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THE COMPLEX OF WORDS AND NAKAOKA STABILITY
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Abstract
We give a new simple proof of the exactness of the complex

of injective words and use it to prove Nakaoka’s homology
stability for symmetric groups. The methods are generalized
to show acyclicity in low degrees for the complex of words in
”general position”.

Introduction

In this paper we show the vanishing of homology for various complexes of words
and give an elementary, self-contained proof of Nakaoka stability (Theorem 2):

Hm(Σn−1,Z) = Hm(Σn,Z)

for n/2 > m where Σn denotes the permutation group of n elements. An elementary
proof of this fact has not been available in the literature.
In the first section the complex C∗(m) of abelian groups is studied which in de-
gree n is freely generated by injective words of length n. The alphabet consists of
m letters. The complex C∗(m) has the only non vanishing homology in degree m
(Theorem 1). This is a result of F.D. Farmer [3] who connected it to properties of
the associated poset of injective words and its CW-complex.
Then, considering the action of the permutation group on the alphabet, a hyperho-
mology argument is used to deduce Nakaoka stability.
In the second section – independent from the first – more general complexes of
words are shown to have vanishing homology in low degrees. The proof is analogous
to Theorem 1.
A very general setting is used but the essential application is to the complex of words
consisting of vectors in general position over a finite field. In fact this complex is
shown to become exact in some fixed degree and fixed dimension of the vector space
if only the base field has enough elements.
This could be of interest for example for Suslin’s GL-stability [8] which works up
to now only over infinite fields.
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1. An elementary proof of Nakaoka stability

In this section we are concerned with the complex of injective words, denoted
C∗(m) (m ∈ N), and its homology. For n > 0 define Cn(m) as the abelian group
freely generated by the injective words of length n with alphabet m = {1, 2, . . . ,m}.
Injective word means no element of our alphabet may appear twice in it. Set
C0(m) = Z.
In what follows words are written in brackets, e.g. (1, 2) + (3, 1) ∈ C2(3).
The differential d : Cn(m) → Cn−1(m) for n > 1 is defined by

d(x1, . . . , xn) =
n∑

j=1

(−1)j+1(x1, . . . , x̂j , . . . , xn) ,

x1, . . . , xn ∈ m. Similarly d : C1(m) → C0(m) maps (x) to 1.
In the theory of posets and their associated CW-complexes the following theorem

has a nice interpretation. The homology of C∗(m) is equal to the simplicial homol-
ogy of the (shellable) poset of injective words. Shellability reduces the simplicial
homology groups to those of a wedge of m-spheres. We refer to [1], [3], [7] for exact
definitions and statements.

Our proof of Theorem 1 is new and rather straightforward compared to Farmer’s
original elementary proof.

Theorem 1. (Farmer [3]) The homology of C∗(m) vanishes except in degree m.

We have to introduce some notations which will be used throughout the paper.
An element c ∈ Cn(m) is called a term, if there exists an N ∈ Z and x1, . . . , xn ∈
{1, . . . , m} with c = N (x1, . . . , xn).
As C∗(m) has a canonical basis all our sum decompositions correspond to partitions
of the basis. We also speak about the appearance of numbers in a an element of
Cn(m). For example 2 appears in (2, 3) + 4 (5, 1) but 4 does not.
Although our complex C∗(m) has no obvious cup product, we have a partially
defined product. If c ∈ Cn(m), c′ ∈ Cl(m) are terms, c = N (x1, . . . xn), c =
M (x′1, . . . , x

′
l), we define c c′ := N M (x1, . . . , xn, x′1, . . . x

′
l) if the numbers x1, . . . , xn,

x′1, . . . x
′
l are distinct. This construction extends bilinearly to arbitrary c ∈ Cn(m),

c′ ∈ Cl(m) for which the numbers appearing in both of them are distinct.
There is a Leibniz rule for c ∈ Cn(m) and c′ ∈ Cl(m) satisfying the latter condition.

d(c c′) = d(c) c′ + (−1)nc d(c′)

Proof of Theorem 1. The exactness in degree 0 is clear. For the rest we use
induction on m. For the case m = 2 we have to check that

C2(2) −→ C1(2) −→ Z

is exact. But ker(d : C1(2) → Z) is generated by elements of the form

(x)− (x′) = d (x, x′)

with x 6= x′.
For the induction step we use a straightforward lemma.
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Lemma 1. If we have a number x ∈ {1, . . . ,m} which does not appear in a cycle
c ∈ Cn(m), it is a boundary.

Proof. According to the Leibniz rule c = c + (x) d(c) = d((x) c), since d(c) = 0.2

Given an arbitrary cycle c of degree n < m we have to show that in order to
apply the lemma we can eliminate a number from c by adding boundaries. Therefore
we will push a fixed number x ∈ {1, . . . ,m} to the right until it vanishes from the
cycle.
If x appears somewhere in the cycle at the first entry, write

c =
∑

j

(x) cj + c′

with terms cj and c′ does not have x at the first entry. To each cj choose a number
xj ∈ {1, . . . , m}, xj 6= x which does not appear in cj .

c− d(
∑

j

(xj) (x) cj) = c′ +
∑

j

(xj) cj − (xj) (x) dcj

Now x does not appear at the first entry anymore.
The next steps until the vanishing of x are similar. Suppose x does not appear at
the first i > 0 entries of c. Now we can write

c =
∑

j

sj (x) cj + c′

with distinct terms cj , the sj have length i, x does not appear in sj and x does not
appear at the first i + 1 entries of c′. One calculates:

0 = d c =
∑

j

[
(d sj) (x) cj + (−1)isj cj + (−1)i+1sj (x) d cj

]
+ d c′ .

If we forget those terms in the last equation for which x does not appear at
the i-th entry, this equation implies d sj = 0 for all j. Since length(sj) = i <
m−length((x) cj), there are by induction s′j with d s′j = sj and such that the fol-
lowing products make sense.

z :=
∑

j

s′j (x) cj

In the cycle

c− d z = c′ −
∑

j

[
(−1)i+1s′j cj + (−1)is′j (x) d cj

]

x does not appear at the first i + 1 entries.
Finally, x vanishes completely from our cycle and we are in the situation where we
can apply Lemma 1. 2

Using the corresponding two hyperhomology spectral sequences for the natural
action of the symmetric group Σm on our complex C∗(m) (cf [2]) one can now obtain
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a stability result due to Nakaoka.†

Theorem 2. (Nakaoka [5]) Hm(Σn−1) = Hm(Σn) for m < n/2.

Proof. We use induction on n . It is well known for n = 3.

H1(Σ2) = H1(Σ3) = Z/(2)

For n > 4 define C ′l(n) := Cl+1(n) for l > 0. Then

Hm(Σn,Z) = Hm(Σn, C ′∗(n))

when m < n− 1 because of Theorem 1 and a standard spectral sequence argument
[2]. The second spectral sequence of the bi-complex gives for E1

∗,∗:

· · ·
H2(Σn, C ′0) H2(Σn, C ′1) · · · H2(Σn, C ′n−2) H2(Σn, C ′n−1)
H1(Σn, C ′0) H1(Σn, C ′1) · · · H1(Σn, C ′n−2) H1(Σn, C ′n−1)
H0(Σn, C ′0) H0(Σn, C ′1) · · · H0(Σn, C ′n−2) H0(Σn, C ′n−1)

Using Shapiro’s Lemma we get:

· · ·
H2(Σn−1) H2(Σn−2) · · · H2(Σ1) 0
H1(Σn−1) H1(Σn−2) · · · H1(Σ1) 0
H0(Σn−1) H0(Σn−2) · · · H0(Σ1) Z

The horizontal arrows can be computed as 0, 1, 0, 1, · · · , since they are the sums of
the signs in d′1, d

′
2, · · · .

We have E2
i,0 = Hi(Σn−1) for i > 0. By our global induction some d : E1

i,j → E1
i,j−1

are isomorphism. Especially, E2
i−1,2 = 0 for n/2 > i and

E2
i,j = 0 for i <

n− j − 1
2

, 0 < j < n− 1 .

For n/2 > i only the first column on the diagonal (Ek,l)k+l=i survives. In fact
E∞

i,0 = E2
i,0 = Hi(Σn−1) for n/2 > i, because the differentials that could kill these

groups come from E>2
i−l,l+1 = 0 for l > 0.

Finally, Hi(Σn−1) = Hi(Σn) for n/2 > i. 2

2. Words in general position

Let n = {i|1 6 i 6 n}. We associate to every (nonempty) set X a complex
F (X)∗, the so-called complex of words with alphabet X, as follows:

(F (X))n = Z < {f : n → X} >

dn(f) =
n∑

k=1

(−1)n+1f ◦ δk .

†Hendrik Maazen gives another prove of Nakaoka’s stability in his dissertation. I have to thank
Wilberd van der Kallen for this remark.
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Here δk : [n] → [n + 1] are the coface maps

δk(j) =
{

j if 1 6 j < k
j + 1 if k 6 j

.

It is immediate that the homology of F (X) vanishes. For if c ∈ F (X)n is a cycle,
c = d((x0) c) for arbitrary x0 ∈ X (the notational convention is explained below
Theorem 1).
For given X certain subcomplexes of F (X) can be used in hyperhomology spectral
sequences as above, if their homology vanishes to some extent. These subgroups are
determined by conditions which one could call ”general position conditions”. For
applications cf [8], [9].
It could be asked, how to explain the fact that the vanishing of homology is not
affected by these conditions. In order to give a general result we translate the proof
of Theorem 1 into our more complicated setting.

Examples

(i) Let X be a finite set. The complex of injective words is (FGinj (X))n := {f ∈
F (X)n|f injective}. According to Theorem 1 the homology of this subcomplex
is zero except in degree m = card(X) where

rank (Hm(F (X)∗)) = (−1)m(1−
m−1∑

i=0

(−1)im(m− 1) · · · (m− i)) .

This equals the number of fixed point free permutations of X.

(ii) Let k be a field and V a k-vector space. The complex of vectors in general
position is (FGvec(V ))n := {f ∈ F (V )n|f in general position}. A sequence of
vectors x1, . . . xn ∈ V is said to be in general position if no nontrivial linear
combination of zero

a1 x1 + · · ·+ an xn = 0

with ai ∈ k and at most dim(V ) many nonvanishing ai exists.
If k is infinite the complex is exact. A general vanishing result is contained in
our main theorem.

We introduce axioms for elements of a given (nonempty) set X to be in general
position relative to some other elements.

Definition 1 (General position). Let Gl,m be relations in l + m variables from
X; l > 0, m > 0. The family (Gl,m)l,m∈N is called a general position relation if the
following properties are satisfied.

Let x, y, z be finite sequences of elements of X of length l, m, n:

(i) Gn,m is symmetric in the first n and last m arguments.

(ii) If Gl+m,n(x, y; z) then Gl,m+n(x; y, z). If Gl,m+n(x; y, z) then Gl,n(x; z).

(iii) If Gl,m+n(x; y, z) and Gm,n(y; z) then Gl+m,n(x, y; z).
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For fixed G we say x is in G-general position to y iff Gl,m(x; y).
Given x ∈ F (X)l and y ∈ F (X)m we say x is in G-general position to y if every
term of x is in G-general postition to every term of y (for l = 0 we demand nothing).

Definition 2. Given a finite sequence b of elements of X the corresponding complex
of words in general position to b is (FG(X; b))n := {f ∈ F (X)n|f is in G-general
position to b} .

Before we can state the main theorem we have to introduce an invariant which
determines an upper bound for the vanishing of the homology of FG(X).

Definition 3. Given a general position relation G we define |G| to be the small-
est natural number n > 0 such that there is a sequence x of elements of X with
length(x) = n such that there is no further element in X which is in general posi-
tion to x.

Examples

(i) Example (i) is induced by saying x is in Ginj-general position to y if the
underlying sets of x and y are disjoint and the entries of x are distinct. We
have |Ginj | = card(X).

(ii) Example (ii) is induced by saying (x1, . . . , xi) is in Gvec-general position to
(y1, . . . , yj) if for all al ∈ k, l = 1, . . . , i + j, and only dim(V ) many of them
nonvanishing

a1 x1 + · · ·+ ai xi + ai+1 y1 + · · ·+ ai+j yj = 0

implies al = 0 for all l ∈ {1, . . . , i}.
If card(k) = ∞ or dim(V ) = ∞ then |Gvec| = ∞.
Unfortunately the exact value of |Gvec| is not known for all finite dimensional
vector spaces over finite fields. The following lemma comprises what is known.

Lemma 2. (a) For dim(V ) > card(k) we have |Gvec| = dim(V ) + 1.
(b) For dim(V ) = 2 we have |Gvec| = card(k) + 1.

Proof of (a). Let n = dim(V )+1 and (ei)16i6n−1 be a basis of V . First we show
|Gvec| > n. Otherwise we had a sequence (xi)16i6n−1, xi ∈ V , such that there does
not exist a vector x ∈ V in Gvec-general position to (xi). This can only be true, if
(xi) is a basis of V . But if it is a basis, the element x1 + x2 + · · ·+ xn−1 would be
in general position to it. Contradiction.
Now the sequence f = (e1, . . . , en−1, e1 + e2 + · · ·+ en−1) is maximal in the sense of
Definition 3. To see this we have to show there is no vector x = a1 e1+· · ·+an−1 en−1,
ai ∈ k, in Gvec-general position to f . If there is an index j such that aj = 0, x is
obviously not in general postion to f . But if no coefficient in x vanishes two of them
have to be equal since dim(V ) > card(k). In case a1 = a2 we can write

x = a1 (e1 + · · ·+ en−1) + (a3 − a1) e3 + · · · (an−1 − a1) en−1 .

This shows f is in fact maximal.
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Proof of (b). For dim(V ) = 2 we have x ∈ V in Gvec-general position to y ∈ V
iff x 6= 0 6= y and [x] 6= [y] ∈ Pk(V ). So |Genvec| is simply the number of k-rational
points in Pk(V ). 2

Question. What is |Gvec| for 2 < dim(V ) < card(k)?

Now the main theorem reads as follows.

Theorem 3. For a set X with general position condition G and a finite sequence
a = (a1, . . . , al) of elements of X the corresponding homology groups Hm(FG(X; a))
vanish for m 6 (|G| − l − 1)/2.

In contrast to Theorem 1 one should notice that it is in general not possible to
erase the factor 1/2 from the inequality of the theorem. It is left to the reader to
find a counter-example.

Corollary 1. For fixed m, d > 0 we have Hm(FGvec(kd)) = 0 for almost all finite
fields k.

Proof. A simple cardinality argument shows

lim
card(k)→∞

|Gvec| = ∞

for fixed dimension of the underlying vector space and variable base field k. Now
Corollary 1 follows from Theorem 3. 2

Proof of Theorem 3. Denote the degree by m. Exactness at m = 0 is trivial. We
proceed by induction on m > 1. Let c be a cycle in Fm(X; a1, . . . , al).

Case m = 1:
We can suppose c = (x)− (x′). Because 1 6 (|G| − l − 1)/2 we have l + 2 < |G| so
that there exists y ∈ X in G-general position to (x, x′, a1, . . . , al).
According to Definition 1(iii) (y, x, x′) is in G-general position to (a1, . . . , al) and it
is allowed to write d((y) c) = c.

Induction step:
Fix x ∈ X in G-general position to (a1, . . . , al).
The simplest case is c in G-general position to (x, a1, . . . , al). Here we can apply a
construction similar to Lemma 1; we have c = d((x) c), since (x) c is in G-general
position to (a1, . . . , al).
We reduce to this case by changing c by boundaries. To be more precise we introduce
a number I(c) ∈ {0, . . . ,m} which is m, iff the above applies, that is c in G-general
position to (x, a1, . . . , al).
By adding boundaries we will see that we can increase I(c).
For g ∈ (FG(X; a))n we define I(g) ∈ {0, . . . , n} as the the greatest natural number
i 6 n such that πi(v) is in G-general position to (x, π′i(v), a1, . . . , al) for any term
v of g (πi denotes the projection to the first i entries and π′i the projection to the
last n− i entries).

Reduction to I(c) > 0:
Suppose I(c) = 0. Let c =

∑
j xj with xj terms. Choose for every j a yj ∈ X with

yj in G-general position to (x, xj , a1, . . . , al). This is possible, since

length(x, xj , a1, . . . , al) = 1 + m + l < |G| .
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Clearly

I(c− d(
∑

j

(yj) xj)) > 0 .

Now suppose m > I(c) > 0:
Write

c =
∑

j

sj xj + x′

such that exactly those terms v of c for which I(v) > I(c) are in x′, length(sj) = I(c)
and all xj are distinct terms.

Lemma 3. d(sj) = 0 for all j .

Proof. The terms v of d(c) such that I(v) < I(c) are exactly the terms of d(sj)xj .
In order to see this, notice that for a term v of d(c) we have I(v) = I(c)− 1 iff the
I(c)-th entry of v is not in G-general position to (x, π′I(c)(v), a1, . . . , al).
Now projecting the identity 0 = d(c) to the terms v with I(v) < I(c) we get
0 =

∑
j d(sj) xj . Lemma 3 is proven since the xj are distinct terms. 2

According to our assumtion sj is in G-general position to (x, xj , a1, . . . , al). By
induction on m we know there exist s′j with d(s′j) = sj and s′j in G-general position
to (x, xj , a1, . . . , al), because 2i + [(m− i) + l + 1] 6 2m + l 6 |G| − 1.

Now

I(c− d(
∑

j

s′j xj)) = I(x′ + (−1)I(c)s′j d(xj))

> I(c) .

This finishes the reduction to I(c) = m and therefore the induction step to
length(c) = m is accomplished by applying the standard trick mentioned at the
beginning of the proof. 2

Theorem 3 could be useful in the generalization of Suslin’s GL-stability [8] to
finite fields. A thorough treatment seems to indicate the following result:
(i) Given m > 0 and n > m we have Hm(GLn(k)) = Hm(GLn+1(k)) for almost all
finite fields k.
(ii) For m > 0 the map Hm(GLm−1(k)) → Hm(GLm(k)) is surjective for almost all
finite fields k.
In fact Quillen proved – using other methods – that Hm(GLn(k)) → Hm(GLn+1(k))
is an isomorphism for all fields k with more than 2 elements and n > m [6]. Similar
results with weaker bounds are due to Maazen and van der Kallen [4].
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