and only one of the following Lie algebras: R4, aff(R)×aff(R), R×
h3, R× r3, R× r3,λ, |λ| 6 1, R× r′3,λ, λ > 0, or one of the Lie algebras with
brackets given below in the basis ei, i = 0, 1, 2, 3:

n4: [e0, e1] = e2, [e0, e2] = e3;

aff(C): [e0, e2] = e2, [e0, e3] = e3, [e1, e2] = e3, [e1, e3] = −e2;

r4: [e0, e1] = e1, [e0, e2] = e1 + e2, [e0, e3] = e2 + e3;

r4,λ: [e0, e1] = e1, [e0, e2] = λe2, [e0, e3] = e2 + λe3;
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r4,µ,λ: [e0, e1] = e1, [e0, e2] = µe2, [e0, e3] = λe3, µλ 6= 0, −1 < µ 6 λ 6 1
or −1 = µ 6 λ < 0 ;

r′4,µ,λ: [e0, e1] = µe1, [e0, e2] = λe2 − e3, [e0, e3] = e2 + λe3, µ > 0;

d4: [e0, e1] = e1, [e0, e2] = −e2, [e1, e2] = e3;

d4,λ: [e0, e1] = λe1, [e0, e2] = (1− λ)e2, [e0, e3] = e3, [e1, e2] = e3, λ > 1
2
;

d′4,λ: [e0, e1] = λe1 − e2, [e0, e2] = e1 + λe2, [e0, e3] = 2λe3, [e1, e2] =
e3, λ > 0;

h4: [e0, e1] = e1, [e0, e2] = e1 + e2, [e0, e3] = 2e3, [e1, e2] = e3.

Among these, the unimodular algebras are: R4, R × h3, R × r3,−1, R ×
r′3,0, n4, r4,−1/2, r4,µ,−1−µ (−1 < µ 6 −1/2), r′4,µ,−µ/2, d4, d′4,0.

Proof. In view of Proposition 1.3 there exists a three dimensional ideal v of g
isomorphic to R3, e(2), e(1, 1) or h3. We will analyze below the different cases.

1.3. Case v = R3.
We introduce first the following 3 × 3 real matrices which will be needed in the

next paragraphs:

Aµ,λ
1 =




1 0 0
0 µ 0
0 0 λ


 , Aλ

2 =




1 0 0
0 λ 1
0 0 λ


 , (9)

A3 =




1 1 0
0 1 1
0 0 1


 , Aµ,λ

4 =




µ 0 0
0 λ 1
0 −1 λ


 . (10)

By assumption, g = Re0nϕR3 where ϕ(e0) = ad(e0). Suppose first that ϕ(e0) has
real eigenvalues. We have the following possibilities for ϕ(e0), where the eigenvalues
are ordered such that |λ1| 6 |λ2| 6 |λ3|:

i) ϕ(e0) =




λ1 0 0
0 λ2 0
0 0 λ3


 , ii) ϕ(e0) =




λ1 0 0
0 λ2 1
0 0 λ2


 ,

iii) ϕ(e0) =




λ 1 0
0 λ 1
0 0 λ


 .

Case i)





λi = 0, i = 1, 2, 3, then g ∼= R4;
λ1 = 0, λ3 6= 0, then g ∼= r3,λ × R; where λ = λ2

λ3
;

λ1λ2λ3 6= 0 then g ∼= Rnϕ1 R3, ϕ1(e0) = Aµ,λ
1 as shown in (9),

that is, g ∼= r4,µ,λ.

The last isomorphism in Case i) follows by dividing e0 by λ3 and by reordering
suitably the basis {e1, e2, e3} of R3, we may assume that −1 6 µ 6 λ 6 1.
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Case ii)





λ1 = λ2 = 0 then g ∼= R× h3;
λ1 = 0, λ2 6= 0 then g ∼= R× r3;
λ1 6= 0, then g ∼= Rnϕλ

2
R3, ϕλ

2 (e0) = Aλ
2 as shown in (9),

that is, g ∼= r4,λ.

Case iii)





λ = 0, then g ∼= n4;
λ 6= 0, then g ∼= Rnϕ3 R3, ϕ3(e0) = A3 as shown in (10), that is,

g ∼= r4.

The last isomorphism in case iii) follows by taking e0/λ.

In case ϕ(e0) has only one real eigenvalue, µ, then we may assume that
ϕ(e0) = Aµ,λ

4 as in (10) and we have:




µ = 0, then g ∼= R× r′3,λ;

µ 6= 0, then g ∼= r′4,µ,λ, µ > 0.

Observe that the last isomorphism follows by changing e0 by −e0.

1.4. Case v = e(2).
Assume that g = Re0 nϕ e(2) where ϕ(e0) = ad(e0) ∈ Der e(2) is as in (5). Then

setting e′0 = e0 − be1 + de2 − ce3 , it follows that

[e′0, e1] = 0, [e′0, e2] = ae2, [e′0, e3] = ae3;

therefore, g ∼= R × e(2) = R × r′3,0 or g ∼= aff(C) depending on a = 0 or a 6= 0,
respectively.

1.5. Case v = e(1, 1).
Assume that g = Re0 nϕ e(1, 1) where ϕ(e0) = ad(e0) ∈ Der e(1, 1) is as in (6).

Let e′0 = e0 − ae1 + ce2 − de3, then

[e′0, e1] = 0, [e′0, e2] = 0, [e′0, e3] = (a + b)e3;

therefore, g ∼= R× e(1, 1) = R× r3,−1 or g ∼= aff(R)× aff(R) depending on a + b = 0
or a + b 6= 0, respectively.

1.6. Case v = h3.
Assume that g ∼= Re0 nϕ h3 where ϕ(e0) = ad(e0) is given by


 A

0
0

b c trA




(see (7)). We may assume that b = c = 0. In fact, setting e′0 = e0 − ce1 + be2 it
turns out that ad(e′0) is given by


 A

0
0

0 0 trA


 . (11)
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Assume first that A has two real eigenvalues γ, β; then A takes the form

i) A =
(

γ 0
0 β

)
, or ii) A =

(
γ 1
0 γ

)
.

Observe that in all cases, once we change the basis e1, e2 to e′1, e
′
2, we must set

e′3 = [e′1, e
′
2] in order to obtain a Lie algebra isomorphism.

Case i)





γ = β = 0, then g ∼= R× h3;
γ = −β 6= 0, then g ∼= d4;

γ + β 6= 0, then g ∼= d4,λ, λ =
γ

γ + β
;

Case ii)

{
γ = 0, then g ∼= n4;
γ 6= 0, then g ∼= h4.

We show that d4,λ
∼= d4,1−λ. This follows by changing the basis ei, 0 6 i 6 3, to

the basis e′i, 0 6 i 6 3, where:

e′0 = e0, e′1 = e2, e′2 = e1, e′3 = −e3.

Therefore, we may assume that λ > 1/2.

In case ii), γ 6= 0, in order to show that g ∼= h4 one has to start with e′0 =
1
γ

e0,

then take e′1, e
′
2 ∈ span{e1, e2} such that

ad(e′0) =
(

1 1
0 1

)

with respect to {e′1, e′2} and e′3 = [e′1, e
′
2].

If A has no real eigenvalues, then ad(e′0) takes the form



λ 1 0
−1 λ 0
0 0 2λ


 ,

and we conclude that g ∼= d′4,λ. Hence, we have shown so far that any four dimen-
sional solvable Lie algebra is isomorphic to one of those listed in the statement of
the theorem. It remains to show that they are pairwise non isomorphic.

1.7. Isomorphism classes
In Table 1, we list the four dimensional solvable Lie algebras according to their

commutator. After that, we proceed to distinguish them up to isomorphism.
• [g, g] = R: R×h3 is nilpotent but R× r3,0 is not, therefore they are not isomor-

phic.
• [g, g] = R2, z = {0}: Both aff(R)×aff(R) and d4,1 are completely solvable1 and

therefore not isomorphic to aff(C), which is not completely solvable. The unimodular
kernel of aff(R)× aff(R) (resp. d4,1) is r3,−1 (resp. h3), hence aff(R)× aff(R) is not
isomorphic to d4,1.

1Recall that a solvable Lie algebra g is completely solvable when ad(x) has real eigenvalues for all
x ∈ g.
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[g, g] g

{0} R4

R R× h3 , R× r3,0

R2, z = {0} aff(R)× aff(R), aff(C), d4,1

R2, z 6= {0} R× r3, R× r3,λ (|λ| 6 1, λ 6= 0), R× r′3,λ (λ > 0), r4,0, n4

R3 r4 , r4,λ (λ 6= 0) , r4,µ,λ (µλ 6= 0, −1 6 µ 6 λ 6 1), r′4,µ,λ (µ > 0)

h3 d4, d4,λ (λ 6= 1, λ > 1/2), d′4,λ (λ > 0), h4

Table 1:

• [g, g] = R2, z 6= {0}: If g = R× r3, R× r3,λ (|λ| 6 1, λ 6= 0) or R× r′3,λ (λ > 0)
then z ∩ [g, g] = {0}, while z ∩ [g, g] 6= {0} when g = r4,0 or n4. Also g =
R× r3, R × r3,λ (|λ| 6 1, λ 6= 0) and R× r′3,λ (λ > 0) are not pairwise isomorphic
since r3, r3,λ and r′3,λ are 3-dimensional non isomorphic Lie algebras. On the other
hand, n4 is nilpotent but r4,0 is not, hence they are not isomorphic.
• [g, g] = R3: r4, r4,λ (λ 6= 0), r4,µ,λ, r′4,µ,λ. In this case, it follows from Lemma

1.4 that any pair of Lie algebras belonging to different families can not be isomor-
phic. The last family consists of non completely solvable Lie algebras.

The fact that two Lie algebras r4,λ, λ 6= 0, and r4,λ′ , λ′ 6= 0, are isomorphic if
and only if λ = λ′ follows by applying Lemma 1.4.

Let us show that if r4,µ,λ, −1 < µ 6 λ 6 1, µλ 6= 0, is isomorphic to
r4,µ′,λ′ , −1 < µ′ 6 λ′ 6 1, µ′λ′ 6= 0, then µ = µ′ and λ = λ′. From Lemma
1.4, there exists γ 6= 0 such that the sets of eigenvalues {1, µ, λ} and {γ, γµ′, γλ′}
must coincide. If γ = 1 the desired assertion follows from µ 6 λ and µ′ 6 λ′. If
γ = µ then either γµ′ = 1 or γλ′ = 1, hence µ′ = 1 or λ′ = 1, therefore γ = 1 and
again this implies µ = µ′, λ = λ′. The case γ = λ is proved in a similar way.

Let us show that if r4,−1,λ, −1 6 λ < 0, is isomorphic to r4,−1,λ′ , −1 6 λ′ < 0,
then λ = λ′. We apply Lemma 1.4 again to obtain that there exists γ 6= 0 such
that {1,−1, λ} and {γ,−γ, γλ′} must coincide. We cannot have γ = −1, since this
would imply λ = −λ′, a contradiction, since both, λ and λ′ are negative. If γ = λ,
then −γ = 1 and −1 = γλ′ = λλ′ > 0, a contradiction. Thus γ = 1 and λ = λ′.

If r4,µ,λ, −1 < µ 6 λ 6 1, µλ 6= 0, were isomorphic to r4,−1,λ′ , −1 6 λ′ < 0,
then Lemma 1.4 would imply that that there exists γ 6= 0 such that {1, µ, λ} =
{γ,−γ, γλ′}. If γ = 1 then µ = −1, which is impossible. On the other hand, γ = µ
implies −γ = 1 or γλ′ = 1, hence µ = γ = −1, a contradiction. The case γ = λ is
similar; therefore, the above Lie algebras are not isomorphic.

Assume now that r′4,µ,λ, µ > 0, is isomorphic to r′4,µ′,λ′ , µ′ > 0, we must show
that µ = µ′ and λ = λ′. We apply Lemma 1.4 again to obtain that there exists
γ 6= 0 such that µ = γµ′ and λ± i = γ(λ′ ± i). It follows from the second equality
that γ = ±1, and the first equality implies γ = 1, since both µ and µ′ are positive.
Therefore, µ = µ′ and λ = λ′, as claimed.

• [g, g] = h3: The Lie algebras d4, d4,λ (λ > 1/2, λ 6= 1), and d′4,λ, h4 are
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distinguished by g/z([g, g]), as the following table shows:

g d4 d4,λ,
(

λ > 1/2

λ 6= 1
d′4,λ, λ > 0 h4

g/z([g, g]) r3,−1 r3,−1+1/λ r′3,λ r3

Remarks. (i) In [DS] it was proved that d′4,λ, λ > 0, are all non-isomorphic. Observe
that gλ in [DS] corresponds to d′4,1/λ for λ 6= 0 (resp. d4,1/2 for λ = 0).
(ii) We observe that aff(C) is the Lie algebra of the group of affine motions of the
complex line, which is isomorphic to the complexification of aff(R) looked upon as
a real Lie algebra. [It should be noted that the Lie algebra Der e(2) (see Lemma
1.2) is isomorphic to aff(C).] Also, r4,1,1 is the Lie algebra of a solvable Lie group
which acts simply and transitively on the real hyperbolic space RH4 and d4,1/2 is
the Lie algebra of a solvable Lie group which acts simply and transitively on the
complex hyperbolic space CH2.

2. Product structures on four dimensional solvable Lie alge-
bras

2.1. Basic definitions
An almost product structure on a Lie algebra g is a linear endomorphism E :

g −→ g satisfying E2 =Id (and not equal to ±Id). It is said to be integrable if

E[x, y] = [Ex, y] + [x, Ey]− E[Ex, Ey] for all x, y ∈ g. (12)

An integrable almost product structure will be called a product structure.
An almost product structure on g gives rise to a decomposition of g into

g = g+ ⊕ g−, E|g+ = Id, E|g− = −Id. (13)

The integrability of E is equivalent to g+ and g− being subalgebras. When dim g+ =
dim g−, the product structure E is called a paracomplex structure.

Three Lie algebras (g, g+, g−) form a double Lie algebra if g+ and g− are Lie
subalgebras of g and g = g+ ⊕ g− as vector spaces. This will be denoted by g =
g+ ./ g−. Observe that a double Lie algebra (g, g+, g−) gives a product structure
E : g −→ g on g, where E|g+ =Id and E|g− = −Id. Conversely, a product structure
on the Lie algebra g gives rise to a double Lie algebra (g, g+, g−), where g± is the
eigenspace associated to the eigenvalue ±1 of E. The notion of double Lie algebra is
a natural generalization of that of semidirect product. We will denote g = g+ n g−
the semidirect product of g+ and g− where g− is an ideal of g, that is, there is a
split exact sequence

0 −→ g− −→ g −→ g+ −→ 0.

Product structures or, equivalently, double Lie algebras, were used in several
contexts (see [AS], [LW]). Important examples of double Lie algebras are Manin
triples and complex product structures.
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g R2 ./ R2 aff(R) ./ R2 aff(R) ./ aff(R)

R4 〈e0, e1〉 × 〈e2, e3〉 no no

aff(R)× aff(R) 〈e0, e1〉n 〈e2, e3〉 〈e1 + e3, e2〉
./ 〈e0, e1〉 〈e0, e3〉 × 〈e1, e2〉

R× h3 〈e0, e2〉n 〈e1, e3〉 no no

R× r3 〈e0, e1〉n 〈e2, e3〉 〈e1, e2〉 ./ 〈e0, e3〉 no

R× r3,λ, λ 6= 0 〈e0, e1〉n 〈e2, e3〉 〈e1, e2〉n 〈e0, e3〉 〈e0 + e1, e2〉
./ 〈e1 − λe0, e3〉

R× r3,0 〈e0, e1〉n 〈e2, e3〉 〈e1, e2〉 × 〈e0, e3〉 no

R× r′3,λ 〈e0, e1〉n 〈e2, e3〉 no no

n4 〈e0, e3〉 ./ 〈e1, e2〉 no no

aff(C) 〈e0, e1〉n 〈e2, e3〉 〈e0, e2〉
./ 〈e0 − e3, e1 + e2〉 no

r4 no 〈e0, e1〉 ./ 〈e2, e3〉 no

r4,λ, λ 6= 0 no 〈e0, e1〉n 〈e2, e3〉 〈e0, e1〉
./ 〈e0 + λe3, e2〉

r4,0 〈e0, e2〉 ./ 〈e1, e3〉 〈e0, e1〉n 〈e2, e3〉 no

r4,µ,λ no 〈e0, e1〉n 〈e2, e3〉 〈e0 − e1, e2〉
./ 〈e0 + e1, e3〉

r′4,µ,λ no 〈e0, e1〉n 〈e2, e3〉 no

d4 no 〈e0, e1〉n 〈e2, e3〉 〈e0 + e2, e1 − e3〉
./ 〈e0 − e2, e1 + e3〉

d4,λ, λ 6= 1 no 〈e0, e1〉n 〈e2, e3〉 〈e0, e3〉 ./ 〈e0 + λe2,

(1− λ)e1 + λe3〉
d4,1 〈e0, e2〉n 〈e1, e3〉 〈e0, e1〉n 〈e2, e3〉 〈e0, e1〉

./ 〈e0 + e2, e3〉
d′4,λ no no no

h4 no 〈e0, e1〉 ./ 〈e2, e3〉 〈e0, e3〉
./ 〈e0 − e2, e1 − e3〉

Table 2: Paracomplex structures on four dimensional solvable Lie algebras

2.2. Paracomplex structures
It is the main goal of this subsection to determine all 4-dimensional solvable Lie

algebras admitting paracomplex structures. We will give realizations of the Lie alge-
bras obtained in Theorem 1.5 as double Lie algebras with subalgebras of dimension
2 when such a structure exists (see Table 2), or prove the non existence otherwise.
It turns out that among all four dimensional solvable Lie algebras there is only
one family, whose commutator ideal is h3, not admitting any paracomplex structure
(Theorem 2.7). Since there are only two non-isomorphic two-dimensional Lie alge-
bras: R2 and aff(R), the possible decompositions g+ ./ g− are R2 ./ R2, R2 ./ aff(R)
and aff(R) ./ aff(R).

By simple computations one can verify that the decompositions given in Table 2
satisfy the required properties. We prove below the non existence results.

Proposition 2.1. Let g be a Lie algebra with an abelian commutator ideal g′ of
codimension 1. Then any abelian subalgebra of dimension n > 1 is contained in g′.
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Proof. In this case there is e0 ∈ g such that ad(e0) is an isomorphism of g′. Let h
be an abelian subalgebra of g, dim h > 1, and let x, y ∈ h linearly independent. If
x = a0e0 + x′, y = b0e0 + y′ with a0, b0 ∈ R and x′, y′ ∈ g′, then

0 = [x, y] = [e0, a0y
′ − b0x

′].

This implies that a0y
′ − b0x

′ = 0, that is, a0y − b0x = 0 and hence a0 = b0 = 0.
Therefore, x, y ∈ g′, as asserted.

The previous result together with Table 1 imply

Corollary 2.2. The Lie algebras r4, r4,λ (λ 6= 0), r4,µ,λ, r′4,µ,λ do not admit a
decomposition of type R2 ./ R2.

Proposition 2.3 ([P]). If g is a Lie algebra which admits a decomposition g =
g+ ./ g− with g+ and g− abelian subalgebras, then g is 2-step solvable (i.e., g′ is
abelian).

Proof. If g = g+ ./ g− with g+ and g− abelian then [(x1, x2), (y1, y2)] is determined
by [(x1, 0), (0, y2)] = (α(x1, y2), β(x1, y2)) where α and β denote the components on
g+ and g− respectively. Since the bracket on g satisfies the Jacobi identity one
obtains

1. α(x1, β(y1, z2)) = α(y1, β(x1, z2)),

2. β(α(z1, y2), x2) = β(α(z1, x2), y2),

3. β(x1, β(y1, z2)) = β(y1, β(x1, z2)),

4. α(α(z1, y2), x2)) = α(α(z1, x2), y2)).

Now, using the above relations one can show that

α(α(x1, y2), β(u1, v2)) = α(α(u1, v2), β(x1, y2))

and

β(α(x1, y2), β(u1, v2)) = β(α(u1, v2), β(x1, y2)).

But the above relations immediately imply

[[(x1, 0), (0, y2)], [(u1, 0), (0, v2)]] = 0

and the assertion follows.

The above proposition together with Table 1 imply

Corollary 2.4. The Lie algebras d4, d4,λ (λ 6= 1), d′4,λ, h4 do not admit a decom-
position of type R2 ./ R2.

Lemma 2.5. The Lie algebras R4, R×h3, n4 and R×r′3,λ do not contain aff(R) as a
subalgebra. Hence, these Lie algebras do not admit decompositions of type aff(R) ./
R2 or aff(R) ./ aff(R).
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Proof. Since R4, R × h3 and n4 are nilpotent, they cannot have subalgebras iso-
morphic to aff(R). Let us show next that the same holds for g := R× r′3,λ. In fact,
assume that there exist x, y ∈ g such that [x, y] = y. Then y ∈ g′. If x ∈ 〈e0, e2, e3〉
then y = 0, thus assume that x = e1 + u. So [x, y] = [e1, y] = y implies that y = 0
since ad(e1) has no real eigenvalues in g′.

Proposition 2.6. The Lie algebras R × r3,R × r3,0, aff(C), r4, r4,0 and r′4,µ,λ do
not admit a decomposition of type aff(R) ./ aff(R).

Proof. Let g := R× r3 and h a subalgebra of g isomorphic to aff(R). Then h has a
basis of the form {e1 +u, e2} with u ∈ 〈e0, e3〉. Thus, any decomposition of R× r3 of
the form h1+h2 with h1 ' aff(R) ' h2 is not direct since e2 ∈ h1∩h2. If g = R×r3,0,
then dim g′ = 1 and therefore the assertion follows.

Assume next that g ∼= aff(C). Every subalgebra of g isomorphic to aff(R) is of
the form 〈e0 +u, v〉 with u, v ∈ 〈e2, e3〉, thus it is contained in the subspace spanned
by {e0, e2, e3}. Therefore, aff(C) is not of type aff(R) ./ aff(R).

If g is either r4, r4,0 or r′4,µ,λ, one can show that e1 ∈ g belongs to any Lie
subalgebra of g isomorphic to aff(R) and thus g cannot be decomposed as aff(R) ./
aff(R). We give a proof of this fact in the case g = r4. Let u = 〈u, v〉 be a Lie
subalgebra of r4 isomorphic to aff(R), with [u, v] = v. If u =

∑3
i=0 aiei, v =∑3

i=0 biei with ai, bi ∈ R, i = 0, . . . , 3, b0 = 0 since v ∈ [r4, r4], then we have




a0b1 + a0b2 = b1,

a0b2 + a0b3 = b2,

a0b3 = b3

which implies





b1(a0 − 1) = −a0b2,

b2(a0 − 1) = −a0b3,

b3(a0 − 1) = 0.

If a0− 1 6= 0, then b3 = 0 and thus b2(a0− 1) = 0, which implies b2 = 0. From this,
we have b1(a0 − 1) = 0, and therefore b1 = 0, i.e. v = 0, a contradiction. Hence,
a0 = 1 and then b2 = b3 = 0. Also b1 ∈ R\{0} is arbitrary, and we may take b1 = 1.
So,

u = e0 + a2e2 + a3e3, v = e1,

hence, e1 ∈ r4, as asserted. The proofs of the remaining cases are similar.

Theorem 2.7. If g is a four dimensional solvable Lie algebra then g does not admit
any paracomplex structure if and only if g is isomorphic to d′4,λ for some λ > 0.

Proof. We first show that if g is a Lie algebra in the family d′4,λ with λ > 0 then g
does not admit a paracomplex structure. Let u be a 2-dimensional Lie subalgebra
of g with a basis {u, v}, where u =

∑3
i=0 aiei, v =

∑3
i=0 biei with ai, bi ∈ R, i =

0, . . . , 3
Case 1: [u, v] = 0 and hence u ∼= R2. In this case we get that





λ(a0b1 − a1b0) + a0b2 − a2b0 = 0,

λ(a0b2 − a2b0)− a0b1 + a1b0 = 0,

2λ(a0b3 − a3b0) + a1b2 − a2b1 = 0.
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From the first two equations we arrive at (a0b2 − a2b0)(λ2 + 1) = 0, and therefore
a0b2 − a2b0 = 0, which in turn implies a0b1 − a1b2 = 0. Summing up, we have

(a0, a1, a2)× (b0, b1, b2) = (−2λ(a0b3 − a3b0), 0, 0)

and hence {
2λa0(a0b3 − a3b0) = 0,

2λb0(a0b3 − a3b0) = 0.

We have two cases:
(i) λ = 0. Then (a0, a1, a2) × (b0, b1, b2) = (0, 0, 0) and therefore (b0, b1, b2) =
β(a0, a1, a2), with β ∈ R. Since u and v are linearly independent, we must have
b3 − βa3 6= 0. Thus, we obtain that

e3 =
1

b3 − βa3
(v − βu)

(ii) λ 6= 0. If we suppose a0b3 − a3b0 6= 0, we arrive at a contradiction; thus a0b3 −
a3b0 = 0 and (a0, a1, a2) × (b0, b1, b2) = (0, 0, 0). As in the previous case, we have
that e3 ∈ u.

Case 2: [u, v] = v and hence u ∼= aff(R). In this case we obtain that b0 = 0 and




λa0b1 + a0b2 = b1,

λa0b2 − a0b1 = b2,

2λa0b3 + a1b2 − a2b1 = b3.

(14)

Let us observe first that a0 6= 0, since otherwise from (14) we obtain that b1 = b2 =
b3 = 0, i.e. v = 0, a contradiction. Combining now the first two equations from (14),
we arrive at

b1b2

(
(λa0 − 1)2 + a2

0

)
= 0.

Since clearly (λa0 − 1)2 + a2
0 6= 0, we have that b1b2 = 0. It is easily seen that this

implies b1 = b2 = 0. Hence, we need only consider now the equation 2λa0b3 = b3,
with b3 6= 0.
(i) λ = 0. In this case, we obtain that b3 = 0, a contradiction. Thus, d′4,0 does not
have any Lie subalgebra isomorphic to aff(R).
(ii) λ 6= 0. Here, since b3 6= 0, we have a0 = 1

2λ and u and v are given by

u =
1
2λ

e0 + a1e1 + a2e2, v = e3.

Note that e3 ∈ u.

In all cases, e3 ∈ g belongs to any 2-dimensional Lie subalgebra of g, and hence
this Lie algebra cannot be decomposed as a direct sum (as vector spaces) of two
2-dimensional Lie subalgebras.

The theorem follows by observing that the remaining Lie algebras possess para-
complex structures (see Table 2).

We give next a characterization of the four dimensional solvable Lie algebras
which can be decomposed as a semidirect product of two dimensional subalgebras.
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2.3. Semidirect extensions of R2

Assume that g contains R2 as an ideal and that the short exact sequence

0 → R2 → g → g/R2 → 0

splits. The next result gives a list of the Lie algebras with this property.

Proposition 2.8. Let g be a four dimensional solvable Lie algebra.
(i) If there is a split exact sequence

0 → R2 → g → R2 → 0

then g ∼= R4, aff(R)× aff(R),R× h3, R× r3, R× r3,λ, R× r′3,λ, aff(C) or d4,1.
(ii) If there is a split exact sequence

0 → R2 → g → aff(R) → 0

then g ∼= R× r3,λ, r4,λ, r4,µ,λ, r′4,µ,λ, d4 or d4,λ.

Proof. (i) Table 2 exhibits decompositions of g as a semidirect product R2 nR2 in
case g ∼= R4, aff(R) × aff(R), R × h3, R × r3, R × r3,λ, R × r′3,λ, aff(C) or d4,1. It
follows from Corollaries 2.2 and 2.4 that r4, r4,λ, r′4,λ, λ 6= 0, r4,µ,λ, r′4,µ,λ, d4, d4,λ,
λ 6= 1, d′4,λ and h4 do not admit such a decomposition. It remains to consider the
case g ∼= n4 or r4,0. Assume that g = a n b with a ∼= b ∼= R2. Then g′ ⊂ b, hence
g′ = b since in both cases g′ = R2 (Table 1).

Consider next the case g ∼= n4, hence b = 〈e2, e3〉 and a = 〈x, y〉 with x =
ae0 + be1 + u, y = ce0 + de1 + v, ad− bc 6= 0, u, v ∈ b. We calculate

[x, y] = (ad− bc)e2 + [e0, av − cu]

which is non zero since the second summand on the right hand side is a multiple
of e3. This contradicts the fact that a ∼= R2. Therefore, n4 does not decompose as
R2 nR2.

The case g ∼= r4,0 is similar. We have b = 〈e1, e2〉 and a = 〈x, y〉 with x =
ae0 + be3 + u, y = ce0 + de3 + v, ad− bc 6= 0, u, v ∈ b. We calculate

[x, y] = [e0, av − cu] + (ad− bc)e2

which is non zero since the first summand on the right hand side is a multiple of
e1. This contradicts the fact that a ∼= R2 and part (i) of the proposition follows.

(ii) If 0 → R2 → g → aff(R) → 0 splits, then there is a subalgebra h of g
isomorphic to aff(R) such that g = hnR2. Set

ρ : h → gl(2,R), ρ(u) = ad(u)|R2 , u ∈ h.

Then ρ is a Lie algebra homomorphism. Let h = 〈x, y〉, [x, y] = y. If ρ ≡ 0 then
g ∼= aff(R)×R2 = R× r3,0. If dim Im ρ = 1, then 0 = [ρ(x), ρ(y)] = ρ([x, y]) = ρ(y)
and ρ(x) is given as follows:

(
µ 0
0 λ

)
, λ 6= 0,

(
λ 1
0 λ

)
or

(
α β
−β α

)
, β 6= 0.

The first possibility gives g ∼= R × r3,λ in case µ = 0 and g ∼= r4,µ,λ if µ 6= 0. The
second possibility yields g ∼= r4,λ and the last one gives g ∼= r′4,1/β,α/β .
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If dim Im ρ = 2, then ρ(x), ρ(y) are linearly independent and since g′ is nilpotent
and y ∈ g′, we may assume that

ρ(y) =
(

0 1
0 0

)
.

It follows from [ρ(x), ρ(y)] = ρ(y) that ρ(x) takes the following form:

ρ(x) =
(

α + 1/2 β
0 α− 1/2

)
.

We can take β = 0 by replacing x with x− βy. Let us denote by gα the Lie algebra
corresponding to

ρ(x) =
(

α + 1/2 0
0 α− 1/2

)
, ρ(y) =

(
0 1
0 0

)
.

The following table gives the possibilities for gα according to the parameter α:

α gα

−1/2 d4

1/2 d4,1

α ∈ (−1/2, 1/2) ∪ (1/2, 3/2] d4,λ, λ =
2

2α + 1

α ∈ (−∞,−1/2) ∪ (3/2,∞) d4,λ, λ =
α− 1/2
α + 1/2

This completes the proof of the proposition.

2.4. Semidirect extensions of aff(R)
Assume that g contains aff(R) as an ideal and that the short exact sequence

0 → aff(R) → g → g/aff(R) → 0

splits. The next result states that g is a direct product, that is, g is isomorphic to
R2 × aff(R) or aff(R)× aff(R). The precise statement is the following:

Proposition 2.9. Let g be a four dimensional solvable Lie algebra.
(i) If there is a split exact sequence

0 → aff(R) → g → R2 → 0

then g ∼= R× r3,0 = R2 × aff(R).
(ii) If there is a split exact sequence

0 → aff(R) → g → aff(R) → 0

then g ∼= aff(R)× aff(R).

Proof. Let aff(R) = 〈z, w〉 with [z, w] = w, then the algebra of derivations is given
as follows:

Der aff(R) =
{(

0 0
a b

)
, a, b ∈ R

}
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R ./ h g

R ./ R3 R4, R× h3, R× r3, R× r3,λ, R× r′3,λ, n4, r4, r4,λ, r4,µ,λ, r′4,µ,λ

R ./ h3 R× h3 , n4, r4,0, d4, d4,λ (λ > 1/2), d′4,λ (λ > 0), h4

R ./ r3 R× r3, r4, r4,λ, (λ 6= 0), d4,1

R ./ r3,0 R× r3,λ, aff(R)× aff(R), r4,0, d4, d4,1

R ./ r′3,0 R× r′3,0, aff(C)

R ./ r3,λ R× r3,λ, aff(R)× aff(R) (λ = −1), aff(C) (λ = 1), r4,λ, r4,µ,λ,

h4 (λ = 2), d4,λ, d4,1−λ

R ./ r′3,λ R× r′3,λ, aff(C), r′4,µ,λ

Table 3:

with respect to {z, w}. If 0 → aff(R) → g → g/aff(R) → 0 splits, then there is a
subalgebra h of g isomorphic to g/aff(R) such that g = hn aff(R). Set

ρ : h → Der aff(R), ρ(u) = ad(u)|aff(R), u ∈ h.

Then ρ is a Lie algebra homomorphism.
(i) In this case h = R2, so the image of ρ is an abelian subalgebra of Der aff(R),

hence it is one dimensional. Let R2 = 〈x, y〉, aff(R) = 〈z, w〉. We may assume that

ρ(y) = 0. Let ρ(x) =
(

0 0
a b

)
. If a = b = 0 the assertion follows. If b 6= 0 we may

assume that b = 1 and we can reduce to a = 0 by changing z to z − aw. Hence,
we may assume that the only non zero brackets are [x, w] = w, [z, w] = w and
therefore g = 〈x − z, y〉 × 〈z, w〉 where 〈x − z, y〉 ∼= R2. If b = 0, a 6= 0, we may
assume that a = 1, therefore g = 〈x + w, y〉 × 〈z, w〉 where 〈x + w, y〉 ∼= R2 and the
desired assertion follows.

(ii) We have h = aff(R) = 〈x, y〉, [x, y] = y, and the following possibilities for ρ:

ρ(x) =
(

0 0
a 1

)
, ρ(y) =

(
0 0
1 0

)
or ρ(x) =

(
0 0
a b

)
, ρ(y) = 0.

We show next that, in both cases, g ∼= aff(R)× aff(R).
If the first possibility occurs, take 〈x− z + aw, y +w〉 and 〈z− aw, w〉. These are

complementary ideals isomorphic to aff(R), hence g ∼= aff(R)× aff(R).
In the second case, take 〈x− bz + aw, y〉 and 〈z, w〉, which are ideals isomorphic

to aff(R), and the desired assertion follows.

2.5. Product structures of type R ./ h

We exhibit in Table 3 realizations of the Lie algebras obtained in Theorem 1.5
as double Lie algebras where h is a three dimensional subalgebra. Note that the
problem of finding such a decomposition is equivalent to the determination of the
three dimensional subalgebras.
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• R ./ R3: The Lie algebras R×h3, R×r3, R×r3,λ, R×r′3,λ, n4, r4, r4,λ, r4,µ,λ

and r′4,µ,λ were obtained in Theorem 1.5 as semidirect extensions of R3.
• R ./ h3: The Lie algebras R × h3 , n4, d4, d4,λ (λ > 1/2), d′4,λ (λ > 0), and

h4 were obtained in Theorem 1.5 as semidirect extensions of h3. On the other
hand,

r4,0
∼= 〈e1〉 ./ 〈e0, e2, e3〉.

• R ./ r3:

r4 ∼= 〈e3〉 ./ 〈e0, e1, e2〉,
r4,λ

∼= 〈e1〉 ./ 〈e0, e2, e3〉, λ 6= 0,

d4,1
∼= 〈e0〉n 〈e0 + e2, e1, e3〉.

• R ./ r3,0:

aff(R)× aff(R) ∼= 〈e0〉n 〈e1, e2, e3〉,
r4,0

∼= 〈e3〉n 〈e0, e1, e2〉,
d4
∼= 〈e2〉 ./ 〈e0, e1, e3〉,

d4,1
∼= 〈e1〉 ./ 〈e0, e2, e3〉.

• R ./ r′3,0: aff(C) ∼= 〈e0〉n 〈e1, e2, e3〉.

• R ./ r3,λ: aff(R)×aff(R) was obtained in Theorem 1.5 as a semidirect extension
of r3,−1.

h4 = 〈e2〉 ./ 〈e0, e1, e3〉 ∼= R ./ r3,2, λ = 2,

aff(C) = 〈e1〉n 〈e0, e2, e3〉 ∼= Rn r3,1, λ = 1,

r4,λ
∼= 〈e3〉 ./ 〈e0, e1, e2〉,

r4,µ,λ
∼= 〈e2〉 ./ 〈e0, e1, e3〉,

r4,µ,λ
∼= R ./ r4,µ = 〈e3〉 ./ 〈e0, e1, e2〉,

d4,λ
∼= 〈e2〉 ./ 〈e0, e1, e3〉, d4,1−λ

∼= 〈e1〉 ./ 〈e0, e2, e3〉.
• R ./ r′3,λ:

aff(C) ∼= 〈e0〉n 〈λe0 − e1, e2, e3〉,
r′4,µ,λ

∼= 〈e1〉 ./ 〈e0, e2, e3〉.

3. Applications: Manin triples and complex product struc-
tures

3.1. Manin triples on 4-dimensional solvable Lie algebras
An important example of double Lie algebras are Manin triples [LW]. We recall

that a Manin triple is a double Lie algebra (g, g+, g−) with an invariant metric, that
is, a non degenerate symmetric bilinear form ( , ) which satisfies:

([x, y], z) + (y, [x, z]) = 0 for all x, y, z ∈ g
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such that g+ and g− are isotropic subalgebras. In particular g = g+ ./ g−, where
g+ and g− have the same dimension. Thus, Manin triples are special cases of para-
complex structures.

The next proposition makes use of [BK] and the results of the previous section
to obtain that there is only one four dimensional solvable Lie algebra giving rise to
Manin triples.

Proposition 3.1. Let (g, g+, g−) be a Manin triple such that g is a non abelian
four dimensional solvable Lie algebra. Then g is isomorphic to d4 with the invariant
metric given by:

α = (e0, e3) = (e1, e2), α 6= 0,

where the isotropic subalgebras g+ and g− are given as follows:
(i) g+ = 〈e0 + µe2, e1 − µe3〉, g− = 〈e0 + νe2, e1 − νe3〉 with µ 6= ν; or
(ii) g+ = 〈e0 + µe2, e1 − µe3〉, g− = 〈e2, e3〉: µ, ν ∈ R.

Proof. According to [BK] a non abelian solvable Lie algebra which admits an in-
variant metric is isomorphic either to d′4,0 or d4. It was proved in Theorem 2.7 that
d′4,0 does not admit paracomplex structures. Thus, we need to investigate the pos-
sible paracomplex structures on d4. It is easy to see that the metric on d4 given
by:

(e0, e3) = (e1, e2) = α, with α 6= 0,

is invariant. Any two-dimensional isotropic non abelian subalgebra of d4 is isomet-
rically isomorphic to:

〈e0 + µe2, e1 − µe3〉,
where the isometric isomorphism is given by φ(e1) = e2, φ(ei) = −ei, i = 0, 3. On
the other hand, any two-dimensional isotropic abelian subalgebra is isometrically
isomorphic to:

〈e2, e3〉.
It follows from 2.4 that d4 does not admit a decomposition of type R2 ./ R2. If both
g+ and g− are isomorphic to aff(R) then we are led to case (i). In case g+

∼= aff(R)
and g− ∼= R2 we obtain case (ii), and the proposition follows.

3.2. Complex product structures on four dimensional solvable Lie alge-
bras

In this subsection we determine all four dimensional solvable Lie algebras which
admit a complex product structure (see Table 4), using the classification of complex
structures on this class of Lie algebras given in [SJ, O1] together with the results in
§2.2. We give in this way an alternative proof of a result by Blazić and Vukmirović
([BV]), where complex product structures were referred to as para-hypercomplex
structures.

We recall that a complex structure on a Lie algebra g is an endomorphism J :
g → g such that J2 = − Id and

J [x, y] = [Jx, y] + [x, Jy] + J [Jx, Jy]
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Lie algebra Complex structure Paracomplex structure

aff(R)× aff(R) Je0 = e3, Je1 = e2 〈e0, e1〉n 〈e2, e3〉
R× h3 Je0 = −e3, Je1 = e2 〈e0, e1〉n 〈e2, e3〉
R× r3,0 Je3 = e0, Je1 = e2 〈e1, e3〉n 〈e0, e2〉
R× r3,1 Je0 = e1, Je2 = e3 〈e1, e3〉n 〈e0, e2〉
aff(C) Je0 = e2, Je1 = e3 〈e0, e1〉n 〈e2, e3〉
r4,1 Je0 = e3, Je1 = e2 〈e0, e1〉n 〈e2, e3〉

r4,λ,λ , λ 6= 0 Je0 = e1, Je2 = e3 〈e0, e2〉n 〈e1, e3〉
r4,µ,1 , µ 6= 0, ±1 Je0 = e2, Je1 = e3 〈e0, e1〉n 〈e2, e3〉

r′4,µ,λ Je0 = e1, Je2 = e3 〈e0, e1〉n 〈e2, e3〉
Je0 = e1, Je2 = −e3 〈e0, e1〉n 〈e2, e3〉

d4 Je0 = −e1, Je2 = e3 〈e0, e1〉n 〈e2, e3〉
Je0 = e3 − e1, Je1 = e0 − e2,

Je2 = e3
〈e0, e2〉n 〈e1, e3〉

d4,1 Je0 = e1, Je2 = −e3 〈e0, e2〉n 〈e1, e3〉
d4,1/2 Je0 = e3, Je1 = e2 〈e0, e1〉n 〈e2, e3〉

Je0 = e3, Je1 = −e2 〈e0, e1〉n 〈e2, e3〉
Je0 = e1, Je2 = −2e3 〈e0, e2〉n 〈e1, e3〉

d4,λ , λ 6= 1, 1/2 Je0 = (1− λ)e2, Je1 = e3 〈e0, e1〉n 〈e2, e3〉
Je0 = −λe1, Je2 = e3 〈e0, e2〉n 〈e1, e3〉

h4 Je0 = 4e2, Je1 = 4e3 〈e0, e1〉 ./ 〈e2, e3〉

Table 4: Complex product structures

for all x, y ∈ g. A complex product structure on a Lie algebra g is a pair {J,E} where
J is a complex structure and E is a product structure on g such that JE = −EJ .
This is equivalent to having a splitting of g as g = g+ ⊕ g−, where g+ and g− are
Lie subalgebras of g such that g− = Jg+. From this it follows that E is, in fact, a
paracomplex structure on g.

At this point we refer the reader to Table 4.

Remarks.

a) The Lie algebras R×r′3,λ admit complex structures (see [SJ]) and paracomplex
structures (see Table 2). Nevertheless, they do not admit any complex product
structure. To show this, we state the following result, which is proved in [AD]:
Proposition 3.2. Let {J,E} be a complex product structure on the Lie algebra
g and let (g, g+, g−) be the associated double Lie algebra. Then the following
assertions are equivalent:
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(i) J is an abelian complex structure, i.e., [Jx, Jy] = [x, y] for all x, y ∈ g.
(ii) The Lie subalgebras g+ and g− are abelian;

(iii) E is an abelian product structure, i.e., [Ex, Ey] = −[x, y] for all x, y ∈ g.

It is known that the Lie algebra R× r′3,λ does not admit any abelian complex
structure (see [SJ]). However, from Lemma 2.5 this Lie algebra admits only
abelian paracomplex structures and thus, from the previous proposition, there
is no complex product structure on R× r′3,λ.

b) The Lie algebra aff(C) admits other complex structures, given by:

Jα,βe0 =
α

β
e0 +

α2 + β2

β
e1, Jα,βe2 = e3

with α ∈ R, β ∈ R \ {0}. However, there is no paracomplex structure on
aff(C) which anticommutes with Jα,β . Let us show this last assertion. It is
known from Proposition 2.6 that aff(C) does not admit decompositions of
type aff(R) ./ aff(R). Also, since the complex structure Jα,β is not abelian,
any complex product structure on aff(C) induces a decomposition of type
aff(R) ./ R2. Let h be a subalgebra of aff(C) isomorphic to aff(R); then h has
a basis u = e0 + a2e2, v = b2e2 + b3e3. Then Jα,βu = α

β e0 + α2+β2

β e1 − a3e2 +
a2e3, Jα,βv = −b3e2 + b2e3. Then we must have [Ju, Jv] = 0 and from this we
obtain the system

{
α2+β2

β b2 + α
β b3 = 0

α
β b2 − α2+β2

β b3 = 0

It is easy to see that the only solution of this system is b2 = b3 = 0, i.e., v = 0,
a contradiction. Therefore, there are no product structures on aff(C) which
anticommute with Jα,β .

c) The Lie algebras d′4,λ admit complex structures (see [O1]) but, according to
Theorem 2.7, they do not admit any paracomplex structure. Hence, they do
not carry complex product structures.

d) Table 4 shows examples of complex product structures on R × h3 and r4,1,1.
On the other hand, all equivalence classes of complex product structures on
these Lie algebras were determined in [AS], section 6.2.

Appendix I - Matrix realizations

We exhibit below matrix realizations of the indecomposable Lie algebras listed
in Theorem 1.5, where indecomposable means that they do not split as a direct
product of lower dimensional Lie algebras. All matrices have real coefficients.
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n4:




0 x 0 w
0 0 x y
0 0 0 z
0 0 0 0




aff(C):




x z y
−z x w
0 0 0




r4:




x x 0 y
0 x x z
0 0 x w
0 0 0 0




r4,λ:




x 0 0 y
0 λx x z
0 0 λx w
0 0 0 0




r4,µ,λ :
µλ 6= 0, −1 < µ 6 λ 6 1

or −1 = µ 6 λ < 0




x 0 0 y
0 µx 0 z
0 0 λx w
0 0 0 0




r′4,µ,λ :
µ > 0




µx 0 0 y
0 λx x z
0 −x λx w
0 0 0 0




d4:








0 x z
0 w y
0 0 0







w 0 0 x
0 −w 0 y

− 1
2y 1

2x 0 z
0 0 0 0




d4,λ :
λ > 1

2








w x z
0 (1− λ)w y
0 0 0







λw 0 0 x
0 (1− λ)w 0 y

− 1
2y 1

2x w z
0 0 0 0




d′4,λ :
λ > 0




λw w 0 x
−w λw 0 y
− 1

2y 1
2x 2λw z

0 0 0 0




h4:




1
2w w 0 x
0 1

2w 0 y
− 1

2y 1
2x w z

0 0 0 0
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Appendix II - Comparison with previous classifications

In this section we carry out a comparison with various results which can be found
in the literature. Our main goal is to establish a correspondence between the de-
scription obtained by other authors and the Lie algebras appearing in Theorem 1.5.

3.3.
We start by comparing our results with the ones obtained by Dozias as appearing

in [Ve], Table 1.1, p. 180.

g4,1 g4,2 g4,3 g4,4 g4,5(α, β) g4,6(α) g4,7 g4,8(α, β) g4,9(0)

d4,0 aff(C) n4 r4,0 r4,α,β r4,α r4 r′4,α,β d4

g4,9(α) , α 6= 0 g4,10 g4,11(α)

d4,1−1/α h4 d′4,α

3.4.
We recall below the classification given by Mubarakzyanov [Mu] and then we

establish the correspondence with the algebras appearing in Theorem 1.5.

Notation
in [Mu] Lie bracket relations

g4,1 [e2, e4] = e1 [e3, e4] = e2

g4,2 [e1, e4] = αe1 [e2, e4] = e2 [e3, e4] = e2 + e3

g4,3 [e1, e4] = e1 [e3, e4] = e2

g4,4 [e1, e4] = e1 [e2, e4] = e1 + e2 [e3, e4] = e2 + e3

g4,5 [e1, e4] = e1 [e2, e4] = βe2 [e3, e4] = γe3 -16 γ 6 β 6 1,
γβ 6= 0

g4,6 [e1, e4] = αe1 [e2, e4] = pe2 − e3 [e3, e4] = e2 + pe3 α 6= 0, p> 0
g4,7 [e2, e3] = e1 [e1, e4] = 2e1 [e2, e4] = e2 [e3, e4] = e2 + e3

g4,8 [e2, e3] = e1 [e1, e4] = (1 + h)e1 [e2, e4] = e2 [e3, e4] = he3,
|h| 61

g4,9 [e2, e3] = e1 [e1, e4] = 2pe1 [e2, e4] = pe2 − e3 [e3, e4] = e2 + pe3,
p>0

g4,10 [e1, e3] = e1 [e2, e3] = e2 [e1, e4] = −e2 [e2, e4] = e1 + e3

The correspondence is as follows:

g4,1 g4,2 g4,3 g4,4 g4,5 g4,6 g4,7 g4,8 g4,9 g4,10

n4 r4,α r4,0 r4 r4,β,γ r′4,α,p h4 d4, d4,1/1+b d′4,a aff(C)
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3.5.
In [PSWZ] invariants of real Lie algebras of dimension at most five are given. In

particular, a list of four dimensional solvable Lie algebras, based on that of [Mu],
is shown in Table I, p. 988. The relation with Theorem 1.5 is :

A4,1 A4,2
a A4,3 A4,4 A4,5

a,b A4,6
a,b A4,7 A4,8

n4 r4,a r4,0 r4 r4,a,b r′4,a,b h4 d4

A4,9
b A4,10 A4,11

a A4,12

d4,1/1+b d′4,0 d′4,a aff(C)

3.6.
The classification of complex structures on four dimensional Lie algebras was

carried out by Snow in [SJ] and by Ovando in [O1]. To achieve this classification a
description is given in [SJ], p. 400, of four dimensional solvable Lie algebras when
the commutator ideal has dimension 1 or 2. We compare below the list given by
Snow with the one obtained in Theorem 1.5.

S1 S2 S3 S4 S5d , d 6= 0 S6

R× h3 R2 × aff(R) r4,0 n4 R× r3,d R× r3

S70,c , c > 0 S71,c , 4c > 1 S8 S9

R× r′3,0 R× r′3,
√

4c−1 aff(R)× aff(R) d4,1

S10d,d , d 6= 0 S10d,c, c 6= d, d 6= 0 S11d,c , d2 − 4c < 0, d = 0, 1

R× r3,d aff(R)× aff(R) aff(C)

The above correspondence shows that some of the families appearing in [SJ] be-
come a single Lie algebra. Also, there exist isomorphisms between different families.
We give below the proof of these statements.

• S7
We recall from [SJ] the definition of the Lie algebra S7d,c , d2 − 4c < 0, d = 0 or

1 with basis x, y, z, w:

[x, y] = w, [x,w] = −cy + dw.

Observe that if d = 0 then c > 0 and ad(x)|g′ has eigenvalues ±ic. We can

take a real basis of g′ such that ad(x)|g′ takes the form
(

0 c
−c 0

)
. Changing

x by x/c we see that S70,c
∼= R × e(2) for all c > 0. If c = 1, then ad(x)|g′

has eigenvalues 1/2 ± iλ/2, where λ =
√

4c− 1. Taking x′ = x/2, there

exists a real basis of g′ such that ad(x′)|g′ takes the form
(

1 λ
−λ 1

)
, hence

S71,c
∼= R× r′3,λ for all c such that 1− 4c < 0.
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• S10
Consider next the Lie algebra S10d,c , c, d ∈ R, d 6= 0:

[x, y] = y, [x,w] = dw, [z, y] = y, [z, w] = cw. (15)

If c = d, then changing z by x− z, we see that S10d,d
∼= R× r3,d for all d 6= 0.

If c 6= d, let x′, y′, z′, w′ be the basis of S101,0 satisfying (15) and x, y, z, w the
corresponding basis of S10d,c. Define a linear map ψ : S10d,c → S101,0 by

ψ(x) = x′+(d−1)z′, ψ(y) = w′, ψ(z) = x′+(c−1)z′, ψ(w) = y′.

It turns out that ψ is a Lie algebra isomorphism for all c 6= d and therefore
S10d,c

∼= S101,0
∼= aff(R) × aff(R), where the last isomorphism follows by

changing x′ to x′ − z′.

• S11
Consider the Lie algebra S11d,c , d2 − 4c < 0, d = 0, 1:

[x, y] = y, [x,w] = w, [z, y] = w, [z, w] = −cy +dw.

If d = 0, then ad(z/c)|g′ has eigenvalues ±i and there exists a real basis of g′

such that ad(z/c) =
(

0 1
−1 0

)
, hence S110,c

∼= aff(C) for all c > 0.

If d = 1, then ad(z)|g′ has eigenvalues 1/2± iλ/2, where λ =
√

4c− 1. Taking
z′ = z/2, there exists a real basis of g′ such that ad(z′)|g′ takes the form(

1 λ
−λ 1

)
. Changing z′ to z′′ = (z′ − x)/λ, so that ad(z′′) =

(
0 1
−1 0

)
, we

conclude that S111,c
∼= aff(C) for all c such that 4c > 1.

Finally, in case the commutator ideal is three dimensional, we establish the cor-
respondence with Table 1 in [O1], p. 22.

A1λ1,λ2 , λ1 6= λ2 ∈ R\{0, 1} A1λ,λ, Imλ 6= 0 A2λ, λ ∈ R\{0, 1} A3λ, λ ∈ R\{0, 1}

r4,λ1,λ2 r′4,1/Im λ,Re λ/Im λ r4,λ,λ r4,λ

A4 A5 A6 H1 H2 H3 H4 H5λ , λ ∈ R\{0, 1} H6λ , λ ∈ C\R

r4,1,1 r4,1 r4 d4 d′4,0 d4,1/2 h4 d4,λ d′4,−1/Im λ
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Appendix III - Some known results related to 4-dimensional
geometry

Using the characterization of homogeneous manifolds of negative curvature given
by Heintze in [H] we can conclude that the following four dimensional Lie algebras
do admit metrics with negative curvature:
• r4,µ,λ, 0 < µ 6 λ 6 1,
• r′4,µ,λ, µ > 0, λ > 0,
• d4,λ, 1/2 6 λ < 1,
• d′4,λ, λ > 0,
• h4.

Concerning non positive sectional curvature, we can mention a result appearing in
[Dru], where it is proved that a left invariant metric with non positive curvature
on a four dimensional solvable Lie group either has geometric rank one or it comes
from an inner product on aff(R)× aff(R) or R× r3,1, up to scaling.

We understand that the classification of rank one four dimensional homogeneous
spaces of non positive curvature is not known. On the other hand, Jensen classified
in [J] the four dimensional Lie algebras admitting Einstein metrics:
• R× r3,1,
• r4,1,1,
• R× r′3,0,
• r′4,λ,λ, λ > 0.
• d4,λ, λ > 1/2,
Among these, it follows from [Al] that there are only two four dimensional Lie

algebras admitting Einstein metrics of non positive curvature: r4,1,1 and d4,1/2.
Concerning left invariant anti-self-dual metrics on four dimensional Lie groups, it
was proved in [DS] (Theorem 1.6) that if a four dimensional Lie group admits such
a metric, then its Lie algebra is one of the following:
• d4,1/2,
• d′4,λ, λ > 0.

It is proved in [F2] that d4,2 is the only four dimensional solvable Lie algebra
admitting an almost Kähler structure whose Ricci tensor is invariant with respect
to the almost complex structure.

The classification of complex structures on four dimensional solvable Lie algebras
was carried out by Snow in [SJ], when the commutator subalgebra has dimension
one or two, and by Ovando in [O1], when the commutator subalgebra is three
dimensional. The classification of hypercomplex structures was obtained in [B1].

Concerning the existence of symplectic structures, it is shown in [FG] that the
solvmanifold obtained as a quotient of E(1, 1), the simply connected Lie group with
Lie algebra e(1, 1), by a lattice, admits a symplectic structure but no complex struc-
ture. The classification of symplectic structures on four dimensional Lie algebras is
done in [O2], where the cohomology of all four dimensional solvable Lie algebras is
computed.
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The hyper-Kähler metrics conformal to left invariant metrics metric on four di-
mensional Lie groups were determined in [B2]. It turns out that the solvable Lie
groups appearing in this list are those with Lie algebra R4, aff(C), r4,1,1 or d4,1/2.
It was proved in [F1] that the cotangent bundle of a Lie group with Lie algebra
aff(C) or r4,1,1 also admits a metric conformal to a hyper-Kähler metric.

The determination of hypersymplectic structures on four dimensional Lie alge-
bras was carried out in [An]. According to this, the only Lie algebras admitting
such a structure are R4, R× h3, r4,−1,−1 and d4,2.
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