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(communicated by Lionel Schwartz)

Abstract
For a given category C and a topological space X, the con-

stant stack on X with stalk C is the stack of locally constant
sheaves with values in C. Its global objects are classified by
their monodromy, a functor from the fundamental groupoid
Π1(X) to C. In this paper we recall these notions from the
point of view of higher category theory and then define the
2-monodromy of a locally constant stack with values in a
2-category C as a 2-functor from the homotopy 2-groupoid
Π2(X) to C. We show that 2-monodromy classifies locally
constant stacks on a reasonably well-behaved space X. As an
application, we show how to recover from this classification
the cohomological version of a classical theorem of Hopf, and
we extend it to the non abelian case.

Introduction

A classical result in algebraic topology is the classification of the coverings of a
(reasonably well-behaved) path-connected topological space X by means of repre-
sentations of its fundamental group π1(X). In the language of sheaves this gener-
alises as an equivalence between the category of locally constant sheaves of sets on
X and that of representations of π1(X) on the stalk. The equivalence is given by the
functor which assignes to each locally constant sheaf F with stalk S its monodromy
µ(F) : π1(X) −→ Aut(S).

Now let C be a category. It makes sense to consider monodromy representations
in C, in other words functors from the fundamental groupoid Π1(X) to C. One would
then say that they classify “locally constant sheaves on X with stalk in the category
C” even if there do not exist any sheaves with values in C. To state this assertion
more precisely, one needs the language of stacks of Grothendieck and Giraud. A
stack is, roughly speaking, a sheaf of categories and one may consider the constant
stack CX on X with stalk the category C (if C is the category of sets, one recovers
the stack of locally constant sheaves of sets). Then one defines a local system on X
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with values in C to be a global section of the constant stack CX . The monodromy
functor establishes (for a locally relatively 1-connected space X) an equivalence of
categories between global sections of CX and functors Π1(X) −→ C.

A question naturally arises: what classifies stacks on X which are locally con-
stant? Or, on the other side, which geometrical objects are classified by representa-
tions (i.e. 2-functors) of the homotopy 2-groupoid Π2(X)? In this paper, we define
a locally constant stack with values in a 2-category C as a global section of the
constant 2-stack CX and give an explicit construction of the 2-monodromy of such
a stack as a 2-functor Π2(X) −→ C. We will show that, for locally relatively 2-
connected topological spaces, a locally constant stack is uniquely determined (up
to equivalence) by its 2-monodromy. We then use this result to recover the coho-
mological version of a classical theorem of Hopf, relating the second cohomology
group with constant coefficients of X to its first and second homotopy group, and
we extend it to the non abelian case.

During the preparation of this work, a paper [13] of B. Toen appeared, where
a similar result about locally constant ∞-stacks and their ∞-monodromy is estab-
lished. His approach is different from ours, since we do not use any model category
theory and any simplicial techniques, but only classical 2-category (and enriched
higher category) theory. Moreover, since we are only interested in the degree 2 mon-
odromy, we need weaker hypothesis on the space X than loc.cit., where the author
works on the category of pointed and connected CW -complexes.

This paper is organised as follows. In Chapter 1 we recall some basic notions
of stack theory and give a functorial construction of the classical monodromy. Our
approach appears at first view to be rather heavy, as we use more language and
machinery in our definition as is usually done when one considers just monodromy
for sheaves of sets or abelian groups. The reason for our category theoretical ap-
proach is to motivate the construction of 2-monodromy (and to give a good idea
how one could define n-monodromy of a locally constant n-stack with values in
an n-category, for all n). As a by-product we get the classification of locally con-
stant sheaves with values in finite categories (e.g. in the category defined by a
group) which yields an amusing way to recover some non abelian versions of the
”Hurewicz’s formula”, relating the first non abelian cohomology set with constant
coefficients to representations of the fundamental group.

In Chapter 2 we introduce the 2-monodromy 2-functor of a locally constant
stack with values in a 2-category. This construction is analogous to our approach
to 1-monodromy, but the diagrams which should be checked for commutativity
become rather large. One reason for our lengthy tale on 1-monodromy is to give
good evidence to believe in our formulae, since we do not have the space to write
down detailed proofs. We also describe the 2-monodromy as a descent datum on
the loop space at a fixed point. Finally, we give some explicit calculations about the
classification of gerbes with locally constant bands. This allows us to give a general
Hurewicz-Hopf’s formula, relating the second cohomology with constant coefficients
(abelian or non abelian) to the representations of the fundamental groupoid of the
loop space. We show how in the abelian case this reduces to the Hopf’s theorem for
2-cohomology and we then give similar computations for the non abelian case.
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In Appendix A we review the definition of the stack of sheaves with values in a
complete category and in Appendix B the definition of the 2-stack of stacks with
values in a 2-complete 2-category.
Acknowledgement. We wish to thank Denis-Charles Cisinski for useful discussions
and insights.

Notations and conventions

We assume that the reader is familiar with the basic notions of classical category
theory, as those of category1, functor between categories, transformation between
functors (also called morphism of functors),equivalence of categories, monoidal cat-
egory and monoidal functor. We will also use some notions from higher category
theory, as 2-categories, 2-functors, 2-transformations, modifications, 2-limits and
2-colimits. Moreover, we will look at 3-categories, 3-functors, etc., but only in the
context of a “category enriched in 2-categories” which is much more elementary than
the general theory of n-categories for n > 3. References are made to [1, 11, 12]2.
For an elementary introduction to 2-limits and 2-colimits see [14].

We use the symbols C, D, etc., to denote categories. If C is a category, we denote
by Ob C (resp. π0(C)) the collection of its objects (resp. of isomorphism classes of
its objects), and by HomC(P, Q) the set of morphisms between the objects P and
Q (if C = Set, the category of all small sets, we will write Hom(P,Q) instead of
HomSet(P, Q)). For a category C, its opposite category is denoted by Cop.

We use the symbols C,D, etc., to denote 2-categories. If C is a 2-category, we
denote by ObC (resp. πππ0(C)) the collection of its objects (resp. of equivalence
classes of its objects), and by HomC(P, Q) the small category of 1-arrows between
the objects P and Q (if C = Cat, the strict 2-category of all small categories, we
will use the shorter notation Hom (C,D) to denote the category of functors between
C and D). In particular, 1-arrows which are invertible up to invertible 2-arrows will
be simply called equivalences. Given two 2-categories C and D, the 2-category of
2-functors from C to D will be denoted by Hom (C,D). If G is a commutative
group, we will use the notation CatG for the 2-category of G-linear categories and
HomG(C, D) for the G-linear category of G-linear functors. If C is a 2-category, Cop

denotes its opposite 2-category, meaning HomCop(P,Q) = HomC(Q,P).

1. Locally constant sheaves with values in a category

1.1. Locally constant sheaves and their operations
Let X be a topological space. We denote by PSt(X) (resp. St(X)) the strict

2-category of prestacks3 (resp. stacks) of categories on X. For the definition of a

1There are a few well-known set-theoretical problems that arise in the definition of a category. A
convenient way to overcome these difficulties has been proposed by Grothendieck using the notion
of universe, and without saying so explicitly, we will work in this framework.
2Note that 2-categories are called bicategories by some authors, for whom a 2-category is what we
call here a strict 2-category. A 2-functor is sometimes called a pseudo-functor.
3In this article, a prestack of categories is nothing but a contravariant 2-functor from the category
of open subsets of X to the 2-category Cat. This is equivalent to the notion of fibered category,
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stack on a topological space see Appendix B. The classical references are Giraud’s
book [9] and [SGA1, exposé VI], and a more recent one is [6]. A lighter presentation
may be also found in [7].

Recall that, as for presheaves, to any prestack S on X one naturally associates
a stack S‡. Precisely, one has the following

Proposition 1.1.1. The forgetful 2-functor

For : St(X) −→ PSt(X)

has a 2-left adjoint 2-functor

‡ : PSt(X) −→ St(X).

Let us fix an adjunction 2-transformation

ηX : IdPSt(X) −→ For ◦ ‡.
Note that there is an obvious fully faithful4 2-functor of 2-categories Cat −→

PSt(X) which associates to a category C the constant prestack X ⊃ U 7→ C.

Definition 1.1.2. Let C be a category. The constant stack on X with stalk C is
the image of C by the 2-functor

( · )X : Cat −→ PSt(X)
‡−→ St(X).

Note that the 2-functor ( · )X preserves faithful and fully faithful functors (hence
sends (full) subcategories to (full) substacks). Moreover, the 2-transformation ηX

induces on global sections a natural faithful functor

ηX,C : C −→ CX(X).

Definition 1.1.3. An object F ∈ Ob CX(X) is called a local system on X with
values in C. A local system is constant with stalk M if it is isomorphic to ηX,C(M)
for some object M ∈ Ob C.

Let C = Set, the category of all small sets (resp. C = Mod(A), the category of left
A-modules for some ring A). Then it is easy to see that CX is naturally equivalent
to the stack of locally constant sheaves of sets (resp. AX -module). Moreover the
functor ηX,C : C → CX(X) is canonically isomorphic to the functor which associates
to a set S (resp. an A-module M) the constant sheaf on X with stalk S (resp. M).
More generally one can easily prove the following proposition:

Proposition 1.1.4. Let C be a complete5 category and X a locally connected topo-
logical space. Denote by LcShX(C) the full substack of the stack ShX(C) of sheaves
with values in C, whose objects are locally constant. Then there is a natural equiv-
alence of stacks

CX
∼−→ LcShX(C).

and for some authors a prestack is what we call here a separated prestack (see Appendix B).
4Recall that a 2-functor F : C −→ D is faithful (resp. full, resp. fully faithful) if for any objects
P, Q ∈ ObC, the induced functor F : HomC(P, Q) −→ HomD(F(P), F(Q)) is faithful (resp. full and
essentially surjective, resp. an equivalence of categories).
5Recall that a complete category is a category admitting all small limits.
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For a detailed construction of the stacks ShX(C) and LcShX(C) see Appendix A.

Remark 1.1.5. Suppose now that C is a category that is not necessarily complete.
The category Ĉ = Hom (Cop,Set) is complete (and cocomplete) and the Yoneda
embedding

Y : C −→ Ĉ, P 7→ HomC( · , P )

commutes to small limits. Then one usually defines sheaves with values in C as
presheaves that are sheaves in the category PShX(Ĉ). Note that in general there
does not exist a sheaf with values in C (take for example C the category of finite
sets), but if C 6= ∅ then the category CX(X) of local systems with values in C is
always non-empty. Still, even in that case, we will sometimes refer to a local system
as a locally constant sheaf. More precisely we get a fully faithful functor of stacks

YX : CX −→ (Ĉ)X ' LcShX(Ĉ).

Let F be an object of LcShX(Ĉ) on some open set. Then F is in the essential image
of YX if and only if all of its stalks are representable.

Let f : X → Y be a continuous map of topological spaces, S a prestack on X
and D a prestack on Y .

Notation 1.1.6. (i) Denote by f∗S the prestack on Y such that, for any open
set V ⊂ Y , f∗S(V ) = S(f−1(V )). If S is a stack on X, then f∗S is a stack
on Y .

(ii) Denote by f−1
p D the prestack on X such that, for any open set U ⊂ X,

f−1
p D(U) = 2lim−→

f(U)⊂V

D(V ). If D is a stack on Y , we set f−1D = (f−1
p D)‡.

Recall that the category 2lim−→
f(U)⊂V

D(V ) is described as follows:

Ob 2lim−→
f(U)⊂V

D(V ) =
⊔

f(U)⊂V

Ob D(V ),

Hom 2lim−→
f(U)⊂V

D(V )(GV , GV ′) = lim−→
f(U)⊂V ′′⊂V ∩V ′

HomD(V ′′)(GV |V ′′ , GV ′ |V ′′).

Proposition 1.1.7. The 2-functors

f∗ : St(X) −→ St(Y ) f−1 : St(Y ) −→ St(X)

are 2-adjoint, f∗ being the right 2-adjoint of f−1.

Moreover, if g : Y −→ Z is another continuous map, one has natural equivalences6 of
2-functors

g∗ ◦ f∗ ' (g ◦ f)∗, f−1 ◦ g−1 ' (g ◦ f)−1.

6For sake of simplicity, here and in the sequel we use the word “equivalence” for a 2-transformation
which is invertible up to an invertible modification. In the case of the inverse image, to be natural
means that if we consider the continuous maps h = f3 ◦ f2 ◦ f1, g1 = f2 ◦ f1 and g2 = f3 ◦ f2,
then the two equivalences h−1 ' f−1

1 g−1
2 ' f−1

1 f−1
2 f−1

3 and h−1 ' g−1
1 f−1

3 ' f−1
1 f−1

2 f−1
3

are naturally isomorphic by a modification, in the sense that, if we look at the continuous map
k = f4 ◦ f3 ◦ f2 ◦ f1, we get the obvious commutative diagram of modifications.
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Since the following diagram commutes up to equivalence

PSt(Y )

f−1
p

²²

‡ // St(Y )

f−1

²²
Cat

55llllll

))RRRRRR

PSt(X)
‡ // St(X),

(1.1.1)

the 2-functor f−1 preserves constant stacks (up to natural equivalence).

Definition 1.1.8. Denote by Γ(X, · ) the 2-functor of global sections

St(X) −→ Cat, S 7→ Γ(X, S) = S(X)

and set ΓX = Γ(X, ·) ◦ (·)X .

Note that for any stack S, the category S(∅) is the terminal object in Cat
(which consists of precisely one morphism). Hence the 2-functor

Γ({pt}, ·) : St({pt}) −→ Cat

is an equivalence of 2-categories. We easily deduce

Proposition 1.1.9. The 2-functor Γ(X, · ) is right 2-adjoint to ( · )X .

It is not hard to see that we may choose the functors ηX,C : C −→ Γ(X, CX) to
define the adjunction 2-transformation

ηX : IdCat −→ ΓX .

Consider the commutative diagram of topological spaces

X
f //

aX ##GGG
GG Y

aY{{www
ww

{pt}
and the induced 2-transformation of 2-functors

aY ∗ ◦ (·)Y −→ aY ∗ ◦ f∗ ◦ f−1 ◦ (·)Y ' aX∗ ◦ f−1 ◦ (·)Y ' aX∗ ◦ (·)X .

Hence we get a 2-transformation of 2-functors f−1 compatible with ηX and ηY , i.e.
such that the following diagram commutes up to a natural invertible modification:

ΓY
f−1

// ΓX .

IdCat

ηY

ddIIIII ηX

99ttttt

Note that this implies that for each point x ∈ X and any local systems F,G ∈
CX(X), the natural morphism

i−1
x HomCX

(F,G) → HomC(i−1
x F, i−1

x G)
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is an isomorphism (here ix : {pt} −→ X denotes the natural map sending {pt} to x
and we identify C with global sections of Cpt). Therefore, for any continuous map
f : X → Y , we get a natural isomorphism of locally constant sheaves of sets

f−1HomCY
(F,G) ∼−→ HomCX

(f−1F, f−1G).

Now we are ready to formulate the fundamental Lemma of homotopy invariance
of local systems as follows:

Lemma 1.1.10. Let I = [0, 1] and t ∈ I. Consider the maps

X
ιt // X × I,
p

oo

where ιt(x) = (x, t) and p is the projection. Then the 2-transformations

ΓX

p−1
// ΓX×I

ι−1
t

oo

are equivalences of 2-functors, quasi-inverse one to each other.

Proof. Let C be a category. It is sufficient to show that the functors

Γ(X, CX)
p−1

// Γ(X × I, CX×I)
ι−1
t

oo

are natural equivalences of categories, quasi-inverse one to each other. Since ι−1
t ◦

p−1 ' (p ◦ ιt)−1 = idΓ(X,CX), it remains to check that for each F ∈ Γ(X × I, CX×I)
there is a natural isomorphism p−1ι−1

t F ' F.
First let us prove that if F is a locally constant sheaf of sets on X × I, then the
natural morphism

ι−1
t : Γ(X × I,F) → Γ(X, ι−1

t F) (1.1.2)

is an isomorphism. Indeed, let s and s′ be two sections in Γ(X × I,F) such that
sx,t = s′x,t. Since F is locally constant, the set {t′ ∈ I | sx,t′ = sx,t} is open and
closed, hence equal to I. Therefore the map is injective. Now let s ∈ Γ(X, i−1

t F).
Then s is given by sections sj of F on a family (Uj × Ij)j∈J where Ij is an open
interval containing t, the Uj cover X and the sheaf F is constant on Uj×Ij . It is not
hard to see that, by refining the covering, the sections sj can be extended to Uj × I
and using the injectivity of the map one sees that we can patch the extensions of
the sj to get a section of F on X × I that is mapped to s. Hence the morphism
(1.1.2) is an isomorphism.
Now let F ∈ Γ(X × I,CX×I). Since ι−1

t HomCX×I
(p−1ι−1

t F, F) ∼−→ HomCX
(ι−1

t F,

ι−1
t F), we get the isomorphism

Γ(X × I,HomCX×I
(p−1ι−1

t F, F)) ∼−→ Γ(X, HomCX
(ι−1

t F, ι−1
t F)).

It is an easy exercise to verify that we can define the isomorphism p−1ι−1
t F

∼−→ F

by the identity section in the set Γ(X, HomCX
(ι−1

t F, ι−1
t F)).
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Taking X = {pt} in Lemma 1.1.10, we get

Corollary 1.1.11. The adjunction 2-transformation

ηI : IdCat −→ ΓI

is an equivalence, i.e. for each category C the functor ηI,C : C −→ Γ(I, CI) is a
natural equivalence.

For each X and each t ∈ I, we have an invertible modification idΓX
' ι−1

t p−1.
Therefore, for any s, t ∈ I there exists a canonical invertible modification ι−1

t ' ι−1
s

which can be used to prove the following technical Lemma:

Lemma 1.1.12. The diagram of continuous maps on the left induces for any
s, t, t′ ∈ I the commutative diagram of modifications on the right

X
ιt //

ιs

²²

X × I

ιs×idI

²²
X × I

idX ×ιt

// X × I2

ι−1
t (ιs × idI)−1 ∼ //

o
²²

ι−1
t′ (ιs × idI)−1

o
²²

ι−1
s (idX ×ιt)−1

∼ // ι−1
s (idX ×ιt′)−1.

Moreover, let H : X×I → Y be a continuous map that factors through the projection
p : X × I → X. Then the composition of invertible modifications

(H ◦ ιt)−1 ' ι−1
t H−1 ' ι−1

t′ H−1 ' (H ◦ ιt′)−1

is the identity.

Let Top denote the strict 2-category of topological spaces and continuous maps,
where 2-arrows are homotopy classes of homotopies between functions (see for exam-
ple [1, Chapter 7] for explicit details). Then homotopy invariance of locally constant
sheaves may be expressed as the following

Proposition 1.1.13. The assignment (C, X) 7→ Γ(X, CX) defines a 2-functor

Γ : Cat×Topop −→ Cat.

Moreover, the natural functors ηX,C : C −→ Γ(X, C) define a 2-transformation

η : Q1 −→ Γ,

where Q1 : Cat×Topop −→ Cat is the projection.

Proof. It remains to check that Γ is well defined at the level of 2-arrows. Let fi : X −→
Y be continuous maps for i = 0, 1 and let H : f0 −→ f1 be a homotopy, that is,
a continuous map X × I → Y such that H ◦ ι0 = f0 and H ◦ ι1 = f1. Then
αH : f−1

0
∼−→ f−1

1 is defined by the chain of natural invertible modifications

f−1
0 = (H ◦ ι0)−1 ' ι−1

0 H−1 ' ι−1
1 H−1 ' (H ◦ ι1)−1 = f−1

1 .

Consider the constant homotopy at f : X −→ Y

Hf : X × I → Y, (x, t) 7→ f(x).
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Since we may factor Hf as X × I
p−→ X

f−→ Y , by Lemma 1.1.12 we get αHf
= idf-1 .

Now let H0,H1 : f0 −→ f1 be two homotopies and K : H0 −→ H1 a homotopy. Then
consider the commutative diagram of invertible modifications

f−1
0

∼ //

αH0

²²

ι−1
0 H−1

0

∼ //

o
²²

ι−1
0 j−1

0 K−1 ∼ //

o
²²

ι−1
0 j−1

1 K−1

o
²²

ι−1
0 H−1

1

∼oo

o
²²

f−1
0

∼oo

αH1

²²
f−1
1 ∼

// ι−1
1 H−1

0 ∼
// ι−1

1 j−1
0 K−1

∼
// ι−1

1 j−1
1 K−1 ι−1

1 H−1
1∼

oo f−1
1 .∼

oo

We have to check that the horizontal lines are identity modifications. This is a
consequence of Lemma 1.1.12, which allows us (by a diagram chase) to identify the
two lines with the modifications induced by constant homotopies.
The fact that α is compatible with the composition of homotopies is finally a very
easy diagram chase.

1.2. The monodromy functor
Definition 1.2.1. The homotopy groupoid (or fundamental groupoid) of X is the
small groupoid Π1(X) = HomTop({pt}, X).

Roughly speaking, objects of Π1(X) are the points of X and for any x, y ∈ X,
HomΠ1(X)(x, y) is the set of homotopy classes of paths starting from x and ending
at y. The composition law is the opposite of the composition of paths. Note that,
in particular, π0(Π1(X)) = π0(X), the set of arcwise connected components of X,
and for each x ∈ X, HomΠ1(X)(x, x) = π1(X, x), the fundamental group of X at x.

Let Gr denote the strict 2-category of small groupoids. Then we have a 2-functor

Π1 : Top −→ Gr,

which defines the Yoneda type 2-functor

YΠ1 : Cat×Topop −→ Cat, (C, X) 7→ Hom (Π1(X), C).

Definition 1.2.2. The monodromy 2-transformation

µ : Γ −→ YΠ1

is defined as follows. For any topological space X and any category C, the 2-functor
Γ defines a functor

HomTop({pt}, X) −→ Hom (Γ(X, CX),C),

which induces by evaluation a natural functor

Γ(X, CX)×Π1(X) −→ C

and hence, by adjunction, a functor

µX,C : Γ(X, CX) −→ Hom (Π1(X), C).

We will sometimes use the shorter notation µ instead of the more cumbersome µX,C.
We will also extend µ to pointed spaces without changing the notations.
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Let us briefly illustrate that we have constructed the well-known classical mon-
odromy functor. Recall that, for each x ∈ X one has a natural stalk 2-functor

Fx : St(X) −→ Cat, S 7→ Sx = 2lim−→
x∈U

S(U).

Let ix : {x} −→ X denote the natural embedding. Since Fx is canonically equiv-
alent to Γ({x}, ·) ◦ i−1

x , one gets a 2-transformation Γ(X, ·) −→ Fx and then a 2-
transformation

ρx : ΓX −→ FX,x = Fx ◦ (·)X .

For an object F (resp. morphism f) in CX(X), if there is no risk of confusion, we
will simply write Fx (resp. fx) to denote ρx,C(F) (resp. ρx,C(f)) in (CX)x.

Let Top∗ be the strict 2-category of pointed topological spaces, pointed continu-
ous maps and homotopy classes of pointed homotopies. One can prove by diagram
chases similar to those in the proof of Proposition 1.1.13, that

Proposition 1.2.3. The assignment (C, (X, x)) 7→ (CX)x defines a 2-functor

F : Cat×Topop
∗ −→ Cat.

Moreover, the natural functors ρx,C : Γ(X, CX) −→ (CX)x define a 2-transformation

ρ : Γ −→ F.

Since the stalks of the stack associated to a prestack do not change, for each
category C and each pointed space (X, x) the functor

C
ηX,C−−−→ CX(X)

ρx,C−−→ (CX)x

is an equivalence of categories. Hence the composition

ρ ◦ η : Q1 −→ F

is an equivalence of 2-functors (here Q1 : Cat × Topop
∗ −→ Cat is the natural

projection). Let ε : F −→ Q1 denote a fixed quasi-inverse to ρ ◦ η, i.e. for each
category C and each pointed space (X, x), we fix a natural equivalence

εx,C : (CX)x
∼−→ C

such that if we have a pointed continuous map f : (X, x) → (Y, y) we get a diagram

CY (Y )
f−1

//

ρy,C

²²

CX(X)

ρx,C

²²

C

ηY,C

bbEEEEEEEEE ηX,C

<<xxxxxxxxx

(CY )y
∼

f−1
//

εy,C

∼
<<yyyyyyyyy

(CX)x

εx,C

∼
bbFFFFFFFFF

that commutes up to natural isomorphism. Denote by ω the composition ε◦ρ : Γ −→
Q1. Fix a topological space X and a category C, and let F ∈ Γ(X, CX). Then a direct
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comparison shows that, up to natural isomorphism, we have

µX,C(F)(x) = ωx,C(F)

(if C = Set, then ωx is just the usual stalk-functor) and if γ : x → y is a path, then
µX,C(F)(γ) is defined by the chain of isomorphisms

ωx,C(F) ' ω0,C(γ−1F) ' η−1
I,C(γ−1F) ' ω1,C(γ−1F) ' ωy,C(F)

(and if C = Set, we usually choose η−1
I = Γ(I, · )).

In particular, this means that the following diagram commutes up to natural in-
vertible modification

Γ
µ //

ω !!DD
DD

DD
YΠ1 ,

evzzuuu
uuu

Q1

(1.2.1)

where ev is the evaluation 2-transformation, that is for each pointed space (X, x)
and each functor α : Π1(X) −→ C, it is defined by evx(α) = α(x).

Let ∆: Q1 −→ YΠ1 denote the diagonal 2-transformation: for each topological
space X, each category C and each M ∈ Ob C, ∆X,C(M) is the constant functor
x 7→ M (i.e. the trivial representation with stalk M). Clearly ev ◦ ∆ = idQ1 .
Moreover, by a diagram chase, we easily get

Proposition 1.2.4. The diagram of 2-transformations

Γ
µ // YΠ1

Q1

η

aaDDDDDD
∆

;;vvvvvv

commutes up to invertible modification.

Proposition 1.2.5. For each topological space X and each category C, the functor

µX,C : Γ(X, CX) −→ Hom (Π1(X), C).

is faithful and conservative.

Proof. Let f, g : F → G be two morphisms of local systems such that µ(f) = µ(g).
Since the diagram (1.2.1) commutes and εx,C : (CX)x −→ C is an equivalence, we
get that fx = gx in (CX)x for all x ∈ X. Since CX is a stack, this implies that f = g,
hence µX,C is faithful.
The same diagram implies that if µ(f) is an isomorphism, then fx is an isomorphism
in (CX)x for all x ∈ X and therefore f is an isomorphism.

Proposition 1.2.6. Let X be locally arcwise connected. Then for each category C,
the functor

µX,C : Γ(X, CX) −→ Hom (Π1(X), C).

is full.
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Proof. Let F,G ∈ CX(X). A morphism φ : µ(F) → µ(G) is given by a family of
morphisms

φx : evx(µ(F)) −→ evx(µ(G))

such that for every (homotopy class of) path γ : x → y, the diagram

evx(µ(F))
φx //

µ(F)(γ)

²²

evx(µ(G))

µ(G)(γ)

²²
evy(µ(F))

φy

// evy(µ(G))

is commutative. Using the diagram (1.2.1) and the definition of the stalk of a stack,
we get an arcwise connected open neighbourhood Ux of x and a morphism

ϕx : F|Ux → G|Ux

such that evx(µ(ϕx)) = φx.
In order to patch the ϕx, we have to show that for any z ∈ Ux ∩ Uy we have
(ϕx)z = (ϕy)z. Since εz is an equivalence, it is sufficient to check that evz(µ(ϕx)) =
evz(µ(ϕy)).
Choose a path γ : x → z. Then

µ(G)(γ) ◦ evx(µ(ϕx)) ◦ µ(F)(γ)−1 = evz(µ(ϕx)).

But by definition the lefthand side is just φz. Similarly, taking a path γ′ : y → z,
we get

evz(µ(ϕx)) = φz = evz(µ(ϕy))

and, by definition of the stalk, this means that ϕx and ϕy coincide in a neighbour-
hood of z. Since z was chosen arbitrarily, they coincide on Ux ∩ Uy. Since CX is a
stack, we can patch the morphisms ϕx to a unique ϕ : F → G such that µ(ϕ) = φ.

Corollary 1.2.7. Let X be 1-connected7. Then

ηX : IdCat −→ ΓX

is an equivalence of 2-functors, i.e. for each category C, the functor ηX,C : C −→
Γ(X, CX) is an equivalence of categories, natural in C.

Proof. Fix x0 ∈ X. Since the groupoid Π1(X) is trivial (that is, Π1(X) reduces to
the category with a single object and only the identity morphism), the 2-transfor-
mation evx0 : YΠ1(X) −→ IdCat is an equivalence, quasi-inverse to µX ◦ηX . Since µX

is fully faithful, this implies by abstract nonsense that µX and ηX are equivalences.

Denote by CSt(X) the full 2-subcategory of St(X) of constant stacks on X. We
get

7Here and for the sequel, a topological space X is n-connected if πi(X) ' 1 for all 0 6 i 6 n, and
locally n-connected if each neighbourhood of each point contains an n-connected neighbourhood.
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Corollary 1.2.8. If X is 1-connected, the functors

Cat
( · )X // CSt(X)
Γ(X,·)

oo

are equivalences of 2-categories, inverse one to each other.

Theorem 1.2.9. Let X be locally relatively 1-connected8. Then the monodromy

µX : ΓX −→ YΠ1(X)

is an equivalence of 2-functors.

Proof. Fix a category C. By Propositions 1.2.5 and 1.2.6, it remains to show that
µX,C is essentially surjective. Let us first suppose that C is complete, hence we can
work in the category of sheaves with values in C.
Consider a functor α : Π1(X) −→ C. Define

V =
{

(V, x) | x ∈ V, V relatively 1-connected open subset of X
}

and set (V, x) 6 (W, y) if and only if W ⊂ V , which turns V into a category.
Let U ⊂ X be an open subset. We set

Fα(U) = lim←−
(V,x)∈V

V⊂U

α(x)

where for any (V, x) 6 (W, y) we chose a path γxy : x → y in V and use the
isomorphism α(γxy) : α(x) → α(y) in the projective system. Note that since V is
relatively 1-connected, this automorphism does not depend on the choice of γxy.
Now let U =

⋃
i∈I Ui be a covering stable by finite intersection. In order to prove

that Fα is a sheaf, we have to show that the natural morphism

Fα(U) = lim←−
(V,x)∈V

V⊂U

α(x) −→ lim←−
i∈I

lim←−
(V,x)∈V

V⊂Ui

α(x) = lim←−
i∈I

Fα(Ui)

is an isomorphism. To define the inverse isomorphism, note that for (W, y) ∈ V the
isomorphisms α(γxy)−1 define the natural isomorphism

α(y) ∼−→ lim←−
i,(V,x)

V⊂Ui∩W

α(x).

Its inverse defines
lim←−

i,(V,x)
V⊂Ui

α(x) −→ lim←−
i,(V,x)

V⊂Ui∩W

α(x) ' α(y),

which is compatible with the projective system.
By construction it is clear that, if U is relatively 1-connected, then for any choice
of x ∈ U we get a natural isomorphism Fα(U) ' α(x) (this isomorphism being

8Recall that a topological space X is locally relatively 1-connected if each point x ∈ X has
a fundamental system of arcwise connected neighbourhoods U such that each loop γ in U is
homotopic in X to a constant path.
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compatible with restrictions). Hence, since relatively 1-connected open subsets form
a base of the topology of X, we get that Fα is a locally constant sheaf that is constant
on every relatively 1-connected open subset of X.
To calculate the monodromy, consider first a path γ : x → y such that there exists a
relatively 1-connected open neighbourhood of γ. Obviously we get that µ(Fα)(γ) is
naturally isomorphic to α(γ). For a general γ, we decompose γ in a finite number of
paths that can be covered by relatively 1-connected open subsets to get the result.
Now the general case. Embed C into Ĉ by the Yoneda functor

Y : C −→ Ĉ.

Then, given a representation α, we can construct Fα as a locally constant sheaf
with values in Ĉ. Then Fα has representable stalks and is therefore in the essential
image of the fully faithful functor

Γ(X, CX) −→ Γ(X, ĈX).

Since by construction the monodromy of a locally constant sheaf with values in C
can be calculated by considering it as a locally constant sheaf with values in Ĉ, we
can conclude.

Thanks to the 2-Yoneda lemma (as stated for example in [11, Chapter 1]), we
immediately recover the following

Corollary 1.2.10. Let X be locally relatively 1-connected. Then there is an equiv-
alence of categories

Π1(X) ' Hom (ΓX , IdCat),

given by x 7→ ωx.

1.3. Degree 1 non abelian cohomology with constant coefficients
Let M be a (not necessarily commutative) monoid. Denote by M [1] the small

category with • as single object and EndM [1](•) = M . Note that if G is a group
then G[1] is a groupoid. Then it is easy to check that we get fully faithful functors
of categories

[1] : Mon −→ Cat [1] : Gr −→ Gr,

where we denote by Mon the category of small monoids and by Gr that of groups.
Also note that if G is a connected groupoid (that is, π0(G) ' •), then for each
P ∈ Ob G, the inclusion functor AutG(P )[1] −→ G is an equivalence.

Consider the category Set(G) of right G-sets and G-linear maps. Then G[1] is
equivalent to the full sub-category of Set(G) with G as single object. Hence the
stack G[1]X is equivalent to the stack Tors(GX) of (right) torsors over the constant
sheaf GX

9.

9Recall that Tors(GX) is the stack which associates to each open subset U ⊂ X the category
Tors(GU ) of right GU -sheaves locally free of rank one. Note that Tors(GX) is equivalent to the
category of G-coverings over X.
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Assume that X is locally relatively 1-connected. By Theorem 1.2.9 there is an
equivalence of categories

Tors(GX) ∼−→ Hom (Π1(X), G[1]).

A standard cocycle argument shows that there is an isomorphism of pointed sets

π0(Tors(GX)) ∼−→ H1(X;GX).

Assume moreover that the space X is connected, and let us calculate the pointed set
π0(Hom (Π1(X), G[1])). Since Π1(X) is connected, Π1(X) is equivalent to π1(X)[1]
for a choice of a base point in X. Hence there is a natural surjective map

HomGr(π1(X), G) → π0(Hom (π1(X)[1], G[1])),

and one checks immediately that two morphisms of groups ϕ,ψ : π1(X) −→ G give
isomorphic functors if and only if there exists g ∈ G such that ϕ = ad(g) ◦ ψ,
where ad(g) is the group automorphism of G given by h 7→ ghg−1 for each h ∈ G
(automorphisms of this form are called inner automorphisms of G). Hence

HomGr(π1(X), G)/G ' π0(Hom (π1(X)[1], G[1])),

where G acts on the left on HomGr(π1(X), G) by conjugation. We get the classical

Proposition 1.3.1 (Hurewicz’s formula). Let X be connected and locally rela-
tively 1-connected. Then for any group G there is an isomorphism of pointed sets

H1(X; GX) ∼−→ HomGr(π1(X), G)/G.

In particular, if G is commutative one recovers the isomorphism of groups

H1(X; GX) ∼−→ HomGr(π1(X), G).

More generally, to each complex of groups G−1 d−→ G0 one associates a small
groupoid, which we denote by the same symbol, as follows: objects are the elements
g ∈ G0 and morphisms g −→ g′ are given by h ∈ G−1 such that d(h)g = g′. If
moreover G−1 d−→ G0 has the structure of crossed module10, the associated category
is a strict gr-category, i.e. a group object in the category of groupoids11. In fact,
all strict gr-categories arise in this way (see for example [5], and [SGA4, exposé
XVIII] for the commutative case). In particular, if G is a group, the groupoid G[1]
is identified with G −→ 1 and it has the structure of a strict gr-category if and only if
G is commutative. Moreover, the strict gr-category Aut (G[1]) of auto-equivalences

of G[1] is equivalent to G
ad−→ AutGr(G).

Consider the constant stack (G ad−→ AutGr(G))X . It is equivalent to the gr-stack
Bitors(GX) of GX -bitorsors, i.e. GX -torsors with an additional compatible struc-
ture of left GX -torsors (see [2] for more details). Suppose that X is locally relatively

10Recall that a complex of groups G−1 d−→ G0 is a crossed module if it is endowed with a (left)

action of G0 on G−1 such that (i) d(gh) = ad(g)(d(h)) and (ii) d(h̃)h = ad(h̃)(h) for any h, h̃ ∈ G−1

and g ∈ G0. We use the convention as in [2] for which Gi is in i-th degree.
11Precisely, the group-like structure is given by the following rule: g⊗g′ = gg′ for objects g, g′ ∈ G0

and h⊗ h′ = hg2h′ for arrows g1
h−→ g2 and g′1

h′−→ g′2 in G−1.
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1-connected. Then, by Theorem 1.2.9, there is an equivalence of gr-categories

Bitors(GX) ∼−→ Hom (Π1(X), G ad−→ AutGr(G)).

One may show (see loc. cit.) that

π0(Bitors(GX)) ' H0(X; GX
ad−→ AutGr(GX))

where the right hand side is the 0-th (hyper-)cohomology group of X with values
in the sheaf of crossed modules GX

ad−→ AutGr(GX). Suppose that X is connected.
Then Π1(X) ' π1(X)[1] and a similar calculation as above leads to the isomorphism
of groups

π0(Hom (π1(X)[1], G ad−→ AutGr(G))) ' HomGr(π1(X),Z(G))oOutGr(G),

where Z(G) denotes the center of G and OutGr(G) = AutGr(G)/G is the group
of outer automorphisms of G, which acts on the left on HomGr(π1(X),Z(G)) by
composition. We get

Proposition 1.3.2 (Hurewicz’s formula II). Let X be connected and locally
relatively 1-connected. Then for any group G there is an isomorphism of groups

H0(X;GX
ad−→ AutGr(GX)) ∼−→ HomGr(π1(X), Z(G))oOutGr(G).

A similar result holds replacing G
ad−→ AutGr(G) by a general crossed module G−1 d−→

G0. More precisely, noticing that ker d is central in G−1, one gets an isomorphism
of groups

H0(X; G−1
X

d−→ G0
X) ∼−→ HomGr(π1(X), ker d)o coker d.

2. Classification of locally constant stacks

Following our presentation of 1-monodromy, we will approach the theory of 2-
monodromy in the setting of 2-stacks. We refer to [2] for the basic definitions in the
theory of 2-stacks. Let X be a topological space and let 2Cat, 2PSt(X) and 2St(X)
denote the 3-category12 of small 2-categories, of 2-prestacks and that of 2-stacks on
X, respectively. As for sheaves and stacks, there exists a 2-stack associated to a
2-prestack:

Proposition 2.0.3. The forgetful 3-functor

For : 2St(X) −→ 2PSt(X)

has a left adjoint 3-functor

‡ : 2PSt(X) −→ 2St(X).

Hence, we may associate to any 2-category a constant 2-prestack on X and set

12Here and in the following, we will use the terminology of 3-categories and 3-functors only in the
framework of strict 3-categories, i.e. categories enriched in 2Cat.
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Definition 2.0.4. Let C be a 2-category. The constant 2-stack on X with stalk C
is the image of C by the 3-functor

( · )X : 2Cat −→ 2PSt(X)
‡−→ 2St(X).

Objects in CX(X) are called locally constant stacks on X with values in C, and
1-arrows in CX(X) are called functors of locally constant stacks. A locally constant
stack is constant with stalk P, if it is equivalent to ηηηX,C(P) for some object P ∈
ObC, where the 2-functor

ηηηX,C : C −→ CX(X)

is induced by the 3-adjunction of Proposition 2.0.3.

Let us look at the case when C = Cat, the strict 2-category of all small categories.
By the universal property of the 2-stack associated to a 2-prestack, the 2-functor
which sends a category C to the constant stack CX (see Definition 1.1.2) factors
through ηηηX,Cat. It follows that there is a fully faithful 2-functor CatX(X) −→
St(X). It is easy to see that a stack S on X is in the essential image of this 2-functor
if and only if there exists an open covering X =

⋃
Ui such that S|Ui

is equivalent to
a constant stack. Hence CatX(X) is equivalent to the full 2-subcategory LcSt(X)
of St(X) whose objects are the stacks which are locally constant in the usual sense.
More generally, let C be a 2-category which admits all the small 2-limits. Then one
can define the notion of a stack with values in C analogous to the case of sheaves
(see Appendix B). Denote by LcShLcShLcShX(C) the full sub-2-stack of stacks with values
in C which are locally constant. It is then not difficult to prove the following

Proposition 2.0.5. Assume that X is locally relatively 1-connected. Then there is
a natural equivalence of 2-stacks

CX
∼−→ LcShLcShLcShX(C).

For a more general C, we can always embed C by the 2-Yoneda lemma into
the strict 2-category Ĉ = Hom (Cop,Cat), which admits all small 2-limits (and
2-colimits). Then CX(X) can be identified with the (essentially) full sub-2-category
of ĈX(X) defined by objects whose stalks are 2-representable.

We now follow Section 1 step by step to define the 2-monodromy 2-functor.
Let f : X → Y be a continuous map. We leave to the reader to define the 3-adjoint

3-functors f∗ and f−1.

Definition 2.0.6. Denote by Γ(X, · ) the 3-functor of global sections

2St(X) −→ 2Cat, SSS 7→ Γ(X,SSS) = SSS(X)

and set ΓX = Γ(X, ·) ◦ (·)X .

Since the 3-functor

Γ({pt}, ·) : 2St({pt}) −→ 2Cat

is an equivalence of 3-categories, the 3-functor Γ(X, · ) is right 3-adjoint to ( · )X .
It is not hard to see that we get a 3-transformation of 3-functors f−1 compatible
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with ηηηX and ηηηY , i.e. the following diagram commutes up to a natural invertible
2-modification:

ΓY
f−1

// ΓX .

Id2Cat

ηηηY

eeKKKKK ηηηX

88rrrrr

Similarly to the case of sheaves, this implies that for each point x ∈ X and any
locally constant stacks S, T ∈ CX(X), the natural functor

i−1
x HomCX

(S, T) −→ HomC(i−1
x S, i−1

x T)

is an equivalence (here ix : {pt} −→ X denotes the natural map to x and we identify
C with global sections of Cpt). Therefore, for each continuous map f : X → Y , we
get a natural equivalence of locally constant stacks of categories

f−1HomCY
(S,T) ∼−→ HomCX

(f−1S, f−1T).

2.1. The 2-monodromy 2-functor
Let us prove first the fundamental Lemma of homotopy invariance of locally

constant stacks.

Lemma 2.1.1. Consider the maps X
ιt //

X × I
p

oo as in Lemma 1.1.10. Then the

3-transformations

ΓX

p−1
// ΓX×I

ι−1
t

oo

are equivalences of 3-functors, quasi-inverse one to each other.

Proof. Let C be a 2-category. Since ι−1
t ◦ p−1 ' IdΓX

, it remains to check that
for each locally constant stack S ∈ Γ(X × I,CX×I) there is a natural equivalence
p−1ι−1

t S ' S.
First, let us suppose that S is a locally constant stack of categories and let us prove
that the natural functor

ι−1
t : Γ(X × I,S) −→ Γ(X, ι−1

t S)

is an equivalence. Since the sheaves HomS are locally constant, by Lemma 1.1.10 it
is clear that this functor is fully faithful. Let us show that it is essentially surjective.
Note that, since S is locally constant, it is easy to see that for every open neigh-
bourhood U × Ij 3 (x, t) such that Ij is an interval and S|U×Ij is constant, there
exists an open subset Ũ 3 x with the property that for every locally constant sheaf
F ∈ S(Ũ × Ij) there exists F̃ ∈ S(Ũ × I) such that F̃|Ũ×Ij

' F.
Now take F ∈ Γ(X, ι−1

t S). Then we can find a covering X × {t} ⊂ ⋃
j∈J Uj × Ij

where Ij are open intervals containing t such that S|Uj×Ij is constant and we can
find objects Fj ∈ S(Uj × Ij) such that ι−1

t Fj ' F|Uj . Then the isomorphism

HomS(Fi|Uij×Iij , Fj |Uij×Iij )
∼−→ HomS(F|Ui |Uij , F|Uj |Uij )
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implies that we may use the descent data of F to patch the Fi to a global object on
X × I that is mapped to F by ι−1

t .
The rest of the proof is similar to that of Lemma 1.1.10. Let S ∈ Γ(X×I,CX×I) be
a locally constant stack and consider the stack of functors HomCX×I

(p−1ι−1
t S, S).

This is a locally constant stack of categories and the natural functor

ι−1
t HomCX×I

(p−1ι−1
t S, S) −→ HomCX

(ι−1
t S, ι−1

t S)

is an equivalence. We have thus shown that the natural functor

Γ(X × I,HomCX×I
(p−1ι−1

t S, S)) −→ Γ(X, HomCX
(ι−1

t S, ι−1
t S))

is an equivalence. We can therefore lift the identity of ι−1
t S to get a functor

p−1ι−1
t S

∼−→ S,

and it is not hard to prove that it is an equivalence.

Corollary 2.1.2. For each 2-category C, the 2-functor

ηηηI,C : C −→ Γ(I,CI)

is an equivalence.

Hence, for any X and any t ∈ I, we have the equivalence IdΓX = (p ◦ ιt)−1 '
ι−1
t p−1. Then, for any s, t ∈ I, there exists a canonical (i.e. unique up to unique

invertible modification) equivalence ι−1
t ' ι−1

s . With patience, one deduces the
following technical Lemma:

Lemma 2.1.3. (i) For any s, t, t′ ∈ I, the topological diagram on the left induces
the diagram of equivalences on the right, which is commutative up to natural
invertible modification:

X
ιt //

ιs

²²

X × I

ιs×idI

²²
X × I

idX ×ιt

// X × I2

ι−1
t (ιs × idI)−1 ∼ //

o
²²

ι−1
t′ (ιs × idI)−1

o
²²

ι−1
s (idX ×ιt)−1

∼ // ι−1
s (idX ×ιt′)−1.

(ii) For any r, s, t, t′ ∈ I, the topological diagram

X
ιr //

ιs

yytttttttttt

ιt

²²

X × I

ιs×idIyyssssssssss

ιt×idI

²²

X × I
idX ×ιr

//

idX ×ιt

²²

X × I2

idX ×ιt×idI

²²

X × I
jr

//

ιs×idI

zzttttttttt
X × I2

ιs×idI2yysssssssss

X × I2
idX×I ×ιr

// X × I3
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induces a (very big) commutative diagram of the corresponding modifications.
(iii) Let f : X −→ Y be a continuous map and Hf : X × I → Y the constant homo-

topy of f . Then, for any t, t′ ∈ I, the diagram

f−1
idf−1

//

o
²²

f−1

o
²²

ι−1
t H−1

f ∼ // ι−1
t′ H−1

f

commutes up to natural invertible modification.

Let 2Top denote the 3-category whose objects are topological spaces, 1-arrows
are continuous maps, 2-arrows are homotopies between continuous maps and 3-
arrows are homotopy classes of homotopies (between homotopies of maps). Follow-
ing the same lines of the Proposition 1.1.13 and using the two Lemma above, one
can then prove

Proposition 2.1.4. The assignment (C, X) 7→ Γ(X,CX) defines a 3-functor

Γ : 2Cat× 2Topop −→ 2Cat,

and the natural 2-functors ηηηX,C define a 3-transformation ηηη : Q1 −→ Γ (here Q1

denotes the canonical projection).

Definition 2.1.5. The homotopy 2-groupoid of X is the 2-groupoid13

Π2(X) = Hom2Top({pt}, X).

Roughly speaking, its objects are the points of X and for any x, y ∈ X,
HomΠ2(X)(x, y) is the category Π1(Px,yX), where Px,yX is the space of paths start-
ing from x and ending in y, endowed with the compact-open topology. Composition
laws are defined in the obvious way. Note that, in particular,
πππ0(Π2(X)) = π0(X), and for each x ∈ X one has π0(HomΠ2(X)(x, x)) = π1(X, x)
and HomHom

Π2(X)
(x,x)(idx, idx) = π2(X,x). In general Π2(X) is not a strict 2-

category, and we refer to [10] for an explicit construction of a strictification when
X is Hausdorff.

Let 2Gr denote the 3-category of 2-groupoids. Then we have a 3-functor

Π2 : 2Top −→ 2Gr,

which defines the Yoneda type 3-functor

YΠ2 : 2Cat× 2Topop −→ 2Cat, (C, X) 7→ Hom (Π2(X),C).

Definition 2.1.6. The 2-monodromy 3-transformation

µµµ2 : Γ −→ YΠ2

13Recall that a 2-groupoid is a 2-category whose 2-arrows are invertible and 1-arrows are invertible
up to a 2-arrow.
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is defined in the following manner. For each topological space X, the 2-functor

Hom2Top({pt}, X) −→ Hom (Γ(X,CX),C)

induces by evaluation a natural 2-functor

Γ(X,CX)×Π2(X) −→ C,

hence by adjunction a 2-functor

µµµ2
X,C : Γ(X,CX) −→ Hom (Π2(X),C).

As in the case of 1-monodromy, let us visualize this construction using stalks. To
every 2-stack SSS we can associate its stalk at x ∈ X, which is the 2-category

SSSx = 3lim−→
x∈U

SSS(U),

and a natural 2-functor ρρρx,SSS : SSS(X) −→SSSx (in the case that SSS is the 2-stack StStStX
of all stacks on X, we can chose ρρρx,StStSt = Fx, the ordinary stalk 2-functor). Hence
we get the natural stalk 3-functor

Fx : 2St(X) −→ 2Cat; SSS 7→SSSx

which induces an equivalence

LcShLcShLcShx
∼−→ Cat

(if C is a 2-category, then (CX)x ' C). Then one proves the following

Proposition 2.1.7. The assignment (C, (X, x)) 7→ (CX)x defines a 3-functor

F : 2Cat× 2Topop
∗ −→ 2Cat

and the 2-functors ρρρx,C define a 3-transformation ρρρ : Γ −→ F.

We find that

ρρρ ◦ ηηη : Q1 −→ F

is an equivalence of 3-functors. Let εεε : F −→ Q1 be a fixed quasi-inverse to ρρρ◦ηηη and
set ωωω = εεε◦ρρρ. Fix a topological space X and a locally constant stack S ∈ Γ(X,CX).
Then (up to a natural equivalence)

µµµ2
X,C(S)(x) = ωωωx,C(S)

(if S is a locally constant stack with values in Cat, then ωωωx,Cat(S) can be canon-
ically identified with Sx). If γ : x −→ y is a path, then the equivalence µµµ2

X,C(S)(γ)
is defined by the chain of equivalences

ωωωx,C(S) ' ωωω0,C(γ−1S) ' ηηηI,C(γ−1S) ' ωωω1,C(γ−1S) ' ωωωy,C(S),

where ηηηI,C is just the global section functor in the case of ordinary stacks, i.e.
for C = Cat. If H : γ0 −→ γ1 is a homotopy, then the invertible transformation
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µµµ2
X,C(S)(H) is defined by the diagram of equivalences

ωωω(0,0)(H−1S)
µµµ2(S)(H(·,0)) //

µµµ2(S)(γ0)

²²

ωωω(1,0)(H−1S)

µµµ2(S)(γ1)

²²

ηηηI2(H−1S)

ρ(1,1) ''PPPPPPPPPPPP

ρ(0,1)wwoooooooooooo

ρ(0,0)
ggOOOOOOOOOOOO

ρ(1,0)
77nnnnnnnnnnnn

ωωω(0,1)(H−1S)
µµµ2(S)(H(·,1))

// ωωω(1,1)(H−1S).

In particular, the following diagram of 3-transformations commutes (up to a natural
2-modification)

Γ
µµµ2

//

ωωω ""EE
EE

EE
YΠ2 ,

evzzuuu
uuu

Q1

where ev denotes the evaluation 3-transformation.

2.2. Classifying locally constant stacks
Let ∆ : Q1 −→ YΠ2 denote the diagonal 3-transformation. Exactly as in the

sheaf case, one gets

Proposition 2.2.1. The image of a constant stack is equivalent to a trivial repre-
sentation. In other words, the diagram of 3-transformations

Γ
µµµ2

// YΠ2

Q1

ηηη

bbEEEEEE
∆

::uuuuuu

commutes up to invertible 2-modifications.

Proposition 2.2.2. For any topological space X and 2-category C, the 2-functor

µµµ2
X,C : Γ(X,CX) −→ Hom (Π2(X),C)

is faithful and conservative.

Proof. We have to show that, for any two locally constant stacks S and S′, the
induced functor

µµµ2 : HomCX
(S, S′) −→ HomHom (Π2(X),C)(µµµ

2(S),µµµ2(S′))

is faithful and conservative. Let F, G : S −→ S′ be two functors. Since for each
x ∈ X, there is a natural isomorphism Hom(µµµ2(F )(x),µµµ2(F )(x)) ' Hom(Fx, Gx),



Homology, Homotopy and Applications, vol. 7(1), 2005 131

we get the commutative diagram

Hom(F, G)

Fx

²²

µµµ2
// Hom(µµµ2(F ),µµµ2(G))

evx

²²
Hom (F,G)x

∼ // Hom(Fx, Gx).

Let ϕ,ψ : F −→ G be two morphisms of functors. If µµµ2(ϕ) = µµµ2(ψ), then ϕx = ψx

for all x ∈ X and, since Hom (F,G) is a sheaf, we get ϕ = ψ. Similarly, if µµµ2(ϕ) is
an isomorphism, it follows that the morphism ϕ is an isomorphism.

Proposition 2.2.3. Let X be locally 1-connected. Then for each 2-category C, the
2-functor

µµµ2
X,C : Γ(X,CX) −→ Hom (Π2(X),C)

is full.

Proof. We have to show that the induced functor

µµµ2 : HomCX
(S, S′) −→ HomHom (Π2(X),C)(µµµ

2(S),µµµ2(S′))

is full and essentially surjective.
A morphism φ : µµµ2(S) → µµµ2(S′) is defined by a family of functors

φx : evx µµµ2(S) −→ evx µµµ2(S′)

and for any path γ : x → x′ a canonical isomorphism

evx µµµ2(S)
φx //

µµµ2(S)(γ)

²²

evx µµµ2(S′)

µµµ2(S′)(γ)

²²
evy µµµ2(S)

φy

//

∼ 4<qqqqq
qqqqq

evy µµµ2(S′)

Since S,S′ are locally constant, we have an equivalence of categories
HomCX

(S,S′)x ' Hom (Sx, S′
x) and we may lift φx to a 1-connected open neigh-

bourhood Ux of x, say to a functor

ϕx : S|Ux −→ S′|Ux .

Consider z ∈ Ux ∩Uy and chose paths γxz from x to z and γyz from y to z. We get
the diagram

Sz

evz(ϕx)

²²

Sx

evx(ϕx)

²²

//oo Sz

evz(ϕz)

²²

Sy

evy(ϕy)

²²

//oo Sz

evz(ϕy)

²²
S′

z S′
x

//oo S′
z S′

y
//oo S′

z

that commutes up to natural isomorphism. Moreover the horizontal lines are canoni-
cally isomorphic to identity morphisms, hence we get a natural isomorphism



Homology, Homotopy and Applications, vol. 7(1), 2005 132

evz(ϕx) ' evz(ϕy) that we can lift to a small neighbourhood of z. Since Ux and Uy

are 1-connected, this lift does not depend on the choice of the paths γxz and γyz

and the isomorphism evz(ϕx) ' evz(ϕy) is canonical in a neighbourhood of z, i.e.
it satisfies the cocycle condition and can be patched to an isomorphism

ϕx|Uxy
' ϕy|Uxy

.

Clearly these isomorphisms satisfy the cocycle condition, hence we get a functor
ϕ : S −→ S′ By construction µµµ2(ϕ) ' φ.
Next consider two functors ϕ,ψ : S −→ S′ and a morphism f : µµµ2(ϕ) → µµµ2(ψ).
Such a morphism is defined by a family

fx : evx µµµ2(ϕ) → evx µµµ2(ψ)

with compatibility conditions, hence by a family

fx : ϕx → ψx

such that for every path γ from x to y

µµµ2S′(γ)ϕx
fx //

∼
²²

µµµ2S′(γ)ψx

∼
²²

ϕyµµµ
2S(γ)

fy

// ψyµµµ
2S(γ)

commutes. Lifting fx to any arcwise connected neighbourhood Ux of x, this diagram
implies that µµµ2(fx) = fz for all z ∈ Uz and we can show that we can patch the fx

in an analogous way as in the case of 1-monodromy.

Corollary 2.2.4. Let X be 2-connected. Then the 2-functor

ηηηX,C : C −→ CX(X)

is a natural equivalence of 2-categories. For C = Cat, the 2-functor Γ(X, ·) provides
a quasi-2-inverse to ηηηX,C = (·)X .

Proof. The proof follows the same lines as the proof of Proposition 1.2.7, using
the fact that Π2(X) is trivial, that is, it reduces to the 2-category with a single
object and only the identity 1-arrow and 2-arrows. If C = Cat, one may chose
ηηηX,C = (·)X , hence Fx0 gives a quasi-2-inverse for any choice of x0 ∈ X. Thanks to
the natural 2-transformation Γ(X, ·) −→ Fx0 , the 2-functor Γ(X, ·) provides another
quasi-2-inverse.

Theorem 2.2.5. Let X be locally relatively 2-connected14. Then

µµµ2
X : ΓX −→ YΠ2(X)

is an equivalence of 3-functors.

14Recall that a topological space X is locally relatively 2-connected if each point x ∈ X has a
fundamental system of 1-connected neighbourhoods U such that every homotopy of a path in U
is homotopic to the constant homotopy in X.
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Proof. We have to show that for each 2-category C, the 2-functor µµµ2
X,C is essentially

surjective.
Suppose first that C is 2-complete and let ααα ∈ Hom (Π2(X),Cat). Set

V =
{

(V, x) | x ∈ V, V relatively 2-connected open subset of X
}

and define (V, x) 6 (W, y) if and only if W ⊂ V .
Let U ⊂ X be an open subset. We set

Sααα(U) = 2lim←−
(V,x)∈V

V⊂U

ααα(x)

where for any (V, x) 6 (W,y), we chose a path γxy : x → y in V and use the
equivalence ααα(γxy) : ααα(x) ∼−→ ααα(y) in the projective system, and for any (V, x) 6
(W, y) 6 (Z, z), we chose a homotopy Hγxy,γyz,γxz : γxyγyz −→ γxz in V and use the
invertible transformation of functors ααα(Hγxy,γyz,γxz ). Note that since V is relatively
2-connected, the equivalence ααα(γxy) is unique up to invertible transformation and
the invertible transformation ααα(Hγxy,γyz,γxz ) does not depend on the choice of the
homotopy Hγxy,γyz,γxz

.
One argues as in the proof of Theorem 1.2.9 to show that the pre-stack defined by
X ⊃ U 7→ Sααα(U) is actually a stack. By definition it is clear that, if U is relatively
2-connected, then for any choice of x ∈ U (and paths from x to y for every y ∈ U) we
get an equivalence of categories Sααα(U) ' ααα(x) compatible with restriction functors
in a natural sense. Hence, the stack Sααα is constant on every relatively 2-connected
open subset of X. Since relatively 2-connected open subsets form a base of the
topology of X, we get that Sααα is locally constant.
The computation of the 2-monodromy of Sααα is similar to that of 1-monodromy in
the proof of Theorem 1.2.9.
For a general 2-category C, we can use the 2-Yoneda lemma to reduce to this last
case.

Suppose that X is connected and locally relatively 2-connected, and let ΩX
denote the loop space Px0,x0X of paths starting and ending at a fixed base point
x0 ∈ X. Consider the following diagram of topological space and continuous maps

(ΩX)3
q23 //

m×id //
id×m //

q12 // (ΩX)2 q1 //m //q2 //
ΩX // {x0}

where the qi’s, the qij ’s and the qijk’s are the natural projections and m the com-
position of paths in ΩX15.

Let S be a locally constant stack on X with values in C. Theorem 2.2.5 as-
serts that S is completely and uniquely (up to equivalence) determined by its 2-
monodromy µµµ2

X,C(S) : Π2(X) −→ C. Since X is connected, the stalks of S are
all equivalent. Let us denote by P the stalk at x0. By choosing paths from x0 to

15Note that ΩX does not define a simplicial topological space, since the maps m ◦ (id ×m) and
m ◦ (m × id) are not equal but only homotopic. What one gets is a 2-simplicial object in the
2-category Top. This will not cause particular difficulties, since for locally constant objects there

is a natural invertible transformation of functors (m× id)−1m−1 ∼−→ (id×m)−1m−1.
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any point x, the 2-monodromy reads as a monoidal functor µµµ2
X,C(S) : Π1(ΩX) −→

AutC(P), where AutC(P) is the monoidal category of auto-equivalences of P in C.
Since the topological space ΩX satisfies the hypothesis of Theorem 1.2.9, there is a
chain of equivalences of categories

Hom (Π1(ΩX), AutC(P)) ∼←−
µ

Γ(ΩX, AutC(P)ΩX) ' AutCX
(ηηηΩX,C(P)).

Then the 2-monodromy is equivalent to a pair (α, ν) where α : ηηηΩX,C(P) ∼−→
ηηηΩX,C(P) is an equivalence of constant stacks on ΩX and

ν : q−1
1 α ◦ q−1

2 α
∼→ m−1α

is an invertible transformation of functors of stacks on (ΩX)2 such that the following
diagram of invertible transformations of functors of stacks on (ΩX)3 commutes

q−1
1 α ◦ q−1

2 α ◦ q−1
3 α

∼

ttiiiiiiiiiiiiiiiii
∼

**VVVVVVVVVVVVVVVVVV

q−1
12 (q−1

1 α ◦ q−1
2 α) ◦ q−1

3 α

ν

²²

q−1
1 α ◦ q−1

23 (q−1
1 α ◦ q−1

2 α)

ν

²²
q−1
12 m−1α ◦ q−1

3 α

o
²²

q−1
1 α ◦ q−1

23 m−1α

o
²²

(m× id)−1(q−1
1 α ◦ q−1

2 α)

ν
&&MMMMMMMMMM

(id×m)−1(q−1
1 α ◦ q−1

2 α)

ν
xxppppppppppp

(m× id)−1m−1α ∼
// (id×m)−1m−1α .

(2.2.1)

Roughly speaking, ν is given by a family of functorial invertible transformations
ν12 : αγ1 ◦ αγ2

∼−→ αγ1γ2 for any γ1, γ2 ∈ ΩX, such that for γ1, γ2, γ3 ∈ ΩX the
following diagram commutes

αγ1γ2 ◦ αγ3

ν12,3

²²

αγ1 ◦ αγ2 ◦ αγ3
ν12oo ν23 // αγ1 ◦ αγ2γ3

ν1,23

²²
α(γ1γ2)γ3

∼ // αγ1(γ2γ3).

Definition 2.2.6. We call the triplet (P, α, ν) a descent datum for the locally
constant stack S on X.

Let us analyse a particular case, for which the descent datum admits a more
familiar description. Let G be a (not necessarily commutative) group. Recall that
a GX -gerbe is a stack locally equivalent to the stack of torsors Tors(GX) ' G[1]X ,
that is, a locally constant stack on X with stalk the groupoid G[1]. By the Morita
theorem for torsors (see [9, Chapitre IV]), an equivalence α : G[1]ΩX

∼−→ G[1]ΩX

is given by N 7→ P ∧ N for a GΩX -bitorsor P, where · ∧ · denotes the contracted
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product.
Let G be a GX -gerbe and assume that X is connected and locally relatively 2-
connected. Hence a descent datum for G is given by the datum of (G[1], P, ν),
where P is a GΩX -bitorsor and

ν : q−1
1 P ∧ q−1

2 P
∼→ m−1P

is an isomorphism of GΩX -bitorsors on (ΩX)2 satisfying a commutative constraint
similar to that of diagram (2.2.1). We refer to [6, Chapter 6], for related construc-
tions of line bundles on the free loop space of a manifold.

2.3. Degree 2 non abelian cohomology with constant coefficients
Let us fix some notations first. Recall that for each object Q of a 2-category C, we

denote by AutC(Q) the monoidal category of auto-equivalences of Q in C. We set16

PicC(Q) = π0(AutC(Q)) and ZC(Q) = AutAut
C

(Q)(idQ). Note that they both have

a group structure (the latter being commutative) and that PicC(Q) acts on ZC(Q)
by conjugation. Explicitly, if F ∈ AutC(Q), the action is induced by composition of
the group isomorphisms (given by left and right vertical composition with idF )

ZC(Q) ∼−→ AutAut
C

(Q)(F ) ∼← ZC(Q),

since one easily checks that this depends only on the isomorphism class of F . If
there is no risk of confusion, for a category (resp. G-linear category) C, we will
use the shorter notations Aut (C), Pic(C) (resp. AutG(C), PicG(C)) and Z(C). The
latter group is usually called the center of C. As an example, for each x ∈ X one
has PicΠ2(X)(x) = π1(X, x) and ZΠ2(X)(x) = π2(X, x), and the action of π1(X, x)
on π2(X,x) above described is exactly the classical one in algebraic topology.

Let M be a monoidal category. Denote by M[1] the 2-category with • as single
object and EndM[1](•) = M. Note that, if M is a groupoid whose monoidal structure
is rigid17, then M[1] is a 2-groupoid. It is easy to see that we get a fully faithful
2-functor

[1] : Mon −→ 2Cat,

where we denote by Mon the strict 2-category of small monoidal categories with
monoidal functors and monoidal transformations. This functor sends rigid monoidal
groupoids to 2-groupoids. We follow [3] and call gr-category a rigid monoidal
groupoid.

Note that if M is a monoid, then M [1] is monoidal if and only if M is commuta-
tive, and if M is also a group, then M [1] is a gr-category. Hence we get fully faithful
functors of categories

[2] = [1] ◦ [1] : Monc −→ Mon −→ 2Cat, [2] : Grc −→ 2Gr

16This is consistent with the classical notion of Picard group. Indeed, if R is a ring and Mod(R)
the (Z-linear) category of its left modules, by the Morita theorem the group PicCatZ (Mod(R)) is
isomorphic to the Picard group of R.
17Recall that a monoidal category (M,⊗, I) is rigid if for each P ∈ ObM there exists an object Q
and natural isomorphisms P ⊗Q ' I and Q⊗ P ' I.
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where the uppercase c means commutative structures. Conversely, if G is a con-
nected 2-groupoid, for each object P ∈ ObG, the inclusion 2-functor AutG(P)[1] −→
G is a 2-equivalence. If G is even 1-connected (i.e. moreover AutG(P) is a connected
groupoid for some, hence all, P), then ZG(P)[2] ' G.

For a not necessarily commutative group G, we can consider the strict gr-category
Aut (G[1]) which gives rise to the 2-groupoid

G[[2]] = Aut (G[1])[1].

Recall that Aut (G[1]) is equivalent to G
ad−→ AutGr(G). Hence if G is commutative,

then Aut (G[1]) is completely disconnected but only id ∈ Ob Aut (G[1]) is G-linear,
so we get a monoidal functor

AutG(G[1])[1] ' G[2] −→ G[[2]] = Aut (G[1])[1]

that identifies G[2] to a sub-2-category of G[[2]] which has only the identity 1-arrow
but the same 2-arrows.

Consider an object C of the 2-category Cat (resp. CatG). Then End (C)[1] (resp.
EndG(C)[1]) is just the full sub-2-category of Cat (resp. CatG) with the single
object C. Hence, End (C)[1]X (resp. EndG(C)[1]X) is the 2-stack of locally constant
stacks (resp. GX -linear stacks) on X with stalk C.
If X is a locally relatively 2-connected space, by Theorem 2.2.5 equivalence classes
of such stacks are classified by the set

πππ0(Hom (Π2(X), Aut (C)[1])). (2.3.1)

Assume moreover that X is connected. Then the 2-groupoid Π2(X) is connected,
hence it is equivalent to Π1(ΩX)[1] for some base point x0 ∈ X. Hence there is a
natural surjective map

π0(Hom⊗(Π1(ΩX), Aut (C))) −→ πππ0(Hom (Π1(ΩX)[1],Aut (C)[1])),

where Hom⊗(·, ·) denotes the category of monoidal functors. One checks that, given
two monoidal functors Φ,Ψ: Π1(ΩX) −→ Aut (C), they give equivalent 2-functors
if and only if there exists an equivalence ϕ : C

∼−→ C and an invertible monoidal
transformation α : Φ(·)◦ϕ ∼−→ ϕ◦Ψ(·). We thus get that the set (2.3.1) is isomorphic
to

π0(Hom⊗(Π1(ΩX), Aut (C)))/ Pic(C), (2.3.2)

where the group Pic(C) acts by conjugation. A similar result holds, replacing Cat
by CatG.

The previous classification becomes very simple in the following case:

Proposition 2.3.1. Let X be connected and locally relatively 2-connected. If C is
a category with trivial center, then the set of equivalence classes of locally constant
stacks on X with stalk C is isomorphic to H1(X; Pic(C)X).

Proof. Suppose for simplicity that C is a groupoid. Since Z(C) ' 1, the monoidal
functor Aut (C) π0−→ Pic(C)[0] is an equivalence, where the group is considered as a
discrete category. Hence it easy to check that

π0(Hom⊗(Π1(ΩX), Pic(C)[0])) ' HomGr(π1(X), Pic(C)).
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Hence πππ0(Hom (Π2(X), Aut (C)[1])) is isomorphic to HomGr(π1(X),Pic(C))/ Pic(C),
where Pic(C) acts by conjugation. It remains to apply Proposition 1.3.1.

Let us analyse more in detail the case of gerbes. (References are made to [9, 2, 6].)
We start with the abelian case. Let G be a commutative group and take C = G[1].
Since there is an obvious equivalence of strict gr-categories G[1] ' EndG(G[1]), it
follows that G[2] is just the full sub-2-category of CatG with the single object G[1].
Hence the 2-category Γ(X,G[2]X) is equivalent to the strict 2-category Gerab(GX)
of abelian GX -gerbes, that is, GX -linear stacks locally GX -equivalent to the GX -
linear stack of torsors Tors(GX) ' G[1]X .
By some cocycle arguments (see for example [6, Chapter IV]), one shows that there
is an isomorphism of groups

πππ0(Gerab(GX)) ' H2(X; GX).

Assume that X is locally relatively 2-connected. By Theorem 2.2.5, there is an
equivalence of monoidal 2-categories

Gerab(GX) ∼−→ Hom (Π2(X), G[2]).

Since PicG(G[1]) ' 1, if X is connected (2.3.2) gives the group π0(Hom⊗(Π1(ΩX),
G[1])). Hence we get

Proposition 2.3.2 (Hurewicz-Hopf’s formula). Let X be connected and locally
relatively 2-connected. Then for any commutative group G there is an isomorphism
of groups

H2(X; GX) ∼−→ π0(Hom⊗(Π1(ΩX), G[1])).

To give an explicit description of the right hand side, let us start by considering
a gr-category H. Recall that there exists an ”essentially exact”18 sequence of gr-
categories

1 // AH[1] i // H
π0 // π0(H)[0] // 1,

where AH denotes the commutative group AutH(I) of automorphims of the unit
object, and the group π0(H) is considered as a discrete category. Then, if G is
another gr-category, a direct computation shows that there is an exact sequence of
pointed sets

1 −→ π0(Hom⊗(π0(H)[0], G)) −→ π0(Hom⊗(H, G)) −→ π0(Hom⊗(AH[1], G)). (2.3.3)

Lemma 2.3.3. Let G = G[1], for an abelian group G. Then (2.3.3) gives an exact
sequence of abelian groups

1 −→ H2(π0(H); G) −→ π0(Hom⊗(H, G[1])) −→ HomGr(AH, G),

where G is view as a π0(H)-module with trivial action.

18This means that the monoidal functor i (resp. π0) is fully faithful (resp. essentially surjective)
and that the essential image of i is equivalent to the kernel of π0 as monoidal categories.
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Proof. Set H = π0(H). It is easy to see that a monoidal functor H[0] −→ G[1] is
given by a set-theoretic function λ : H ×H → G such that

λ(h1, h2)λ(h1h2, h3) = λ(h2, h3)λ(h1, h2h3),

and that two monoidal functors λ, λ′ are isomorphic if and only if there exists a
function ν : H → G such that

λ(h1, h2)ν(h1h2) = λ′(h1, h2)ν(h1)ν(h2).

Hence we get an isomorphism of groups

π0(Hom⊗(H[0], G[1]) ' H2(H; G),

where G is view as a H-module with trivial action.
Similarly, one easily checks that π0(Hom⊗(AH[1], G[1])) is isomorphic to
HomGr(AH, G).

Let Homπ0(H)(AH, G) denote the subgroup of morphisms in HomGr(AH, G) which
are π0(H)-linear with respect to the conjugation action19 on AH and to the trivial one
on G. One easily checks that the morphism π0(Hom⊗(H, G[1])) −→ HomGr(AH, G)
factors through Homπ0(H)(AH, G). Then one gets an exact sequence of abelian
groups

1 −→ H2(π0(H); G) −→ π0(Hom⊗(H, G[1])) −→ Homπ0(H)(AH, G) δ−→ H3(π0(H); G)

where the coboundary morphism δ is described as follows.
Recall that to the gr-category H one associates a cohomology class20 [H] in
H3(π0(H); AH), where AH is endowed with the conjugation action of π0(H) (see
for example [3]). Hence, to each π0(H)-linear morphism f : AH −→ G, one associates
the image of [H] by the induced morphism f̂ : H3(π0(H); AH) −→ H3(π0(H); G).

Lemma 2.3.4. Suppose that the class [H] vanishes in H3(π0(H); AH). Then for any
commutative group G, there is a split exact sequence of abelian groups

1 −→ H2(π0(H); G) −→ π0(Hom⊗(H, G[1])) −→ Homπ0(H)(AH, G) −→ 1. (2.3.4)

Proof. By the above description of δ, we clearly get the exact sequence (2.3.4).
One possible way to show that it splits is the following. Since [H] is trivial in
H3(π0(H); AH), the ”essentially exact” sequence of gr-categories

1 // AH[1] // H // π0(H)[0] // 1

splits. This means that there is an equivalence of gr-categories H '
(
AH

e−→ π0(H)
)
,

where e denotes the trivial homomorphism. Hence, a direct computation as in

19This is exactly the action described at the beginning of this section, since π0(H) = PicH[1](•)
and AH = ZH[1](•).
20If H = H−1 d−→ H0, this class coincides with the usual one in H3(coker d; ker d) attached to the

underlying crossed module H−1 d−→ H0. See for example [4, Chapter V].
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Lemma 2.3.3 shows that there is an isomorphism of groups

π0(Hom⊗(AH
e−→ π0(H), G[1])) ' H2(π0(H); G)×Homπ0(H)(AH, G).

For H = Π1(ΩX), we have π0(Π1(ΩX)) = π1(X) and AΠ1(ΩX) = π2(X) and the
class k2(X) = [Π1(ΩX)] in H3(π1(X); π2(X)) is the so-called Postnikov k-invariant
of X. Hence, using Lemma 2.3.3, 2.3.4 and Proposition 2.3.2, we get

Corollary 2.3.5 (Hopf’s theorem for 2-cohomology). Let X be connected and
locally relatively 2-connected and G a commutative group.
(i) There exists an exact sequence of abelian groups

1 −→ H2(π1(X); G) −→ H2(X;GX) −→ Homπ1(X)(π2(X), G) δ−→ H3(π1(X); G),

where G is view as a π1(X)-module with trivial action.
(ii) If moreover the Postnikov k-invariant k2(X) vanishes in H3(π1(X); π2(X)),

there is a split exact sequence of abelian groups

1 −→ H2(π1(X); G) −→ H2(X; GX) −→ Homπ1(X)(π2(X), G) −→ 1. (2.3.5)

Recall that H2(π1(X); G) ' Ec(π1(X); G), the group of equivalence classes of cen-
tral extensions of π1(X) by G. Hence (2.3.5) takes a similar form as the Universal
Coefficient Theorem. We refer to [4] for a classical proof of the homological version
of Hopf’s theorem.

Now, let G be a not necessarily commutative group and consider C = G[1]. Then
the 2-category Γ(X, End (G[1])[1]X) is equivalent to the strict 2-category Ger(GX)
of GX -gerbes, that is, stacks locally equivalent to G[1]X . One may show (see for
example [3]) that there is an isomorphism of pointed sets

πππ0(Ger(GX)) ' H1(X; GX
ad−→ AutGr(GX)),

where the right hand side is the first cohomology set of X with values in the sheaf
of crossed modules GX

ad−→ AutGr(GX).
Assume that X is locally relatively 2-connected. By Theorem 2.2.5, there is an
equivalence of 2-categories

Ger(GX) ∼−→ Hom (Π2(X), End (G[1])[1]).

Since Pic(G[1]) ' OutGr(G), from (2.3.2) we get

Proposition 2.3.6 (Hurewicz-Hopf’s formula II). Let X be connected and
locally relatively 2-connected. Then for any group G there is an isomorphism of
pointed sets

H1(X; GX
ad−→ AutGr(GX)) ∼−→ π0(Hom⊗(Π1(ΩX), G ad−→ AutGr(G)))/ OutGr(G).

With similar computations as for the commutative case, we get the following
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Lemma 2.3.7. Let H be a gr-category and G = G
ad−→ AutGr(G), for a group G.

Then (2.3.3) gives an exact sequence of pointed sets

1 −→ E(π0(H); G) −→ π0(Hom⊗(H, G
ad−→ AutGr(G))) −→ HomGr(AH, ker d),

where the first term is the set of equivalence classes of extensions of π0(H) by G.

For a group H, denote by H1(H; G ad−→ AutGr(G)) the first cohomology set of H

with values in the crossed module G
ad−→ AutGr(G) (see for example [2]). By defini-

tion, there is a pointed set isomorphism H1(H; G ad−→ AutGr(G)) '
E(H; G)/ OutGr(G), where the action of OutGr(G) is by conjugation. Hence, com-
bining Proposition 2.3.6 and Lemma 2.3.7 with H = Π1(ΩX), we get

Corollary 2.3.8 (Hopf’s theorem for non abelian 2-cohomology). Let X
be connected and locally relatively 2-connected. Then for each group G there is an
exact sequence of pointed sets

1 // H1(π1(X); G ad−→ AutGr(G)) // H1(X;GX
ad−→ AutGr(GX)) −→

−→ HomGr(π2(X), Z(G))/ OutGr(G),

where OutGr(G) acts on the left on HomGr(π2(X), Z(G)) by composition. If moreover
π1(X) is trivial, one gets an isomorphism (“Hurewicz’s formula”)

H1(X; GX
ad−→ AutGr(GX)) ∼−→ HomGr(π2(X), Z(G))/ OutGr(G),

A similar result holds replacing G
ad−→ AutGr(G) by a general crossed module G−1 d−→

G0.

Final comments

What’s next? It seems clear that, using the same techniques, one should expect
for each n-category C and each locally relatively n-connected space X a natural
n-equivalence

µnµnµn : Γ(X,CX) ∼−→ HomnCat(Πn(X),C), (2.3.6)

where Γ(X,CX) denotes the global sections of the constant n-stack with stalk C,
Πn(X) the homotopy n-groupoid of X and HomnCat(·, ·) the n-category of n-
functors. However, some care has to be taken since there are several non-equivalent
definitions of n-categories for n > 3 (see for example [11]). We will not investigate
this problem any further here. An answer in this direction, using the formalism of
Segal categories, is partially given in [13] for C = (n− 1)Cat, the strict n-category
of (n− 1)-categories, and X a pointed and connected CW -complex.

Let us suppose for a while that formula (2.3.6) is valid and consider a commuta-
tive group G. Denote by G[n] the strict gr-n-category with a single element, trivial
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i-arrows for i 6 n − 1 and G as n-arrows. Then one may check that there is an
isomorphism of groups

Hn(X; GX) ' πππ0(Γ(X,G[n]X)),

where the right-hand side is the group of n-equivalence classes of global objects in
G[n]X .
Set Hn(Πn(X); G) = πππ0(HomnCat(Πn(X), G[n])). Then, if X is locally relatively
n-connected, from (2.3.6), we have an isomorphism of groups

Hn(X; GX) ' Hn(Πn(X); G). (2.3.7)

This isomorphism should be interpreted as the “Hurewicz-Hopf’s formula”. Indeed,
if we suppose that X is connected and that πi(X) ' 1 for all 2 6 i 6 n− 1, we get
an ”essentially exact” sequence of gr-(n− 1)-categories

1 // πn(X)[n− 1] // Πn−1(ΩX) // π1(X)[0] // 1,

and hence an exact sequence of groups

1 // πππ0(Hom⊗(π1(X)[0], G[n− 1])) // πππ0(Hom⊗(Πn−1(ΩX), G[n− 1])) −→

−→ πππ0(Hom⊗(πn(X)[n− 1], G[n− 1]))

From the isomorphism (2.3.7) and a direct calculation, we shall finally get the
Hopf’s exact sequence

1 −→ Hn(π1(X); G) −→ Hn(X; GX) −→ HomGr(πn(X), G),

where G is view as a π1(X)-module with trivial action. If moreover π1(X) ' 1, the
Hurewicz morphism Hn(X;GX) −→ HomGr(πn(X), G) is an isomorphism. We refer
to [8] for a classical proof of this result.

If G is a not necessarily commutative group, we define the n-groupoid G[[n]] by
induction as

G[[1]] = G[1], G[[n + 1]] = AutnCat(G[[n]])[1],

where AutnCat(G[[n]]) denotes the gr-n-category of auto-n-equivalence of G[[n]].
Note that, when G is commutative, if we require G-linearity at each step in the defi-
nition of G[[n]], we recover G[n]. Then one may define the non abelian n-cohomology
set of X with coefficients in GX as

Hn
g (X; GX) = πππ0(Γ(X, G[[n]]X)),

and the non abelian n-cohomology set of Πn(X) with coefficients in G as

Hn
g (Πn(X); G) = πππ0(HomnCat(Πn(X), G[[n]])).

Note that, if n = 2 there is an isomorphism H2
g (X;GX) ' H1(X;GX

ad−→
AutGr(GX)), but H2

g (Π2(X); G) is not isomorphic to H1(π1(X); G ad−→ AutGr(G))
in general.
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If X is locally relatively n-connected, then the n-equivalence (2.3.6) gives an
isomorphism of pointed sets

Hn
g (X; GX) ' Hn

g (Πn(X); G).

This is the very non abelian version of the “Hurewicz-Hopf’s formula”.

A. The stack of sheaves with values in a complete category

We recall here the construction of the stack of sheaves with values in a complete
category C, i.e. a category which admits all small limits. (See Appendix B for the
definition of a stack.)

Let X be a topological space and denote by Op(X) the category of its open
subset with inclusions morphisms.

Definition A.0.9. A presheaf on X with values in C is a functor

Op(X)op −→ C.

A morphism between presheaves is a morphism of functors. We denote by PShX(C)
the category of presheaves on X with values in C.
A presheaf is called a sheaf if it commutes to filtered limits indexed by coverings
that are stable by finite intersections, and we denote by ShX(C) the full subcategory
of PShX(C) whose objects are sheaves21.

Note that if U ⊂ X is an open subset and F is a sheaf on X, then its restriction
F|U is also a sheaf. Hence we can define the prestack of sheaves on X, denoted by
ShX(C), by assigning X ⊃ U 7→ ShU (C).

Let F, G be two presheaves on X. We have a natural bijective map of sets

HomPShX(C)(F, G) ∼−→ lim←−
(U,V )
V⊂U

HomC(F(U), G(V ))

where (U, V ) is considered as an object of Op(X)op×Op(X). Now let U ⊂ X be an
open subset, F a presheaf on X and G a presheaf on U . Then it is easy to see that
we have the isomorphism of sets

HomPShU (C)(F|U , G) ∼−→ lim←−
(V,W )

W⊂V⊂U

HomC(F(V ),G(W ))

∼−→ lim←−
(V,W )

W⊂V⊂X

HomC(F(V ),G(W ∩ U)).

21Recall that, if F is a presheaf of sets the sheaf condition means that for any open subset U ⊂ X,
and any open covering {Ui}i∈I of U , the natural sequence given by the restriction maps

F(U) // Q
i∈I F(Ui)

////
Q

i,j∈I F(Uij)

is exact in the usual sense.
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Lemma A.0.10. Let F be a presheaf and G a sheaf on X. Then the presheaf
HomPShX(C)(F, G) defined by

X ⊃ U 7→ HomPShX(C)(F,G)(U) = HomPShU (C)(F|U , G|U )

is a sheaf of sets.

Proof. We have to show that HomPShX(C)(F,G) commutes to small filtered limits
indexed by coverings that are stable by finite intersection. Let {Ui}i∈I be such a
covering of an open subset U ⊂ X. Then we have

HomPShX(C)(F, G)(U) = HomPShU (C)(F|U ,G|U )

' lim←−
(V,W )
W⊂V

HomC(F(V ), G(U ∩W ))

' lim←−
(V,W )
W⊂V

HomC(F(V ), lim←−
i∈I

G(Ui ∩W ))

' lim←−
(V,W )
W⊂V

lim←−
i∈I

HomC(F(V ), G(Ui ∩W ))

' lim←−
i∈I

lim←−
(V,W )
W⊂V

HomC(F(V ), G(Ui ∩W ))

' lim←−
i∈I

HomPShUi
(C)(F|Ui , G|Ui)

' lim←−
i∈I

HomPShX(C)(F, G)(Ui).

Lemma A.0.11. Let F be a presheaf on X. Then F is a sheaf if and only if for
any object A ∈ Ob C and any open subset U ⊂ X the presheaf

U ⊃ V 7→ HomC(A, F(V ))

is a sheaf of sets.

Proof. Follows immediately from Yoneda’s Lemma.

Proposition A.0.12. The prestack ShX(C) of sheaves with values in C is a stack.

Proof. By Lemma A.0.10, the prestack is separated. Now let
({Ui}i∈I , {Fi}i∈I , {θij}i,j∈I) be a descent datum for ShX(C) on open subset U ⊂ X.
By taking a refinement, we can assume that the covering {Ui}i∈I is stable by finite
intersections.
Let V ⊂ U . Then the cocycle condition allows us to define

F(V ) = lim←−
i∈I

Fi(V ∩ Ui).

It is then obvious that F is a sheaf (for instance using Lemma A.0.11 and the fact
that this is true if C = Set) which by construction is isomorphic to Fi on Ui by an
isomorphism θi such that θij ◦ θj = θi on Ui ∩ Uj .



Homology, Homotopy and Applications, vol. 7(1), 2005 144

Proposition A.0.13. The stack ShX(C) admits all small limits.

Proof. Let β : I → ShX(C) be a functor, with I a small category. Then, for each
open subset U ⊂ X, set

F(U) = lim←−
i∈I

β(i)(U).

It is immediately verified that F is a sheaf on X that satisfies F ' lim←−
i∈I

β(i).

Definition A.0.14. Let F be a presheaf. A sheaf F̃ together with a morphism
F → F̃ is called the sheaf associated to F if it satisfies the usual universal property,
i.e. any morphism from F into a sheaf G factors uniquely through F̃:

F //

²²

G

F̃

@@¢¢¢¢¢¢¢¢

In general, there may not exist a functor which assigns to each presheaf its
associated sheaf. However, we have

Proposition A.0.15. Assume that X is locally connected. Then for each M ∈ Ob C
the sheaf associated to the constant presheaf with stalk M exists.

Proof. Let U ⊂ X be an open subset. Denote by #U the set of connected compo-
nents of U and set

MX(U) = M#U .

Let x ∈ U . We denote by xU its class in #U . Then for any inclusion V ⊂ U of open
subsets and for any x ∈ V , the natural morphisms

MX(U) → MxU
→ MxV

define the restriction morphism

MX(U) → MX(V ).

Since we know that this is a sheaf if C = Set, Lemma A.0.11 implies that MX is a
sheaf which verifies the desired universal property.

Definition A.0.16. Let M ∈ Ob C. The sheaf associated to the constant presheaf
with stalk M is called the constant sheaf with stalk M , and we denote it by MX .

Remark A.0.17. The hypothesis on the connectivity of X in the Proposition
A.0.15 is necessary to recover the classical definition of constant sheaf. More pre-
cisely, if M is a set and MX is the constant sheaf defined in the usual way, there is
a natural injective map (the 0-monodromy) µ0 : MX(X) −→ Hom(#X, M) ' M#X

defined by µ0(s)(xX) = s(xX) for a section s in MX(X). Clearly, if X is locally
connected µ0 is a bijection.
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Let X be a locally connected topological space. Denote by CShX(C) the full
subcategory of ShX(C) of constant sheaves. The previous construction defines a
faithful functor

(·)X : C −→ CShX(C),

which is an equivalence if X is connected (a quasi-inverse is given by the global
sections functor).

Definition A.0.18. A sheaf F is called locally constant if there is an open covering
X =

⋃
Ui such that F|Ui

is isomorphic to a constant sheaf.
We denote by LcShX(C) the full substack of ShX(C) whose objects are the locally
constant sheaves.

B. The 2-stack of stacks with values in a 2-complete 2-category

Let us recall the construction of the 2-stack of stacks with values in a 2-complete
2-category C, i.e. a 2-category which admits all small 2-limits. (References for the
basic definitions about 2-stacks are made to [2].) Recall that the 2-Yoneda lemma
states that the 2-functor

C −→ Ĉ = Hom (Cop,Cat), P 7→ HomC( · ,P)

is fully faithful (see for example [11, Chapter 1] for more details). Since Ĉ is strict,
the reader may assume for sake of simplicity that C is a strict 2-category.

Let X be a topological space and denote by Op(X) the 2-category of its open
subsets, obtained by trivially enriching Op(X) with identity 2-arrows.

Definition B.0.19. A prestack on X with values in C is a 2-functor

Op(X)op −→ C.

A functor between prestacks is a 2-transformation of 2-functors and transformations
of functors of prestacks are modifications of 2-transformations of 2-functors. We
denote by PStX(C) the 2-category of prestacks on X with values in C.
A prestack is called a stack if it commutes to filtered 2-limits indexed by coverings
that are stable by finite intersections, and we denote by StX(C) the full subcategory
of PStX(C) whose objects are stacks22.

If S is a stack of categories, then for any objects P, Q ∈ S(U) on some open
subset U ⊂ X, the presheaf U ⊃ V 7→ HomS(V )(P |V , Q|V ) is a sheaf of sets on U .
We say that a prestack of categories is separated if it has this property.

Note that if U ⊂ X is an open subset and S is a stack on X, then its restriction
S|U is also a stack. Hence the assignment X ⊃ U 7→ StU (C) defines the pre-2-stack

22Similarly to the definition of sheaf, if S is a prestack of categories the stack condition means
that for any open subset U ⊂ X, and any open covering {Ui}i∈I of U , the natural sequence given
by the restriction functors

S(U) // Q
i∈I S(Ui)

////
Q

i,j∈I S(Uij) //////
Q

i,j,k∈I S(Uijk)

is exact in the sense of [SGA1, exposé XIII].
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of stacks on X with values in C, which we denote by StStStX(C).
Let S,T be two prestacks on X. We have a natural equivalence of categories

HomPStX(C)(S, T) ∼−→ 2lim←−
(U,V )
V⊂U

HomC(S(U),T(V ))

where (U, V ) is considered as an object of Op(X)op ×Op(X). Now let U ⊂ X be
an open subset, S a prestack on X and T a prestack on U . Then it is easy to see
that we have the equivalence of categories

HomPStU (C)(S|U , T) ∼−→ 2lim←−
(V,W )

W⊂V⊂U

HomC(S(V ), T(W ))

∼−→ 2lim←−
(V,W )

W⊂V⊂X

HomC(S(V ), T(W ∩ U)).

Hence, we have

Lemma B.0.20. Let S be a prestack and T be a stack on X.
Then the prestack HomPStX(C)(S, T) defined by

HomPStX(C)(S, T)(U) = HomPStU (C)(S|U ,T|U )

is a stack of categories.

Moreover, using the 2-Yoneda’s Lemma, we get

Lemma B.0.21. Let S be a prestack on X. Then S is a stack if and only if for
any object P ∈ ObC and any open subset U ⊂ X the prestack

U ⊃ V 7→ HomC(P, S(V ))

is a stack of categories.

Proposition B.0.22. The pre-2-stack StStStX(C) of stacks with values in C is a
2-stack.

Proof. By Lemma B.0.20, the pre-2-stack is separated. Now let

({Ui}i∈I , {Si}i∈I , {Fij}i,j∈I , {ϕijk}i,j,k∈I)

be a descent datum for StStStX(C) on open subset U ⊂ X. This means that {Ui}i∈I

is an open covering of U , Si are stacks on Ui, Fij : Sj |Uij

∼−→ Si|Uij are equiva-
lences of stacks and ϕijk : ϕij ◦ϕjk −→ ϕik are invertible transformations of functors
from Sk|Uijk

to Si|Uijk
, such that for any i, j, k, l ∈ I, the following diagram of

transformations of functors from Sl|Uijkl
to Si|Uijkl

commutes

Fij ◦ Fjk ◦ Fkl
ϕijk //

ϕjkl

²²

Fik ◦ Fkl

ϕikl

²²
Fij ◦ Fjl

ϕijl // Fil.

(B.0.8)

By taking a refinement, we can assume that the covering {Ui}i∈I is stable by finite
intersections.
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Let V ⊂ U be an open subset. Then the cocycle condition (B.0.8) allows us to define
the category

S(V ) = 2lim←−
i∈I

Si(V ∩ Ui).

It is then obvious that the assignment U ⊃ V 7→ S(V ) defines a stack S (for
instance using Lemma B.0.21 and the fact that this is true if C = Cat) and that,
by construction, there are e quivalences of stacks Fi : S|Ui

∼−→ Si. Moreover, one
checks that there exist invertible transformations of functors ϕij : Fij ◦ Fj |Uij

∼−→
Fi|Uij such that ϕij |Uijk

◦ ϕjk|Uijk
= ϕik|Uijk

◦ ϕijk.

Proposition B.0.23. The 2-stack StStStX(C) admits all small 2-limits.

Proof. Let β : I → StX(C) be a 2-functor, with I a small 2-category. Then, for each
open subset U ⊂ X, set

S(U) = 2lim←−
i∈I

β(i)(U).

It is immediately verified that S is a stack on X that satisfies S ' 2lim←−
i∈I

β(i).

Definition B.0.24. Let S be a prestack. A stack S̃ together with a functor S −→
S̃ is called the stack associated to S if it satisfies the usual universal property, i.e.
any functor from S into a stack T factors through S̃ up to unique equivalence:

S //

²²

T

S̃

??¡¡¡¡¡¡¡

As for presheaves, in general there may not exist a stack associated to a given
prestack. But we still have

Proposition B.0.25. Assume that X is locally relatively 1-connected. Then for
any P ∈ ObC, the stack associated to the constant prestack with stalk P exists.

Proof. Let U ⊂ X be an open subset. Set

PX(U) = PΠ1(U),

where PΠ1(U) denotes the 2-limit of the constant 2-functor ∆(P ) : Π1(U) −→ C at
P. Let x ∈ V ⊂ U and denote by xU the image of x in Π1(U) by the natural functor
Π1(V ) −→ Π1(U). Set PxU

= ∆(P )(xU ) and similarly for PxV
. Then we have the

natural 1-arrows in C

PX(U) −→ PxU
−→ PxV

,

which define the 1-arrow
PX(U) −→ PX(V ).

If C = Cat, then P = C is a category and by Theorem 1.2.9 there are equivalences
CΠ1(U) ' Hom (Π1(U), C) ∼←−

µ
CU (U), hence the assignment X ⊃ U 7→ CΠ1(U)
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defines the stack of locally constant sheaves on U with values in C. In the general
case, one use Lemma B.0.21 to show that this construction gives a stack which
verifies the desired universal property.

Definition B.0.26. Let P ∈ ObC. The stack associated to the constant prestack
with stalk P is called the constant stack with stalk P, and we denote it by PX .

Let X be a locally relatively 1-connected topological space. Denote by CStX(C)
the full sub-2-category of StX(C) of constant stacks. The previous construction
defines a faithful 2-functor

(·)X : C −→ CStX(C),

which is an equivalence if X is 1-connected (a quasi-2-inverse is given by the global
sections 2-functor). This easily follows from Corollary 1.2.8.

Definition B.0.27. A stack S is called locally constant if there exists an open
covering X =

⋃
Ui such that S|Ui

is isomorphic to a constant stack.
We denote by LcShLcShLcShX(C) the full sub-2-stack of StStStX(C) whose objects are the
locally constant stacks.
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