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Abstract. We study, by the variational method, the Differential Riccati
Equation which arises in the theory of quadratic optimal control prob-
lems for ‘abstract hyperbolic’ equations (which encompass hyperbolic and
Petrowski-type partial differential equations (P.D.E.) with boundary con-
trol). We markedly relax, at the abstract level, the original assumption
of smoothing required of the observation operator by the direct method of
[D-L-T.1]. This is achieved, by imposing additional higher level regular-
ity requirements on the dynamics, which, however, are always satisfied by
the class of hyperbolic and Petrowski-type mixed P.D.E. problems which
we seek to cover. To appreciate the additional level of generality, and re-
lated technical difficulties associate with it, it suffices to point out that in
the present treatment—unlike in [D-L-T.1]—the gain operator B∗P (t) is no
longer bounded between the state space Y and the control space U . The
abstract theory is illustrated by its application to a Kirchoff equation with
one boundary control. This requires establishing new higher level interior
and boundary regularity results.
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0. Introduction. Literature

This paper presents, in its first part (Sections 1 through 4), a general and
unifying abstract treatment of the optimal control problem with quadratic
cost functional, over a finite (time) horizon, for the abstract differential
equation (1.1) below. Here, A is the generator of a s.c. semigroup and B
is a (highly) unbounded control operator, satisfying the ‘trace regularity’
condition (H.1) = (1.6) below. This condition was introduced in [L-T.2]
(see also [L-T.3], [L-T.6], [F-L-T.1]) and has since been shown to be typi-
cal of mixed problems for hyperbolic and Petrowski-type partial differential
equations (P.D.E.’s), see [L-T.6]. By duality, the (abstract) ‘trace’ regular-
ity (H.1) = (1.6) below for the homogeneous problem (1.1) with u = 0 is
converted into an ‘interior’ regularity result of the non-homogeneous prob-
lem (1.1), see (H.1∗) = (1.7). In this paper, focus and emphasis are placed
on the Differential Riccati Equation (D.R.E.) associated with the optimal
control problem (1.1)–(1.4), whose non-negative, self-adjoint solution P (t)
provides the value of the optimal control problem, as well as the pointwise
(a.e. in time) synthesis of the optimal pair, as pointed out by Remark 2.1
below. Applications to mixed problems for hyperbolic and Petrowski-type
P.D.E.’s are an integral and essential part of the present study. In Section 5,
we illustrate the theory established in Sections 1–4, as it applies to Kirchoff
equations. Because of space restrictions, additional P.D.E.’s applications (to
Euler-Bernoulli equations, to Schrödinger equations) are provided in a com-
panion paper [T.1] and in a forthcoming book [L-T.8, Chapter 10]. More on
this will be said below.

Differential Riccati Equations: Direct method [D-L-T.1] with R
smoothing. At the abstract level, the present paper is a conceptual suc-
cessor of [D-L-T.1]: this work assumed only hypothesis (H.1) = (1.6) on
the dynamics (1.1), which in P.D.E.’s applications amounts to a basic level
regularity result with L2-boundary data, via the equivalent version (H.1∗)
= (1.7). Following the so-called ‘direct method’—from the D.R.E. to the
optimal control problem, via dynamic programming—[D-L-T.1] established
well-posedness (existence and uniqueness) of the corresponding D.R.E. by lo-
cal contraction plus global a-priori bounds. Well-posedness of the D.R.E. is,
in the present context, non-trivial, due to the high degree of unboundedness
of the control operator B, expressed by (1.5a) below, which in P.D.E.’s ap-
plications models the action from the boundary to the interior. In [D-L-T.1]
success of the direct strategy was based, among other technical issues, on a
trick of performing a suitable change of (operator) variable, which made ap-
plication of the contraction argument more amenable. Once well-posedness
of the D.R.E. is established, one then recovers the optimal control problem
by dynamic programming. A key point is that the theory of [D-L-T.1] re-
quires, however, the hypothesis that the observation operator R in (1.3) be
smoothing, in the sense that

R∗ReAtB : continuous U → L1(0, T ;Y ). (0.1)
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For instance, if A is (−∆) with homogeneous Dirichlet B.C., then (0.1)
amounts to the smoothing requirement that R∗R is comparable to A−( 1

4+ε)×
A−( 1

4+ε), ε > 0 arbitrary. In return, the critical gain operator B∗P (t), which
occurs in the quadratic term of the D.R.E. (2.6) (as well as in the optimal
synthesis of Remark 2.1) is bounded, at each t, from the state space Y to the
control space U .

Differential Riccati Equation: Variational approach with R al-
most the identity. One goal of the present paper is to markedly weaken
the smoothing requirement (0.1) assumed on R∗R, in fact, from R∗R ∼
A−( 1

4+ε) × A−( 1
4+ε) to R∗R ∼ A−ε × A−ε, A defined above, see hypothesis

(H.8) = (1.23) below, ε > 0 arbitrary; i.e., ε-away from the ideal situation
with R = Identity where the observation operator is then non-smoothing.
To achieve this quantum improvement over [D-L-T.1], we require in this
paper additional abstract regularity assumptions on the dynamics (1.1) [in
addition to the basic level (H.1) = (1.6), or (H.1∗) = (1.7)], which amount to
a higher level regularity: smoother data imply smoother solutions, in specif-
ically required spaces. In this respect, we hasten to add that: all assumed
hypotheses on (1.1) are nothing but actual regularity properties displayed by
the ‘concrete’ classes of hyperbolic and Petrowski-type P.D.E.’s which we
seek to cover. In the present paper, our approach is variational—from the
optimal control problem to the well-posedness of the D.R.E., thus reversing
the ‘direct method’ of [D-L-T.1]. In return for weakening the assumption
on the observation operator R, we obtain a less regular theory, not unex-
pectedly. In contrast with [D-L-T.1], under the present weakened smoothing
assumption on R such as (H.8) = (1.23), it turns out that:

(1) The gain operator B∗P (t) is not bounded any longer from the state
space Y to the control space U , but only densely defined on Y ; indeed,
its domain is constant in t and coincides with an explicitly identified
subspace (Y −

δ below) of the state space Y ; see (2.4) for the technical
statement.

(2) The present variational approach provides (constructively) existence
of the D.R.E., indeed with the operator P (t) defined by (2.3a) [hence
expressible directly in terms of the problem data via (2.1a)] being a non-
negative, self-adjoint solution of the D.R.E. (2.6). Nothing is said about
uniqueness now (within a class of non-negative, self-adjoint solutions
satisfying the regularity property (2.4)): this is not surprising, and is
akin to the situation in the abstract parabolic case [L-T.6], [L-T.7],
[L-T.8].

Applications to P.D.E. mixed problems. The setting of the present
paper—although abstract—is in reality motivated by, and ultimately di-
rected to, numerous classes of mixed problems for hyperbolic and Petrowski-
type partial differential equations defined on a bounded domain Ω of Rn,
with boundary control. Specifically, these include, but are not limited to,
the following cases: (i) second-order hyperbolic equations with Dirichlet
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boundary control; (ii) non-symmetric, non-dissipative, first-order hyperbolic
systems with boundary control; (iii) (hyperbolic) Kirchoff equations with
finite speed of propagation, as well as (iv) (non-hyperbolic) Euler-Bernoulli
equations with infinite speed of propagation with one boundary control (such
as they arise in linear elasticity in the special cases where dim Ω = 1, 2); (v)
Schrödinger equations with Dirichlet boundary control. In cases (iii) and
(iv), various choices among the two associated boundary conditions are pos-
sible, each leading to a different function space setting. So far, the abstract
setting for the optimal control problem of the present paper has been suc-
cessfully applied to all classes (i) through (v). The ‘concrete’ cases (i) and
(ii) were studied in isolation in [L-T.3] and [C-L.1] respectively. Indeed,
it was their successful treatment that stimulated the need of producing an
all-encompassing abstract framework, by lifting and extracting the essen-
tial features common to all these (and other) dynamical P.D.E.’s classes,
(i) through (v). These have resulted in seven dynamical assumptions, (H.1)
through (H.7) below. We emphasize once more: needless to say, all these
assumptions have been verified to hold true for the above classes of hyper-
bolic [(i)–(iii)] and non-hyperbolic, Petrowski-type [(iv), (v)] mixed problems
(with various boundary conditions for (iii) and (iv)). We shall report them in
book-form in [L-T.8, Chapter 10]. Indeed, in all these cases these abstract as-
sumptions are, in fact, nothing but distinctive interior and boundary (traces)
regularity properties. To be sure, their verification is not a trivial or classical
matter, and requires P.D.E. energy methods (not functional analysis tech-
niques), which have been brought to bear only very recently on these mixed
P.D.E.’s problems, with emphasis on the basic level with L2-boundary data.
However, as already pointed out above, our present abstract setting requires
also higher level regularity results, both interior and boundary, see e.g., as-
sumptions (H.2) and (H.3) below. In the case of Kirchoff, Euler-Bernoulli
and Schrödinger equations, such interior and boundary higher-order regu-
larity results were not available in the literature, and it was our task to
provide them. In the case of Kirchoff equations, they are given in Section 5
below, particularly the proof of Theorem 5.8.1 in Section 5.13. In the case
of the Euler-Bernoulli and Schrödinger equations, we refer to a companion
paper [T.1] and [L-T.8, Chapter 10]. In all these latter three classes, the
derivation of higher-level trace regularity results (in space) presents (unex-
pected) additional difficulties (see Remark 5.13.1) over the known cases of
second-order hyperbolic equations with Dirichlet control [L-L-T.1], [L-T.3,
Section 3]. In the case of first-order, hyperbolic systems, these higher level
results were given in [Rau.1] (see also [C-L.1]), after the basic level regularity
result in the fundamental paper [K.1]. We expect that the present setting
for the optimal control problem will also apply to additional P.D.E.’s mixed
problems, such as the system of elasticity, and the Maxwell equation.
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1. Mathematical Setting and problem statement

Dynamical model. We consider the abstract differential equation

ẏ = Ay +Bu on, say, [D(A∗)]′; y(s) = y0 ∈ Y, (1.1)

or its mild version

y(t, s; y0) = eA(t−s)y0 + (Lsu)(t), (1.2a)

(Lsu)(t) =
∫ t

s
eA(t−τ)Bu(τ)dτ, (1.2b)

where 0 ≤ s ≤ T < ∞, subject to the abstract hypotheses listed below.

Optimal control problem on the interval [s, T ]. We introduce the
cost functional

J(u, y) =
∫ T

s

[
‖Ry(t)‖2

Z + ‖u(t)‖2
U

]
dt, (1.3)

and the corresponding optimal control problem O.C.P. is then:

Minimize J(u, y) over all u ∈ L2(s, T ;U), where y(t) = y(t, s; y0)
is the solution of Eqn. (1.1) with initial condition y(s) = y0. (1.4)

We now list the abstract assumptions of the present paper.

Abstract assumptions. We first group together in (i) below some stand-
ing preliminary basic assumptions:

(i) U, Y , and Z are Hilbert spaces; A is the generator of an s.c. semi-
group eAt on Y, t ≥ 0; B is a (linear) continuous operator U → [D(A∗)]′,
equivalently

A−1B ∈ L(U ;Y ). (1.5a)

[without loss of generality, we take A−1 ∈ L(Y ). For otherwise we replace
A−1 with the resolvent operator R(λ0, A), λ0 a point of the resolvent set
of A. However, A−1 will streamline the notation throughout, e.g., in (1.5b)
below, where one would otherwise take the graph norm on D(A∗).] In (1.1),
A∗ is the Y -adjoint of A, and [D(A∗)]′ is the Hilbert space dual to the space
D(A∗) ⊂ Y with respect to the Y -topology, with norms

‖y‖D(A∗) = ‖A∗y‖Y ; ‖y‖[D(A∗)]′ = ‖A−1y‖Y . (1.5b)

Via (1.5a), we let (B∗x, u)U = (x,Bu)Y for u ∈ U, x ∈ D(A∗), and then
B∗ ∈ L(D(A∗);U).

(H.1): (abstract trace regularity) the (closable) operator B∗eA∗t can be
extended as a map

B∗eA
∗t : continuous Y → L2(0, T ;U); (1.6a)∫ T

0

∥∥∥B∗eA
∗tx

∥∥∥2

U
dt ≤ cT ‖x‖2

Y , x ∈ Y. (1.6b)

Consequently, as seen in [L-T.3, Thm. 1.1], [F-L-T.1, Appendix A], it follows
equivalently that the operator Ls in (1.2b) satisfies
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(H.1∗)

Ls : continuous L2(s, T ;U) → C([s, T ];Y ) with
a norm which may be made independent of s, i.e., (1.7a)

‖Lsu‖C([s,T ];Y ) ≤ cT ‖u‖L2(s,T ;U) uniformly in s. (1.7b)

Then, the operator L∗
s, adjoint of Ls in the sense that

(Lsu, f)L2(s,T ;Y ) = (u, L∗
sf)L2(s,T ;U),

and thus given by

(L∗
sf)(t) =

∫ T

t
B∗eA

∗(τ−t)f(τ)dτ (1.8)

satisfies

L∗
s : continuous L1(s, T ;Y ) → L2(s, T ;U) with

a norm which may be made independent of s, i.e., (1.9a)

‖L∗
sf‖L2(s,T ;U) ≤ cT ‖f‖L1(s,T ;Y ) uniformly in s. (1.9b)

As stated in the introduction, the above assumption (H.1) was the only
hypothesis (in addition to (i)) on the dynamics (1.1), or (1.2), required
by the treatment of [D-L-T.1]. The following additional hypotheses (H.2)
through (H.7) on the dynamics (1.1) [all verified to be true for the hyper-
bolic/Petrowski class of P.D.E.’s we intend to cover] will allow us to drasti-
cally reduce over [D-L-T.1], the assumption on the degree of smoothing of
the observation operator, from R∗R ∼ A−( 1

4+ε) × A−( 1
4+ε) in [D-L-T.1] to

R∗R ∼ A−ε × A−ε in assumption (H.8) = (1.23) below, where, say, A is the
Laplacian with Dirichlet B.C.

Distinctive new hypotheses. Distinctive new hypotheses over [D-L-
T.1] are as follows: There exist families of Hilbert spaces (which in applica-
tions to P.D.E.’s are Sobolev spaces)



Uθ; Yθ, 0 ≤ θ ≤ 1
2 + δ, for some 1

2 > δ > 0; θ �= 1
2

for Yθ; U0 = U ; Y0 = Y, δ henceforth
kept fixed, with the property that:

injection Uθ2 → Uθ1 and Yθ2 → Yθ1

is compact, 0 ≤ θ1 < θ2 ≤ 1
2 + δ,

and the interpolating property

[Y 1
2−δ, [Y 1

2+δ]
′]θ= 1

2−δ = Y, δ > 0,

(1.10)

duality of [Y 1
2+δ]

′ with respect to Y , such that, setting

Uθ[s, T ] ≡ L2(s, T ;Uθ) ∩ Hθ(s, T ;U) (1.11)

Yθ[s, T ] ≡ L2(s, T ;Yθ) ∩ Hθ(s, T ;Y ), (1.12)
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where u ∈ Hθ(s, T ;U) means that the fractional time derivative Dθ
t u ∈

L2(s, T ;U), as usual [L-M.1], with norm

‖u‖2
Uθ[s,T ] ≡ ‖u‖2

L2(s,T ;Uθ) + ‖u‖2
Hθ(s,T ;U), (1.13)

and similarly for Yθ[s, T ], then:
(H.2)

Ls : continuous Uθ[s, T ] → Yθ[s, T ] ∩ C([s, T ];Yθ), 0 ≤ θ < 1
2 ,

with a norm which may be made independent of s, i.e., (1.14a)

‖Lsu‖Yθ[s,T ]∩C([s,T ];Yθ) ≤ cT,θ‖u‖Uθ[s,T ] uniformly in s; 0 ≤ θ <
1
2
. (1.14b)

[For θ = 0, (H.2) = (1.14) specializes to (H.1∗) = (1.7), via (1.10).]

Remark 1.1. In applications to mixed problems for P.D.E.’s [see Section
5 below, as well as [L-T.3], [C-L.1], [T.1]], one first establishes (H.1) = (1.6),
hence the regularity (H.1∗) = (1.7) for Ls [case θ = 0]; next, one establishes
a regularity result for Ls for θ = 1 involving the spaces U1 and Y1, which,
however, requires a compatibility condition. In interpolating the two above
cases θ = 0 and θ = 1 for θ < 1

2 , the compatibility condition is irrelevant,
and one thus obtains (H.2) = (1.14).

(H.3)

L∗
s : continuous L2(s, T ;Yθ) → Uθ[s, T ], 0 ≤ θ ≤ 1

2 + δ, θ �= 1
2
;

with a norm which may be made independent of s, i.e., (1.15a)

‖L∗
sf‖Uθ[s,T ] ≤ CT,θ‖f‖L2(s,T ;Yθ), uniformly in s (1.15b)

[for θ = 0, (H.3) = (1.15) is contained in (1.9)]. Henceforth, we shall fix once
and for all a number δ > 0 arbitrarily small and set for convenience

Y −
δ ≡ Yθ= 1

2−δ ⊃ Y +
δ ≡ Yθ= 1

2+δ (1.16)

U−
δ ≡ Uθ= 1

2−δ ⊃ U+
δ ≡ Uθ= 1

2+δ. (1.17)

[The values θ = 1
2 ± δ and θ = 1

2 − δ
2 will be the only values of θ where the

assumptions (H.2) = (1.14) and (H.3) = (1.15) will be used.]

Remark 1.2. In applications to mixed problems for P.D.E.’s, passage
from Y −

δ = Y 1
2−δ to Y +

δ = Y 1
2+δ may represent a jump across compatibility

conditions. The meaning of the assumption on R∗R, made in (H.8) = (1.23)
below, may be precisely this: to perform a passage to by-pass compatibility
conditions.

(H.4) (complementing (1.6))

B∗eA
∗t : continuous Y +

δ → C([0, T ];U); (1.18)

(H.5) eAt is also a s.c. semigroup on Y −
δ and D(A)

is dense in Y −
δ in the Y −

δ -topology; (1.19)

(H.6) A : continuous Y −
δ → [Y +

δ ]′, (1.20)
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where the duality [Y +
δ ]′ of Y +

δ is with respect to the space Y .
(H.7) (complementing (1.5a))

B : continuous U−
δ → [Y +

δ ]′ (1.21)

[which is automatically implied by

A−1B : continuous U−
δ → Y −

δ (1.22)

via assumption (H.6) = (1.20)];
(H.8) (assumption on smoothing observation)

R ∈ L(Y ;Z) and R∗R : continuous Y −
δ → Y +

δ , (1.23)

which then, by duality, implies

R∗R : continuous [Y +
δ ]′ → [Y −

δ ]′. (1.24)

Remark 1.3. As already noted, in the applications [in the subsequent
Section 5 as well as in [L-T.3], [C-L.1], and [T.1]] to P.D.E.’s with boundary
control, the spaces Y −

δ and Y +
δ are Sobolev spaces (which may coincide with

domains of appropriate fractional powers of the basic differential operator)
invariant under the action of the semigroups eAt and eA

∗t. More insight
on the impact of the smoothing assumption R∗R ∈ L(Y −

δ ;Y +
δ ) in (1.23) is

provided in the orientation below. Needless to say, for the class of boundary
control problems for P.D.E.’s for which this setting is intended [hyperbolic
dynamics, plate-like equations, see Section 5 below, as well as [L-T.3], [C-
L.1], and [T.1]], all basic assumptions (H.1) through (H.7) on A and B are
nothing but intrinsic dynamical properties.

Preliminary, direct consequences of the assumptions. Some pre-
liminary, direct consequences of the abstract assumptions, to be invoked in
the sequel, are listed next.

(C.1) Putting together (H.2) = (1.14) and (H.3) = (1.15) for θ = 1
2 − δ

2 ,
we obtain via (1.11), (1.12), (1.16),

LsL
∗
s : continuous L2(s, T ;Y −

δ
2
) → C([s, T ];Y −

δ
2
) ∩ H

1
2− δ

2 (s, T ;Y )

⊂ Y 1
2− δ

2 [s, T ] with a norm which may be made
independent of s, i.e.,

(1.25a)
‖LsL

∗
sf‖C([s,T ];Y −

δ
2

) + ‖LsL
∗
sf‖Y 1

2 − δ
2 [s,T ]

≤ CT,δ‖f‖L2(s,T ;Y −
δ
2

),

uniformly in s. (1.25b)

(C.2) By (strongly) differentiating (1.2b) in t, we obtain (at least in
[D(A∗)]′)(

dLsu

dt

)
(t) = A

[∫ t

s
eA(t−τ)Bu(τ)dτ +A−1Bu(t)

]
= A(Lsu)(t) +Bu(t).

(1.26a)

(1.26b)



DIFFERENTIAL RICCATI EQUATIONS 443

Of the possible regularity results which may be given on (1.26), we point out
the following one, to be invoked below. By recalling (H.2) = (1.14) on Ls

for θ = 1
2 − δ, and (H.6) = (1.20), (H.7) = (1.21) on A and B, respectively,

we obtain via (1.26b) and (1.11).

dLs

dt
= ALs +B : continuous U 1

2−δ[s, T ] → L2(s, T ; [Y +
δ ]′)

with a norm which may be made independent of s, i.e., (1.27a)

∥∥∥∥dLs

dt
u

∥∥∥∥
L2(s,T ;[Y +

δ
]′)

≤ CT,δ‖u‖U 1
2 −δ[s,T ]

, uniformly in s. (1.27b)

(C.3) The assumption that D(A) is dense in Y −
δ , made in (H.5) = (1.19),

implies that: Given x ∈ Y −
δ , there exists xn ∈ D(A) such that ‖xn−x‖Y −

δ
→

0 and∥∥∥eAtAxn

∥∥∥
C([0,T ];[Y +

δ
]′)

=
∥∥∥AeAtxn

∥∥∥
C([0,T ];[Y +

δ
]′)

≤ CT ‖xn‖Y −
δ
, (1.28)

by recalling (H.6) = (1.20) for A, and that eAt is a s.c. semigroup on Y −
δ

by (H.5) = (1.19). Then, by continuous extension, (1.28) yields

eAtA : continuous Y −
δ → C([0, T ]; [Y +

δ ]′) (1.29)

under assumption (H.5) and (H.6).
(C.4) Assumption (H.4) = (1.18), by duality, is equivalent to

eAtB : continuous U → C([0, T ]; [Y +
δ ]′). (1.30)

Indeed, for u ∈ U and y ∈ [Y +
δ ]′ we compute∣∣∣(eAtBu, y)Y

∣∣∣ = ∣∣∣(u,B∗eA
∗ty)U

∣∣∣ ≤ CT ‖u‖U‖y‖Y +
δ
, (1.31)

and (1.30) follows then from (1.31).
We then see that assumption (1.30), equivalently (H.4) = (1.18), for

eAtB = eAtAA−1B is implied by the property

A−1B : continuous U → Y −
δ , (1.32)

along with (H.5) and (H.6), since these in turn imply (1.29).

2. Statement of the main results

Our starting point is [D-L-T.1], [L-T.3], which applies by virtue of the
assumptions (i), (H.1) = (1.6) and R ∈ L(Y ;Z). In the present setting, a
far richer and complete theory becomes available.

Theorem 2.1. (Regularity of the optimal pair). Assume hypotheses (i),
(H.1) = (1.6); (H.2) = (1.14); (H.3) = (1.15); (H.5) = (1.19); (H.6) =
(1.20); (H.7) = (1.21); and (H.8) = (1.23) [actually the weaker require-
ment R∗R : Y 1

2−δ → Y 1
2
will suffice]. Then, the unique optimal pair
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{u0( · , s; y0), y0( · , s; y0)} of the O.C.P. (1.4) for (1.1) [guaranteed by [D-L-
T.1]], satisfies the following regularity properties: With y0 ∈ Y −

δ defined in
(1.16), we have
(i) y0( · , s; y0) = [Is + LsL

∗
sR

∗R]−1
[
eA( · −s)y0

]
∈ C([s, T ];Y −

δ = Y 1
2−δ) ∩ H

1
2−δ(s, T ;Y )

⊂ Y 1
2−δ[s, T ];

(2.1a)

(2.1b)

(ii) u0( · , s; y0) = −L∗
sR

∗Ry0( · , s; y0)

∈ L2(s, T ;U+
δ = U 1

2+δ) ∩ H
1
2+δ(s, T ;U)

≡ U 1
2+δ[s, T ],

(2.2a)

(2.2b)

a fortiori,
u0( · , s; y0) ∈ C([s, T ];U) (2.2c)

(see Theorem 3.1.2 below).

All the above results are with norms which may be made independent of
s.

Theorem 2.2. (Regularity of the gain operator B∗P (t)). Assume hy-
potheses (i), (H.1) = (1.6) through (H.8) = (1.23). Then, the operator P (t)
defined by

P (t)x =
∫ T

t
eA

∗(τ−t)R∗Ry0(τ, t;x)dτ

: continuous Y → C([0, T ];Y )

(2.3a)

(2.3b)

satisfies the following regularity property

B∗P (t) : continuous Y −
δ → C([0, T ];U) (2.4)

(see Theorem 3.2.1 below).

Remark 2.1. The importance of (2.3) and (2.4) is, of course, that [L-T.3]

J0(y0) ≡ J(u0( · , s; y0), y0( · , s; y0) = (P (s)y0, y0)Y ,

and
u0(t, s; y0) = −B∗P (t)y0(t, s; y0) ∈ L2(s, T ;U), y0 ∈ Y.

Theorem 2.3. (D.R.E.). Assume (i), (H.1) = (1.6) through (H.8) =
(1.23). Then, the operator P (t) defined by Eqn. (2.3a) satisfies

(P (t)x,Ay)Y , (P (t)Ax, y)Y ∈ C[0, T ], ∀x, y ∈ Y −
δ , (2.5)

in the sense that the above quantities, originally defined on D(A), can be
extended on Y −

δ ; and, moreover, the following Differential Riccati Equation
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for all 0 ≤ t < T :


d

dt
(P (t)x, y)Y = −(Rx,Ry)Z − (P (t)x,Ay)Y − (P (t)Ax, y)Y

+(B∗P (t)x,B∗P (t)y)U , ∀ x, y ∈ Y −
δ ;

P (T ) = 0; (2.6)

as well as the corresponding Integral Riccati Equation for all 0 ≤ t ≤ T :

(P (t)x, y)Y =
∫ T

t

(
ReA(τ−t)x,ReA(τ−t)y)

)
Z
dτ

−
∫ T

t

(
B∗P (τ)eA(τ−t)x,B∗P (τ)eA(τ−t)y

)
U
dτ, x, y ∈ Y −

δ

(2.7)

(see Lemma 4.2.1 and Theorem 4.2.2 below).

Orientation. Existence of a unique optimal pair {u0( · , s; y0),
y0( · , s; y0} and formulas (2.1a), (2.2a) apply to the present situation [L-
T.3, pp. 890–891], and we seek to go beyond these preliminary results.
Now, Eqns. (1.14) for Ls and (1.15) for L∗

s show, by (1.11), (1.12), that—in
the present setting, —the operators Ls and L∗

s do not provide any smooth-
ing in the (Sobolev spaces) Yθ and Uθ, i.e., in what in P.D.E.’s applica-
tions will be “the space variable.” Thus, in order to achieve a complete
theory, which in particular includes the derivation of a Differential Riccati
Equation, two main problems of similar nature arise: (1) First, in seeking
regularity properties for the optimal trajectory y0( · , s; y0) with a “regu-
lar” initial datum y0 ∈ Y −

δ , one needs to perform a critical bounded in-
version of the operator [Is + LsL

∗
sR

∗R], which describes y0( · , s; y0) (see
Eqn. (2.1a)) on the smoother space L2(s, T ;Y −

δ ), in fact on its subspace
Y 1

2−δ[s, T ] ≡ L2(s, T ;Y −
δ ) ∩ H

1
2−δ(s, T ;Y ), see (1.12). This bounded in-

version would, however, be a serious problem, unless LsL
∗
sR

∗R could be
asserted to be compact on Y 1

2−δ[s, T ]. It is to this end that a “minimal”
smoothing assumption on R∗R, such as, e.g., (H.8) = (1.23), is then in-
voked [but even the weaker requirement R∗R : continuous Yθ= 1

2−δ → Yθ= 1
2

would do it, of course]. Once the bounded inversion of [Is + LsL
∗
sR

∗R] on
Y 1

2−δ[s, T ] is performed, then one obtains, along with assumptions (H.5) =
(1.19), regularity properties of y0( · , s; y0); and hence, via (H.3) = (1.15)
applied to the optimality condition, see Eqn. (2.2a) regularity properties of
u0( · , s; y0), for s fixed. Next, however, in order to obtain the regularity
property of the gain operator B∗P (t) : continuous Y −

δ → C([0, T ];U) (via
[Eqn. (2.3) and Remark 2.1]), we see that we need to refine the preceding
result by asserting that, in fact, [Is + LsL

∗
sR

∗R] is boundedly invertible on
Y 1

2−δ[s, T ], uniformly in s. The aforementioned regularity of B∗P (t) then
justifies the well-posedness of the critical quadratic term, which occurs in
the Differential Riccati Equation (2.6). All this summarizes the content of
Section 3, which provides the proof of the regularity Theorems 2.1 and 2.2.
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(2) Second, in seeking to derive the Differential Riccati Equation (2.6)
on Y −

δ , one encounters the obstacle of performing the bounded inversion
of the operator [Is + LsL

∗
sR

∗R], this time, however, on the weaker space
L2(s, T ; [Y +

δ ]′); equivalently, by duality, the bounded inversion of
[Is + R∗RLsL

∗
s] on the space L2(s, T ;Y +

δ ). This task would, however, be
again a serious problem, unless R∗RLsL

∗
s could be asserted to be compact

on L2(s, T ;Y +
δ ). It is at this level that the smoothing assumption R∗R: con-

tinuous Y −
δ → Y +

δ in (H.8) = (1.23) is used in full force, as the operator
Ls, by assumption (H.2) = (1.14), has a known regularity property only
on Yθ, θ < 1

2 . Accordingly, the bounded inversion of [Is + LsL
∗
sR

∗R] on
L2(s, T ; [Y +

δ ]′) is then performed for each s, a result sufficient in the deriva-
tion of the D.R.E. (2.6) in Section 4.

3. Proofs of theorems 2.1 and 2.2.

3.1 Bounded inversion of [Is + LsL
∗
sR

∗R]
on the space Y 1

2−δ[s, T ], uniformly in s.
Proof of Theorem 2.1

The key preliminary result is the following.

Theorem 3.1.1. Assume (H.1); (H.2), and (H.3) only for θ < 1
2 ; (H.5);

(H.6); (H.7); (H.8) [though the weaker requirement R∗R : Y 1
2−δ → Y 1

2
will

suffice]. Then:

(i) With reference to the spaces in (1.12) for θ = 1
2 − δ and θ = 1

2 − δ
2 , we

have the following estimate

‖LsL
∗
sR

∗Rf‖Y 1
2 − δ

2 [s,T ]
≤ CT,δ‖f‖Y 1

2 −δ[s,T ]
, uniformly in s. (3.1.1)

(ii) For fixed s, the operator LsL
∗
sR

∗R : Y 1
2−δ[s, T ] → itself, is compact,

and, in fact, {LsL
∗
sR

∗R} is a family (in s) of collectively compact op-
erators on Y 1

2−δ[0, T ], once extended by zero on [0, s) (in the sense of
[An.1, p. 3]).

(iii) For f ∈ Y 1
2−δ[0, T ], indeed, even f ∈ L2(0, T ;Y −

δ ), the map s →
LsL

∗
sR

∗Rf is continuous in Y 1
2−δ[0, T ].

(iv) The operator [Is + LsL
∗
sR

∗R] is boundedly invertible on Y 1
2−δ[s, T ],

indeed uniformly with respect to s:

‖[Is + LsL
∗
sR

∗R]−1‖L(Y 1
2 −δ[s,T ])

≤ CT,δ, uniformly in s. (3.1.2)

Proof. (i) The proof of estimate (3.1.1) is a consequence of part of the
following diagram, where all continuity maps are uniform in s:
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Y 1
2−δ[s, T ]

R∗R

continuous
by (1.23)

L2(s, T ;Y +
δ )

continuous

injection

L2(s, T ;Y −
δ
2
)

LsL
∗
s

continuous
by (1.25)

Y 1
2−δ[s, T ]

compact

injection
by (3.1.3)

Y 1
2− δ

2 [s, T ].

✲ ✲

❄

✛

In the first step, we use (H.8) = (1.23) for R∗R [but R∗R: continuous
Y 1

2−δ → Y 1
2
would suffice]; followed by [the combination of (H.2) = (1.14)

and (H.3) = (1.15) for θ = 1
2 − δ

2 culminating in] the regularity (C.1) =
(1.25); followed in the last step by the

compact injection Y 1
2− δ

2 [s, T ] → Y 1
2−δ[s, T ], (3.1.3)

a consequence, via (1.12), of the compact injection Y 1
2− δ

2
→ Y 1

2−δ in (1.10)
and of T < ∞.

(ii) A fortiori from the diagram, LsL
∗
sR

∗R, extended by zero on [0, s) is a
compact operator on Y 1

2−δ[0, T ], and the family {LsL
∗
sR

∗R} is collectively
compact (in s [A.1, p. 4]) on Y 1

2−δ[0, T ], by estimate (3.1.1). This means that
the union, over 0 ≤ s ≤ s0, of the image [LsL

∗
sR

∗R] (unit ball in Y 1
2−δ[0, T ])

is a relatively compact set in Y 1
2−δ[0, T ].

(iii) Step 1. Let g ∈ U 1
2−δ[0, T ] ≡ L2(0, T ;U−

δ )∩H
1
2−δ(0, T ;U). We shall

first show that, when Lsg is extended by zero on [0, s), then

the map s → Lsg is continuous from [0, T ] to L2(0, T ;Y −
δ ). (3.1.4)

In fact, with, say, t > s1 > s, recalling (1.2b),

‖(Lsg)(t) − (Ls1g)(t)‖Y −
δ

=
∥∥∥∥
∫ s1

s
eA(t−τ)Bg(τ)dτ

∥∥∥∥
Y −

δ

=
∥∥∥∥eA(t−s1)

∫ s1

s
eA(s1−τ)Bg(τ)dτ

∥∥∥∥
Y −

δ

(by (1.19)) ≤ CT ‖(Lsg)(s1)‖Y −
δ
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≤ C ′
T,δ‖g‖U 1

2 −δ[s,s1]
→ 0 as [s − s1] → 0,

(3.1.5)

where in the last steps we have recalled (1.2b) as well as assumption (H.5)
= (1.19) on eAt, and (H.2) = (1.14) with θ = 1

2 − δ. Thus, by (3.1.5),

‖Lsg − Ls1g‖C([s1,T ];Y −
δ

) → 0 as [s1 − s] → 0, (3.1.6a)

as well as

‖Lsg − Ls1g‖C([s,s1];Y −
δ

) = ‖Lsg‖C([s,s1];Y −
δ

) → 0 as [s − s1] → 0. (3.1.6b)

Then, (3.1.6a) and (3.1.6b) a fortiori imply (3.1.4).
Step 2. Next, let f ∈ L2(0, T ;Y −

δ ). We then show that

the map s → L∗f is continuous from [0, T ] to U 1
2−δ[0, T ]. (3.1.7)

In fact, the definition (1.8) implies, still with s1 > s,∥∥(L∗
sf − L∗

s1f
∥∥

U 1
2 −δ[0,T ]

= ‖L∗
sf‖U 1

2 −δ[s,s1]

(by (1.15b)) ≤ CT,δ‖f‖L2(s,s1;Y −
δ

) → 0 as [s − s1] → 0,

(3.1.8)

after using (H.3) = (1.15b), and (3.1.7) is proved.
Step 3. Next, with g = L∗

sR
∗Rf ∈ U 1

2−δ[0, T ] (conservatively) with
f ∈ L2(0, T ;Y −

δ ), via (H.8) = (1.23) and (H.3) = (1.15), we recall (1.26b)
and write

d(Lsg)
dt

=
d(LsL

∗
sR

∗Rf)
dt

= ALsL
∗
sR

∗Rf +BL∗
sR

∗Rf (3.1.9)

= ALsL
∗R∗Rf +BL∗

sR
∗Rf, (3.1.10)

since, by the definitions (1.2b) and (1.8), we have readily LsL
∗
s = LsL

∗.
With reference to (3.1.10), and with f ∈ L2(0, T ;Y −

δ ), we then have that

the map s → ALsL
∗R∗Rf continuous in L2(0, T ; [Y +

δ ]′), (3.1.11)

by combining (3.1.4) with g = L∗R∗Rf and (H.6) = (1.20) on A. Also, again
with f ∈ L2(0, T ;Y −

δ ), hence R∗Rf ∈ L2(0, T ;Y −
δ ) a fortiori

the map s → BL∗
sR

∗Rf continuous in L2(0, T ; [Y +
δ ]′), (3.1.12)

by combining (3.1.7) and (H.7) = (1.21) on B. Using (3.1.11) and (3.1.12)
in (3.1.10) we conclude that:

If f ∈ L2(0, T ;Y −
δ ), then:

the map s → d

dt
(LsL

∗
sR

∗Rf) continuous in L2(0, T ; [Y +
δ ]′), (3.1.13)

as well as

the map s → LsL
∗
sR

∗Rf continuous inL2(0, T ;Y −
δ ), (3.1.14)

by (3.1.4).
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Step 4. Hence, by interpolation between (3.1.13) and (3.1.14), we obtain,
recalling the interpolation property in (1.10),

the map s →
(
D

θ= 1
2−δ

t

)
LsL

∗
sR

∗Rf is continuous in

L2

(
0, T ; [Y −

δ , [Y +
δ ]′]θ= 1

2−δ

)
= L2(0, T ;Y ), (3.1.15)

via [L-M, pp. 15, 23]. Then (3.1.14) and (3.1.5) together mean:

If f ∈ L2(0, T ;Y −
δ ), then:

the map s → LsL
∗
sR

∗Rf continuous inY 1
2−δ[0, T ], (3.1.16)

which proves the desired part (iii).
(iv) We first show that [Is +LsL

∗
sR

∗R] is boundedly invertible on the set
Y 1

2−δ[s, T ] for each s fixed

[Is + LsL
∗
sR

∗R]−1 ∈ L
(
Y 1

2−δ[s, T ]
)
. (3.1.17)

Indeed, since LsL
∗
sR

∗R is a compact operator on Y 1
2−δ[s, T ] by part (ii), then

a (necessary and) sufficient condition for (3.1.17) to hold true is that λ = 1
be not an eigenvalue of LsL

∗
sR

∗R on Y 1
2−δ[s, T ], which is certainly the case,

for otherwise λ = 1 would also be an eigenvalue of LsL
∗
sR

∗R on L2(s, T ;Y ),
thus contradicting [L-T.3, p. 891], which asserts that [Is + LsL

∗
sR

∗R]−1 ∈
L(L2(s, T ;Y )). Thus, (3.1.7) is proved.

Finally, to assert the uniform estimate (3.1.2), we simply invoke [L-T.3,
Lemma 3.12] with Z1 ≡ Y 1

2− δ
2 [0, T ] with compact injection into Z0 ≡

Y 1
2−δ[0, T ], see (3.1.3): this is legal by virtue also of (3.1.1) of part (i),

(3.1.16) of part (iii), and (3.1.17) of part (iv). Theorem 3.1.1 is proved.

Remark 3.1.1. In the preceding diagram the weaker requirement R∗R:
continuous Y 1

2−δ → Y 1
2
would suffice.

Remark 3.1.2. With reference to (2.1a), setting

Γs = [Is + LsL
∗
sR

∗R],

we obtain

Γ−1
s − Γ−1

s1 = Γ−1
s [Γs1 − Γs]Γ−1

s1 (3.1.18)

by the second resolvent equation. Hence, estimate (3.1.2) of Theorem 3.1.1
applied to (3.1.18) readily implies that, for each f ∈ Y 1

2−δ[s, T ] fixed,

the map s → Γ−1
s f is continuous in Y 1

2−δ[0, T ], (3.1.19)

a result which can be applied to y0( · , s; y0) via (2.1a). See also Remark
3.1.3 below.

As a corollary of Theorem 3.1.1, we shall prove Theorem 2.1 on the reg-
ularity of the optimal pair.
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Theorem 3.1.2. Assume the hypotheses of Theorem 3.1.1: (H.1) through
(H.3); (H.5) through (H.8). Then, the optimal pair

{u0( · , s; y0), y0( · , s; y0)}
guaranteed by [L-T.3], satisfies the following regularity properties for y0 ∈
Y −
δ :
(i)y0( · , s; y0) ≡ Φ( · , s)y0 ∈ C([s, T ];Y −

δ ) ∩ H
1
2−δ(s, T ;Y )

⊂ Y 1
2−δ[s, T ], (3.1.20a)

with norms which may be made independent of s:

‖Φ( · , s)‖L(C([s,T ];Y −
δ

);Y −
δ

) + ‖Φ( · , s)‖L(Y 1
2 −δ[s,T ];Y −

δ
)

≤ CT,δ, uniformly in s; (3.1.20b)

(ii) still for y0 ∈ Y −
δ ,

u0( · , s; y0) ∈ U 1
2+δ[s, T ], (3.1.21a)

with a norm which may be made independent of s,

‖u0( · , s; y0)‖L(U 1
2+δ [s,T ];Y −

δ
)
≤ CT,δ, uniformly in s. (3.1.21b)

Proof. Step 1. We recall Eqn. (2.1a) and (3.1.20a),

y0( · , s; y0) ≡ Φ( · , s)y0 = [Is + LsL
∗
sR

∗R]−1[eA( · −s)y0]. (3.1.22)

With y0 ∈ Y −
δ , we apply (H.5) = (1.19), which gives that eA( · −s) is a

s.c. semigroup on Y −
δ , and finally invoke Theorem 3.1.1(iv), Eqn. (3.1.2), to

obtain (3.1.20b) for L(Y 1
2−δ[s, T ];Y −

δ ).

Step 2. We now recall the optimality condition

u0( · , s; y0) = −L∗
sR

∗Ry0( · , s; y0), (3.1.23)

from Eqn. (2.2a), to which we apply the diagram

Y 1
2−δ[s, T ]

R∗R
−→

by (1.23)
L2(s, T ;Y +

δ )
L∗

s−→
by (1.15b)

U 1
2+δ[s, T ], (3.1.24)

with y0( · , s; y0) ∈ Y 1
2−δ[s, T ] uniformly in s by (3.1.20b) just proved in

Step 1. All the maps in the diagram are uniform with respect to s, the last
one, L∗

s, by (H.3) = (1.15b) with θ = 1
2 + δ. Then the above diagram and

(3.1.23) prove part (ii), i.e., (3.1.21).

Step 3. It remains to complete the proof of part (i), by showing the
statement for C([s, T ];Y −

δ ). To this end, we use the optimal dynamics

y0( · , s; y0) = eA( · −s)y0 + Lsu
0( · , s; y0), (3.1.25)

with y0 ∈ Y −
δ , hence eA( · −s)y0 ∈ C([s, T ];Y −

δ ) by (H.5) = (1.19), and
finally Lsu

0( · , s; y0) ∈ C([s, T ];Y −
δ ) by (H.2) = (1.14a) with θ = 1

2 − δ,
since a fortiori from part (ii), u0( · , s; y0) ∈ U 1

2−δ[s, T ]. Then, y0( · , s; y0) ∈
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C([s, T ];Y −
δ ) by (3.1.25). Moreover, all results are uniform in s. Theorem

3.1.2 is fully proved.

Remark 3.1.3. As we have seen, e.g., in the proof of [L-T.3, Lemma
2.1], continuity of Φ(t, s)x in the first variable, as established by (3.1.20a)

t → Φ(t, s)x continuous in Y −
δ , for x ∈ Y −

δ , T ≥ t ≥ s, (3.1.26)

for s fixed, combined with the uniform bound obtained in (3.2.20b)

‖Φ(t, s)‖L(Y −
δ

) ≤ CT uniformly in s ≤ t ≤ T (3.1.27)

implies continuity of Φ(t, s)x in the second variable

s → Φ(t, s)x continuous in Y −
δ , for x ∈ Y −

δ , s ≤ t. (3.1.28)

3.2 Proof of theorem 2.2

We restate Theorem 2.2 as

Theorem 3.2.1. Assume hypotheses (H.1) = (1.6) through (H.8) =
(1.23). Then, the operator P (t) defined by Eqn. (2.3) satisfies

B∗P (t) : continuous Y −
δ → C([0, T ];U);

max
0≤t≤T

‖B∗P (t)x‖U ≤ CT ‖x‖Y −
δ
.

(3.2.1)

Remark 3.2.1. The weaker statement

B∗P (t) : continuous Y −
δ → L∞(0, T ;U) (3.2.2)

can be immediately proved, by applying (H.4) = (1.18), (H.8) = (1.23) and
(3.1.20) of Theorem 3.1.2 (or (3.1.27)), to

B∗P (t)x =
∫ T

t
B∗eA

∗(τ−t)R∗RΦ(τ, t)x dτ. (3.2.3)

We obtain with x ∈ Y −
δ :

‖B∗P (t)x‖U ≤ CT

∫ T

t
‖Φ(τ, t)x‖Y −

δ
dτ ≤ C ′

T,δ‖x‖Y −
δ
, (3.2.4)

and (3.2.2) is proved.

Proof of Theorem 3.2.1. Let t1 ∈ [0, T ) and let t > t1. From (3.2.3),
we compute after a change of variable, with x ∈ Y −

δ :

B∗P (t)x − B∗P (t1)x = B∗
∫ T−t

0
eA

∗σR∗RΦ(t+ σ, t)x dσ

−B∗
∫ T−t1

0
eA

∗σR∗RΦ(t1 + σ, t1)x dσ

= I1(t)x − I2(t)x, (3.2.5)
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where, after adding and subtracting,

I1(t)x =
∫ T−t

0
B∗eA

∗σR∗R[Φ(t+ σ, t)x − Φ(t1 + σ, t1)x]dσ; (3.2.6)

I2(t)x =
∫ T−t1

T−t
B∗eA

∗σR∗RΦ(t1 + σ, t1)x dσ. (3.2.7)

As to I2(t)x, we apply (H.4) = (1.18), (H.8) = (1.23) and (3.1.21b) of The-
orem 3.1.2, or (3.1.27) to obtain

‖I2(t)x‖U ≤ CT

∫ T−t1

T−t
‖Φ(t1 + σ, t1)x‖Y −

δ
dσ

≤ C ′
T,δ(t − t1)‖x‖Y −

δ
→ 0 as t ↓ t1. (3.2.8)

As to I1(t)x, we again apply (H.4) = (1.18) and (H.8) = (1.23) to obtain
after adding and subtracting, Φ(t+σ, t1)x = Φ(t+σ, t)Φ(t, t1)x [recall [L-T.3,
Lemma 2.1]:

‖I1(t)x‖U ≤ CT

∫ T−t

0
‖Φ(t+ σ, t)x − Φ(t1 + σ, t1)x‖Y −

δ
dσ

≤ CT

{∫ T−t

0
‖Φ(t+ σ, t)x − Φ(t+ σ, t)Φ(t, t1)x‖Y −

δ
dσ

+
∫ T−t

0
‖Φ(t+ σ, t1)x − Φ(t1 + σ, t1)x‖Y −

δ
dσ

}
.

(3.2.9)

As to the first term on the right-hand side of (3.2.9), we compute∫ T−t

0
‖Φ(t+ σ, t)[x − Φ(t, t1)x]‖Y −

δ
dσ

≤
∫ T−t

0
‖Φ(t+ σ, t)‖L(Y −

δ
)‖x − Φ(t, t1)x‖Y −

δ
dσ

(by (3.1.27)) ≤ CT,δT‖x − Φ(t, t1)x‖Y −
δ

→ 0 as t ↓ t1, x ∈ Y −
δ ,

(3.2.10)

after recalling the uniform bound (3.1.27), i.e., (3.1.21b), where convergence
to zero attains because of the continuity property in (3.1.17), or (3.1.26). As
to the second term in (3.2.9), the integrand, with [t+ σ] − [t1 + σ] = t − t1,
is uniformly continuous and hence arbitrarily small as t − t1 is sufficiently
small. Thus

lim
t↓t1

∫ T−t

0
‖Φ(t+ σ, t1)x − Φ(t1 + σ, t1)x‖Y −

δ
dσ = 0. (3.2.11)

Using (3.2.10) and (3.2.11) on the right-hand side of (3.2.9), then yields

lim
t↓t1

I1(t)x = 0, x ∈ Y −
δ , (3.2.12)
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as desired. Then, (3.2.8) for I2(t)x and (3.2.12) for I1(t)x, used in (3.2.5),
complete the proof that

lim
t↓t1

‖B∗P (t)x − B∗P (t1)x‖U = 0, x ∈ Y −
δ . (3.2.13)

A similar argument applies if t < t1, and t ↑ t1. We then obtain that

B∗P (t)x ∈ C([0, T ];Y −
δ ), x ∈ Y −

δ . (3.2.14)

This, along with (3.2.4), shows (3.2.1), as desired.

Remark 3.2.1. Recalling the pointwise relationship

u0(t, 0; y0) = −B∗P (t)y0(t, 0; y0), y0 ∈ Y −
δ , (3.2.15)

from Remark 2.1, and applying to it the continuity

y0(t, 0; y0) ∈ C([0, T ];Y −
δ )

via (3.1.20) of Theorem 3.1.2, as well as (3.2.1) of Theorem 3.2.1, we re-
obtain that u0(t, 0; y0) ∈ C([0, T ];U), a result a-fortiori contained in (2.2b),
or (3.1.21); see (2.2c).

4. Proof of theorem 2.3

4.1. Bounded inversion of [Is + LsL
∗
sR

∗R] on the
space L2(s, T ; [Y +

δ ]′). Consequences on Φ(t, s)

We begin with the result which will serve our purposes in the sequel.

Theorem 4.1.1. Assume (i), (H.1) = (1.6), (H.2) = (1.14), (H.3) =
(1.15), and (H.8) = (1.23). Then, for s fixed:

(i) the operator R∗RLsL
∗
s is compact on L2(s, T ;Y +

δ ).
(ii) The operator [Is +R∗RLsL

∗
s] is boundedly invertible on L2(s, T ;Y +

δ ):

[Is +R∗RLsL
∗
s]

−1 ∈ L(L2(s, T ;Y +
δ )). (4.1.1)

(iii) The operator [Is+LsL
∗
sR

∗R] is boundedly invertible on L2(s, T ; [Y +
δ ]′):

[Is + LsL
∗
sR

∗R]−1 ∈ L(L2(s, T ; [Y +
δ ]′). (4.1.2)

Proof. (i) The proof of part (i) is a consequence of the following diagram
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L2(s, T ;Y +
δ )

L∗
s

continuous
by (1.15)

U 1
2+δ[s, T ]

injection

compact
by (4.1.3)

U 1
2−δ[s, T ]

Ls
continuous
by (1.14)

L2(s, T ;Y +
δ )

R∗R

continuous
by (1.23)

Y 1
2−δ[s, T ].

✲ ✲

❄
✛

The above diagram uses (H.3) = (1.15) for θ = 1
2 + δ on L∗

s; followed by
the

injection U 1
2+δ[s, T ] → U 1

2−δ[s, T ] compact, (4.1.3)

as a consequence of the compactness property U 1
2+δ → U 1

2−δ of the injection

contained in (1.10) and of T < ∞; followed by (H.2) = (1.14) for θ = 1
2 − δ

on Ls; followed by (H.8) = (1.23) on R∗R. Thus, as a result, R∗RLsL
∗
s is a

compact operator on L2(s, T ;Y +
δ ), as desired.

(ii) Since R∗RLsL
∗
s is compact on L2(s, T ;Y +

δ ) by part (i), then a (nec-
essary and) sufficient condition for (4.1.1) to hold true is that λ = 1 be not
an eigenvalue of R∗RLsL

∗
s on L2(s, T ;Y +

δ ), which is certainly the case, for
otherwise λ = 1 would also be an eigenvalue of R∗RLsL

∗
s on L2(s, T ;Y ),

thus contradicting [L-T.3, p. 891], which asserts that [Is + R∗RLsL
∗
s]

−1 ∈
L(L2(s, T ;Y )). Thus, (4.1.1) is proved.

(iii) Part (iii), Eqn. (4.1.2), follows from part (ii), Eqn. (4.1.1) by duality.

We can now draw some consequences of Theorem 4.1.1 on properties of
the evolution operator Φ(t, s) in (3.1.20), to be invoked in the sequel

Corollary 4.1.2. Assume preliminarily (i), (H.1) = (1.6) through (H.3)
= (1.15) and (H.8) = (1.23).
(a) Assume (H.5) = (1.19) on eAt, and (H.6) = (1.20). Then

Φ( · , s)A : continuous Y −
δ → L2(s, T ; [Y +

δ ]′), (4.1.4)

(ii) Assume (H.4) = (1.18). Then

Φ(t, s)B : continuous U → L2(s, T ; [Y +
δ ]′). (4.1.5)

(iii) Assume (H.4) = (H.7). Then

Φ(t, s)[A − BB∗P (s)] : continuous Y −
δ → L2(s, T ; [Y +

δ ]′). (4.1.6)
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Proof. (i) Recalling (3.1.22), we have

Φ( · , s)Ax = [Is + LsL
∗
sR

∗R]−1[eA( · −s)Ax], (4.1.7)

where, for x ∈ Y −
δ we have eA( · −s)Ax ∈ C([s, T ]; [Y +

δ ]′) by (C.3) = (1.29),
i.e., by (H.5) and (H.6) continuously in x ∈ Y −

δ . Finally, we invoke (4.1.2)
of Theorem 4.1.1 and obtain Φ( · , s)Ax ∈ L2(s, T ; [Y +

δ ]′), continuously in
x ∈ Y −

δ , from (4.1.7), as desired.
(ii) Similarly, we have for u ∈ U , via (3.1.22),

Φ( · , s)Bu = [Is + LsL
∗
sR

∗R]−1[eA( · −s)Bu], (4.1.8)

where now eA( · −s)Bu ∈ C([s, T ]; [Y +
δ ]′) by consequence (C.4) = (1.30),

i.e., duality on (H.4) = (1.18). Again, (4.1.2) then yields Φ( · , s)Bu ∈
L2(s, T ; [Y +

δ ]′), continuously in u ∈ U , from (4.1.8), as desired.
(iii) Regularity (4.1.6) is an immediate consequence of (4.1.4) and (4.1.5),

via (3.2.1) of Theorem 3.2.1.

Corollary 4.1.3. Assume (H.1) through (H.8). Then,

(i) for x ∈ Y −
δ , s ≤ t ≤ T,

dΦ(t, s)x
dt

= [A − BB∗P (t)]Φ(t, s)x ∈ C([s, T ]; [Y +
δ ]′), x ∈ Y −

δ ; (4.1.9)

(ii) for x ∈ Y −
δ , s ≤ t ≤ T ,

dΦ(t, s)x
ds

= −Φ(t, s)[A − BB∗P (t)]x ∈ L2(s, T ; [Y +
δ ]′), x ∈ Y −

δ . (4.1.10)

Proof. (i) Eqn. (4.1.9) is simply the optimal dynamics in differential form
via (3.2.15), and may be obtained by differentiation on its integral version
(3.1.25), i.e.,

Φ(t, s)x = eA(t−s)x −
∫ t

s
eA(t−τ)BB∗P (τ)Φ(τ, s)x dτ, (4.1.11)

where the regularity in C([s, T ]; [Y +
δ ]′) in (4.1.9) is obtained by use of as-

sumptions (H.6) = (1.20) and (H.7) = (1.21) on A and B, respectively, com-
bined with the regularity properties of Φ(t, s)x ∈ C([s, T ];Y −

δ ) in (3.1.20)
and (3.2.1) on B∗P (t).

(ii) One way to derive (4.1.10) [in line with [L-T.3] is to start from (3.1.22)
rewritten as

Φ(t, s)x+ {LsL
∗
sR

∗RΦ( · , s)x}(t) = eA(t−s)x, x ∈ Y −
δ , (4.1.12a)

or, explicitly via (1.2b) and (1.8) as

Φ(t, s)x+
∫ t

s
eA(t−τ)BB∗

∫ T

τ
eA

∗(σ−τ)R∗RΦ(σ, s)xdσdτ

= eA(t−s)x,

(4.1.12b)
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take the distributional derivative in s, to obtain

[Is + LsL
∗
sR

∗R]
dΦ( · , s)x

ds
= −eA( · −s)[A − BB∗P (s)]x

∈ C([s, T ]; [Y +
δ ]′) ⊂ L2(s, T ; [Y +

δ ]′), x ∈ Y −
δ , (4.1.13)

after invoking the definition of P (s) from Eqn. (2.3a). The regularity dis-
played at the right-hand side of (4.1.13) is a consequence of (3.2.1) for
B∗P (t); (C.3) = (1.28) for eAtA; (C.4) = (1.30) for eAtB. Then, apply-
ing (4.1.2) of Theorem 4.1.1 on (4.1.13) yields

dΦ( , s)x
ds

= −[Is + LsL
∗
sR

∗R]−1eA( · −s)[A − BB∗P (s)]x

(by (3.1.22)) = −Φ( · , s)[A − BB∗P (s)]x

∈ L2(s, T ; [Y +
δ ]′), x ∈ Y −

δ , (4.1.14)

and (4.1.10) is proved.
Alternatively, writing

Φ(t, τ)x = Φ(t, s)Φ(s, τ)x, τ ≤ s ≤ t, x ∈ Y −
δ , (4.1.15)

by the evolution property of [L-T.3, Lemma 2.1] or [D-L-T.1], we differentiate
both sides of (4.1.15) in s, e.g., as a distributional derivative, obtaining

0 =
dΦ(t, τ)x

ds
=

dΦ(t, s)
ds

Φ(s, τ)x+Φ(t, s)
dΦ(s, τ)x

ds
,

(4.1.16)

or using (4.1.6) and (3.1.26) or (3.1.20a)

dΦ(t, s)
ds

Φ(s, τ)x = −Φ(t, s)[A − BB∗P (s)]Φ(s, τ)x

∈
in t

L2(s, T ; [Y +
δ ]′), x ∈ Y −

δ , (4.1.17)

recalling the regularity of (4.1.6) combined with that of Φ(t, s) on Y −
δ given

by (3.1.20a). Since (4.1.17) is valid for all τ ≤ s, setting τ = s yields (4.1.10),
as desired.

4.2 Derivation of the differential
and integral riccati equations

Lemma 4.2.1. Assume (i), (H.1) = (1.6) through (H.3) = (1.15), (H.5)
= (1.19) through (H.8) = (1.23). Then, with reference to the non-negative,
self-adjoint operator P (t) ∈ L(Y ) defined by Eqn. (2.3a), we have
(i)

A∗P (t) : continuous Y −
δ → C([0, T ]; [Y −

δ ]′), (4.2.1)

so that, for x, y ∈ Y −
δ , we have the duality pairings

(ii) (P (t)x,Ay)Y , (P (t)Ax, y)Y ∈ C[0, T ]; (4.2.2)
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Proof. (i) We examine

A∗P (t)x =
∫ T

t
A∗eA

∗(τ−t)R∗RΦ(τ, t)x dτ (4.2.3)

for x ∈ Y −
δ . Then, by (3.1.20), or (3.1.26), and by (H.8) = (1.23), we have

R∗RΦ(τ, t)x ∈ C([t, T ];Y +
δ ), x ∈ Y −

δ , (4.2.4)

and by duality on (C.3) = (1.29), we have

A∗eA
∗t : continuous Y +

δ → C([0, T ]; [Y −
δ ]′). (4.2.5)

Using (4.2.4) and (4.2.5) in (4.2.3) yields A∗P (t)x ∈ [Y −
δ ]′. Actually, since

by (3.1.28) and (4.2.5), respectively,

t → Φ(τ, t)x continuous in Y −
δ , for x ∈ Y −

δ ; (4.2.6)

t → A∗eA
∗(τ−t)y continuous in [Y −

δ ]′ for y ∈ Y +
δ , (4.2.7)

then, in fact, A∗P (t)x ∈ C[0, T ]; [Y −
δ ]′), x ∈ Y −

δ , as desired. The closed
graph theorem then yields (4.2.1).

Part (ii), Eqn. (4.2.2), is an immediate consequence of part (i) and of
P (t) being self-adjoint on Y .

Remark 4.2.1. Notice that we would have:

P (t) : continuous Y −
δ → C([0, T ];Y +

δ ), (4.2.8)

if and only if A is an isomorphism Y −
δ onto [Y +

δ ], (4.2.9)

a property for A which is generally false; see illustrations below.

We can finally establish that P (t) satisfies the D.R.E.

Theorem 4.2.2. Assume (i), (H.1) through (H.8). Then the non-
negative, self-adjoint operator P (t) defined by (2.3a) satisfies the following
Differential Riccati Equation for all 0 ≤ t < T :


d

dt
(P (t)x, y)Y = −(Rx,Ry)Z − (P (t)x,Ay)Y − (P (t)Ax, y)Y

+(B∗P (t)x,B∗P (t)y)U , ∀ x, y ∈ Y −
δ

P (T ) = 0

(4.2.10)

Proof. Let x, y ∈ Y −
δ . We differentiate in t the expression

(P (t)x, y)Y =
∫ T

t
(R∗RΦ(τ, t)x, eA(τ−t)y)Y dτ (4.2.11)
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obtained from Eqn. (2.3a), thus obtaining

d

dt
(P (t)x, y)Y = −(R∗Rx, y)Y

−
∫ T

t

(
R∗R

∂Φ(τ, t)x
∂t

, eA(τ−t)y

)
Y
dτ

−
∫ T

t

(
R∗RΦ(τ, t)x, eA(τ−t)Ay

)
Y
dτ (4.2.12)

(by (4.1.10)) = −(R∗Rx, y)Y

−
∫ T

t

(
R∗RΦ(τ, t)[A − BB∗P (t)]x, eA(τ−t)y

)
Y
dτ

−(P (t)x,Ay)Y , x, y ∈ Y −
δ , (4.2.13)

after substituting (4.1.10) in the second term on the right-hand side of
(4.2.12), as well as substituting (4.2.11) [with y replaced by Ay] in the third
term on the right-hand side of (4.2.12). We notice explicitly that each term
in (4.2.12), or (4.2.13), is well-defined at each t: the last term by (4.2.2),
and the critical second term on the right-hand side of (4.2.12), or (4.2.13),
by the regularity in (4.1.10) for dφ(τ,t)x

dt , combined with R∗R: continuous
[Y +

δ ]′ → [Y −
δ ]′ by (1.24), as well as with

eA(τ−t)y ∈ C([t, T ];Y −
δ ) for y ∈ Y −

δ , by (H.5) = (1.19).

Thus, invoking again (4.2.11) on the second term on the right-hand side of
(4.2.13), we obtain

d

dt
(P (t)x, y)Y = −(R∗Rx, y)Y

−(P (t)[A − BB∗P (t)]x, y)Y − (P (t)x,Ay)Y

= −(R∗Rx, y)Y − (P (t)Ax, y)Y − (P (t)x,Ay)Y

+(B∗P (t)x,B∗P (t)y)U , x, y ∈ Y −
δ , (4.2.14)

each term being well defined, by virtue of (3.2.1) and (4.2.2). Then, (4.2.14)
proves (4.2.10), as desired.

As a consequence of Theorem 4.2.2, we obtain that the operator P (t)
satisfies the Integral Riccati Equation as well.

Theorem 4.2.3. Assume (i), (H.1) = (1.6) through (H.8) = (1.23).
Then, the non-negative, self-adjoint operator P (t) of Theorem 4.2.2 satisfies
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the following Integral Riccati Equation for all 0 ≤ t < T .

(P (t)x, y)Y =
∫ T

t

(
ReA(τ−t)x,ReA(τ−t)y

)
Z
dτ

−
∫ T

t

(
B∗P (τ)eA(τ−t)x,B∗P (τ)eA(τ−t)y

)
U
dτ, x, y ∈ Y −

δ ,

(4.2.15)

where all terms are well defined by (1.19), (3.2.1), (1.23).

Proof. For x, y ∈ Y −
δ , we compute

d

dτ

(
eA

∗(τ−t)P (τ)eA(τ−t)x,y
)
Y

=
d

dτ

(
P (τ)eA(τ−t)x, eA(τ−t)y

)
Y

=
∂

∂r

(
P (r)eA(τ−t)x, eA(τ−t)y

)
Y

∣∣∣∣
r=τ

+
(
P (τ)eA(τ−t)Ax, eA(τ−t)y

)
Y

+
(
P (τ)eA(τ−t)x, eA(τ−t)Ay

)
Y
,

(4.2.16)

where by using the D.R.E. (4.2.10), we have

∂

∂r

(
P (r)eA(τ−t)x, eA(τ−t)y

)∣∣∣
r=τ

= −
(
R∗ReA(τ−t)x, eA(τ−t)y

)
Y

−
(
P (τ)eA(τ−t)x,AeA(τ−t)y

)
Y

−
(
P (τ)AeA(τ−t)x, eA(τ−t)y

)
Y

+
(
B∗P (τ)eA(τ−t)x,B∗P (τ)eA(τ−t)y

)
U
, x, y ∈ Y −

δ .

(4.2.17)

We note explicitly that each term of (4.2.16) and (4.2.17) is well defined,
indeed, we have eA(τ−t)x, eA(τ−t)y in C([t, T ];Y −

δ ), for x, y ∈ Y −
δ , and hence:

P (τ)eA(τ−t)x ∈ C([t, T ];Y +
δ ), by (4.2.3), (4.2.18)

AeA(τ−t)x ∈ C([0, T ]; [Y +
δ ]′), by (1.19), (1.20), (4.2.19)

B∗P (τ)eA(τ−t)x ∈ C([t, T ];U), by (3.2.1), (1.19), (4.2.20)

and similarly for y0. Thus, (4.2.18)-(4.2.20) and (1.23) show that each term
in (4.2.16) and (4.2.17) is well defined. Inserting (4.2.17) into (4.2.16) results
in a cancellation of the last two terms of (4.2.16), hence

d

dτ

(
eA

∗(τ−t)P (τ)eA(τ−t)x, y
)
Y
= −

(
ReA(τ−t)x,ReA(τ−t)y

)
Z

+
(
B∗P (τ)eA(τ−t)x,B∗P (τ)eA(τ−t)y

)
U
, x, y ∈ Y −

δ . (4.2.21)
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Integrating (4.2.21) in τ over [t, T ] and using P (T ) = 0 from the D.R.E.
(4.2.10) results in (4.2.15), as desired.

5. Application: kirchoff equation with one
boundary control. Regularity theory

All dynamical abstract hypotheses (H.1) = (1.6) through (H.7) = (1.21)
of Section 1 have already been shown to hold true in the following two cases:

(i) Second-order hyperbolic equations with Dirichlet boundary control,
defined on a smooth, bounded domain Ω ⊂ Rn, see [L-T.3]; here one may
take

Uθ ≡ Hθ(Γ); Yθ ≡ Hθ
0 (Ω) × Hθ−1(Ω), 0 ≤ θ ≤ 1

2
+ δ, θ �= 1

2
;

U0 = U = L2(Γ); Y0 = Y = L2(Ω) × H−1(Ω).

U−
δ = U 1

2−δ = H
1
2−δ(Γ); U+

δ = U 1
2+δ = H

1
2+δ(Γ);

Y −
δ = Y 1

2−δ = H
1
2−δ(Ω) × H− 1

2−δ(Ω);

Y +
δ = Y 1

2+δ = H
1
2+δ
0 (Ω) × H− 1

2+δ(Ω), etc.

(ii) non-symmetric, non-dissipative, first-order hyperbolic systems with
boundary control, see [C-L.1]; here one make take similarly defined explicit
Sobolev spaces for Uθ, Yθ, etc.

In this section we consider an optimal quadratic cost problem over a fi-
nite horizon for a Kirchoff equation, subject only to one control acting in
the “moment” boundary condition. [The physical bending moment in the 2-
dimensional Kirchoff plate model is actually a modification of the boundary
condition (5.1.1d) below.] The Kirchoff equation is hyperbolic with finite
speed of propagation, and displays a behavior similar to that of the wave
equation. In the case of the Kirchoff mixed problem, we shall show likewise
that all abstract system’s assumptions (H.1) = (1.6) through (H.7) = (1.21)
of Section 1 are automatically satisfied in a natural mathematical setting.
Many such settings can be chosen, and we shall select a particular interest-
ing one where, as in the case of second-order hyperbolic equations of [L-T.5],
the observation R∗R jumps across a boundary condition, see (5.2.3)–(5.2.5)
below. Accordingly, Theorems 2.1, 2.2, and 2.3 of Section 2 are then appli-
cable to the present class, for any observation operator R with “minimal”
smoothing as in (H.8) = (1.23). In a companion paper [T.1], we show that
the Euler-Bernoulli equation [Eqn. (5.1.1a) below with ρ = 0], which is not
hyperbolic, also satisfies assumptions (H.1) through (H.7) in explicitly iden-
tified Sobolev spaces (different from the Kirchoff equation case).
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5.1. Problem formulation

The dynamics. Let Ω be an open bounded domain in Rn with suffi-
ciently smooth boundary Γ, say, of class C2. The Kirchoff equation is given
by 



wtt − ρ∆wtt +∆2w = 0 in (0, T ] × Ω ≡ Q;

w(0, · ) = w0, wt(0, · ) = w1 in Ω;

w|Σ = 0 in (0, T ] × Γ ≡ Σ,

∆w|Σ = u in Σ,

(5.1.1a)

(5.1.1b)

(5.1.1c)

(5.1.1d)

where ρ > 0 is a constant (proportional to the square of the thickness in the
2-dimensional plate model), and where u ∈ L2(0, T ;L2(Γ)) ≡ L2(Σ) is the
control function acting in the “moment” B.C. (5.1.1d).

The optimal control problem on [s, T ]. Consistently with the (opti-
mal) regularity theory for problem (5.1.1) presented in Theorem 5.3.2 below,
the cost functional which we seek to minimize over all u ∈ L2(s, T ;L2(Γ)) =
L2(ΣsT ) is taken to be

J(u,w) =
∫ T

0

{∥∥∥∥R
[

w(t)
wt(t)

]∥∥∥∥
2

H2(Ω)×H1(Ω)
+ ‖u(t)‖2

L2(Γ)

}
dt, (5.1.2)

with initial data {w0, w1} ∈ [H2(Ω)∩H1
0 (Ω)]×H1

0 (Ω), where the observation
operator R ∈ L([H2(Ω) ∩ H1

0 (Ω)] × H1
0 (Ω)) will be further specified below

in (5.2.3).

5.2. Main results

As a specialization to problem (5.1.1), (5.1.2) of the abstract theory pre-
sented in Theorems 2.1, 2.2, and 2.3 of Section 2, in the present section we
establish the following results.

Theorem 5.2.1. (a) With the observation operator R in (5.1.2) only
assumed to satisfy

R ∈ L([H2(Ω) ∩ H1
0 (Ω)] × H1

0 (Ω)). (5.2.1)

the preliminary theory of [L-T.3] applies to the optimal control problem
(5.1.1), (5.1.2), with

y(t) =
[

w(t)
wt(t)

]
; U = L2(Γ); Y ≡ [H2(Ω) ∩ H1

0 (Ω)] × H1
0 (Ω), (5.2.2)

and yields a unique optimal pair {u0( · , s; y0), y0( · , s; y0)}, y0 = [w0, w1] ∈
Y , satisfying, in particular, the pointwise feedback synthesis, and the optimal
cost relation of Remark 2.1, as well as the other properties listed in (2.1a),
(2.2a).

(b) Assume, in addition to (5.2.1), that R satisfies the smoothing assump-
tion

R∗R : continuous Y −
δ → Y +

δ , (5.2.3)
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R∗ adjoint of R in Y , where

Y −
δ ≡

{
h ∈ H

5
2−δ(Ω) : h|Γ = 0

}
×

{
h ∈ H

3
2−δ(Ω) : h|Γ = 0

}
=

[
H

5
2−δ(Ω) ∩ H1

0 (Ω)
]
× H

3
2−δ(Ω) ∩ H1

0 (Ω)

Y +
δ ≡

{
h ∈ H

5
2+δ(Ω) : h|Γ = ∆h|Γ = 0

}
×

[
H

3
2+δ(Ω) ∩ H1

0 (Ω)
]

(5.2.4a)

(5.2.4b)

(5.2.5)

(see Section 5.6), and where δ > 0 is an arbitrarily small constant, which is
kept fixed throughout. [An additional characterization of Y −

δ and Y +
δ will

be given below in (5.6.4), (5.6.5)]. Thus, the above choice centered at θ = 5
2

yields that assumption (5.2.3) jumps from Y −
δ to Y +

δ across the new B.C.
∆h|Γ = 0. (Refer to the paragraph before Section 5.1.) Then Theorems 2.1,
2.2, and 2.3 of Section 2 hold true, with Y −

δ and Y +
δ given by (5.2.4) and

(5.2.5), and with

U−
δ = H

1
2−δ(Γ) U+

δ = H
1
2+δ(Γ) (5.2.6)

(see Section 5.6). In particular, explicitly:
(b1) (regularity of the optimal pair) the optimal pair satisfies, for

y0 = [w0, w1] ∈
[
H

5
2−δ(Ω) ∩ H1

0 (Ω)
]
×

[
H

3
2−δ(Ω) ∩ H1

0 (Ω)
]

(5.2.7)

the following regularity properties:
(i)

[
w0( · , s; y0)
w0
t ( · , s; y0)

]
= y0( · , s; y0)

∈ C
(
[s, T ];

[
H

5
2−δ(Ω) ∩ H1

0 (Ω)
]
×

[
H

3
2−δ(Ω) ∩ H1

0 (Ω)
])

∩
[
H

1
2−δ(s, T ; [H2(Ω) ∩ H1

0 (Ω)
]
× H1

0 (Ω)); (5.2.8)

(ii)

u0( · , s; y0) ∈ L2

(
s, T ;H

1
2+δ(Γ)

)
∩ H

1
2+δ(s, T ;L2(Γ))

≡ H
1
2+δ, 12+δ(ΣsT ),

(5.2.9)

ΣsT = [s, T ] × Γ, a fortiori,

u0( · , s; y0) ∈ C([s, T ];Hδ(Γ)). (5.2.10)

All the above results hold true uniformly in s, i.e., with norms which may
be made independent of s.
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(b2) (gain operator) The gain operator B∗P (t), P (t) defined by (2.3a),
satisfies the following regularity property (see (2.4)),

B∗P (t)x = B∗
[

P11(t) P12(t)
P21(t) P22(t)

] [
x1
x2

]

= − ∂

∂ν
[P21(t)x1 + P22(t)x2]

: continuous
[
H

5
2−δ(Ω) ∩ H1

0 (Ω)
]

×
[
H

3
2−δ(Ω) ∩ H1

0 (Ω)
]

→ C([0, T ];L2(Γ)),

(5.2.11a)

(5.2.11b)

(5.2.11c)

where the adjoint B∗ is computed with respect to the space Y , topologized,

however, as Y ≡ D
(
A 1

2

)
× D

(
A

1
4
ρ

)
, see below in (5.4.22).

(b3) (Differential Riccati Equation) With

A =
[

0 I
A 0

]
, A =

(
I + ρA 1

2

)−1 A

as in (5.4.3) below, we have that P (t) satisfies the following D.R.E.




d

dt
(P (t)x, y)Y = −(Rx,Ry)Y − (P (t)x,Ay)Y − (P (t)Ax, y)Y

+
(

∂

∂ν
[P21(t)x1 + P22(t)x2],

∂

∂ν
[P21(t)y1 + P22(t)y2]

)
L2(Γ)

P (T ) = 0, ∀ x, y ∈
[
H

5
2−δ(Ω) ∩ H1

0 (Ω)
]
×

[
H

3
2−δ(Ω) ∩ H1

0 (Ω)
]
.

(5.2.12)

Furthermore, P (t) satisfies the corresponding Integral Riccati Equation, as
in (2.7), for all such x, y.

5.3. Regularity theory for
problem (5.1.1) with u ∈ L2(Σ)

The following well-posedness Theorem 5.3.2 provides the critical regular-
ity result, which justifies as natural the selection of the cost functional J in
(5.1.2), and which will permit us to verify assumption (H.1) = (1.6) below.
To this end, as we shall see, it is expedient to associate with problem (5.1.1)
the following boundary-homogeneous version (which would be the corre-
sponding adjoint problem (5.5.7) below, if the initial conditions were given
at t = T , an inessential modification since the problem is time-reversible),


φtt − ρ∆φtt +∆2φ = f in Q;

φ(0, · ) = φ0; φt(0, · ) = φ1 in Ω;

φ|Σ ≡ 0; ∆φ|Σ ≡ 0 in Σ.

(5.3.1a)

(5.3.1b)

(5.3.1c)

The following two key results are taken from [L-T.5].
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Theorem 5.3.1. [L-T.5] With reference to (5.3.1), assume

{φ0, φ1} ∈ V × [H2(Ω) ∩ H1
0 (Ω)]; f ∈ L1(0, T ;L2(Ω)); (5.3.2)

V =
{
h ∈ H3(Ω) : h|Γ = ∆h|Γ = 0

}
. (5.3.3)

Then, the unique solution of problem (5.3.1) satisfies, continuously,

{φ, φt} ∈ C([0, T ];V × [H2(Ω) × H1
0 (Ω)]); (5.3.4a)

φtt ∈ L1(0, T ;H1
0 (Ω)); or φtt ∈ C([0, T ];H1

0 (Ω)) if f ≡ 0, (5.3.4b)
and

∂(∆φ)
∂ν

∈ L2(0, T ;L2(Γ)) ≡ L2(Σ). (5.3.5)

Proof. The proof of ((5.3.5) of) Theorem 5.3.1 is by P.D.E.’s energy
methods and will be indicated in Section 5.10 below.

Remark 5.3.1. The trace regularity (5.3.5) is, of course, the key result
of Theorem 5.3.1. It does not follow from the optimal interior regularity
(5.3.4): indeed, (5.3.5) is “1

2 higher” in Sobolev space regularity on Ω over
a formal application of trace theory to φ in (5.3.4).

Theorem 5.3.2. [L-T.5] With reference to the non-homogeneous problem
(5.1.1), assume

{w0, w1} ∈ [H2(Ω) ∩ H1
0 (Ω)] × H1

0 (Ω); u ∈ L2(Σ). (5.3.6)

Then, the unique solution of (5.1.1) satisfies

{w,wt} ∈ C([0, T ]; [H2(Ω) ∩ H1
0 (Ω)]) × H1

0 (Ω)),

wtt ∈ C([0, T ];L2(Ω))
(5.3.7)

continuously; i.e., more precisely,

‖{w,wt, wtt}‖2
C([0,T ];[H2(Ω)∩H1

0 (Ω)])×H1
0 (Ω)×L2(Ω))

≤ CT
{
‖u‖2

L2(Σ) + ‖{w0, w1}‖2
[H2(Ω)∩H1

0 (Ω)]×H1
0 (Ω)

}
(5.3.8)

Proof. The proof of Theorem 5.3.2 is a consequence by transposition of
Theorem 5.3.1 and will be given in Section 5.11 below.

5.4. Abstract setting for problem (5.1.1)

We follow [L-T.5], [L-T.6]. To put problems (5.1.1), (5.1.2) into the ab-
stract model (1.1), (1.3), we introduce the following operators and spaces:

(i)

Ah = ∆2h; A : D(A) → L2(Ω);

D(A) = {h ∈ H4(Ω) : h|Γ = ∆h|Γ = 0}; (5.4.1)
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A 1
2h = −∆h; D(A 1

2 ) = H2(Ω) ∩ H1
0 (Ω); (5.4.2)

A =
(
I + ρA 1

2

)−1 A; D(A) = D
(
A 1

2

)
. (5.4.3)

The operator A in (5.4.1) is positive self-adjoint on L2(Ω). Furthermore, as
usual, we shall freely extend A originally defined in (5.4.1) [while maintaining
the same symbol, with no fear of confusion] as A : L2(Ω) → [D(A∗)]′ =
[D(A)]′, duality with respect to the pivot space L2(Ω). The following space
identifications are known (with equivalent norms) [Gr.1], [B-D-D-M.1]

D(Aθ) =
{
h ∈ H4θ(Ω) : h|Γ = 0

}
,

1
8

< θ <
5
8
; (5.4.4)

D(Aθ) =
{
h ∈ H4θ(Ω) : h|Γ = ∆h|Γ = 0

}
,

5
8

< θ ≤ 1. (5.4.5)

The following specializations thereof will be needed below:

θ =
1
4
: D

(
A 1

4

)
= H1

0 (Ω), and for g ∈ H1
0 (Ω); (5.4.6a)

‖g‖
D
(

A 1
4

) = ‖A 1
4 g‖L2(Ω) =

{∫
Ω

|∇g|2dΩ
} 1

2
,

equivalent to the ‖g‖H1
0 (Ω)-norm, (5.4.6b)

in turn equivalent to{∫
Ω
[g2 + ρ|∇g|2dΩ

} 1
2

=
{

‖g‖2
L2(Ω) + ρ

∥∥∥A 1
4 g

∥∥∥2

L2(Ω)

} 1
2

≡ ‖g‖
D
(

A
1
4
ρ

) = ‖g‖H1
0,ρ(Ω), (5.4.6c)

the latter norm being denoted by D
(

A
1
4
ρ

)
-norm or H1

0,ρ(Ω)-norm;

θ =
1
2
: D

(
A 1

2

)
=

{
h ∈ H2(Ω) : h|Γ = 0

}
= H2(Ω) ∩ H1

0 (Ω), (5.4.7a)

and for g ∈ D
(
A 1

2

)
:

‖g‖
D
(

A 1
2

) =
∥∥∥A 1

2 g
∥∥∥
L2(Ω)

=
{∫

Ω
(∆g)2dΩ

} 1
2
, (5.4.7b)

equivalent to{∥∥∥A 1
4 g

∥∥∥2

L2(Ω)
+ ρ

∥∥∥A 1
2 g

∥∥∥2

L2(Ω)

} 1
2
= ‖g‖

D
(

A
1
2
ρ

), (5.4.7c)

the latter norm being denoted as D
(

A
1
2
ρ

)
-norm;

θ =
3
4
, D

(
A 3

4

)
=

{
h ∈ H3(Ω) : h|Γ = ∆h|Γ = 0

}
, (5.4.8a)
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and for h ∈ D
(
A 3

4

)
:

‖g‖
D
(

A 3
4

) =
∥∥∥A 3

4 g
∥∥∥
L2(Ω)

=
∥∥∥A 1

4∆g
∥∥∥
L2(Ω)

=
{∫

Ω
|∇(∆g)|2dΩ

} 1
2
, (5.4.8b)

by (5.4.2) and (5.4.6b).
Problem (5.3.1) can then be rewritten abstractly as(

I + ρA 1
2

)
φtt + Aφ = f, or φtt = −Aφ+

(
I + ρA 1

2

)−1
f,

φ(0) = φ0, φt(0) = φ1, (5.4.9)

recalling (5.4.1)–(5.4.3). The operator in (5.4.3), rewritten by using twice
R

(
λ,A 1

2

)
A 1

2 = −I + λR
(
λ,A 1

2

)
as

−A = −
(
I + ρA 1

2

)−1 A 1
2 A 1

2 = −
[
1
ρ
I − 1

ρ

(
I + ρA 1

2

)−1
]
A 1

2

= −A 1
2

ρ
+

1
ρ2 I − 1

ρ2

(
I + ρA 1

2

)−1
,

(5.4.10a)

A : D(A) = D
(
A 1

2

)
→ L2(Ω), (5.4.10b)

being a bounded perturbation of the negative self-adjoint operator A 1
2 , is the

generator of a s.c. cosine operator C(t), with corresponding “sine” operator
S(t) =

∫ t
0 C(τ)dτ , where the maps

t → A 1
4S(t),C(t), are strongly continuous on L2(Ω). (5.4.11)

Accordingly, the unique solution of problem (5.4.9), or (5.3.1), is given ex-
plicitly by:

φ(t) = C(t)φ0 + S(t)φ1 +
∫ t

0
S(t − τ)

(
I + ρA 1

2

)−1
f(τ)dτ, (5.4.12)

φt(t) = −AS(t)φ0 +C(t)φ1 +
∫ t

0
C(t − τ)

(
I + ρA 1

2

)−1
f(τ)dτ, (5.4.13)

in appropriate function spaces, depending on {φ0, φ1, f}.
Moreover, returning to (5.4.3),

A is a positive self-adjoint operator on the space D
(

A
1
4
ρ

)
defined

by (5.4.6c), with respect to the corresponding inner product. (5.4.14a)

(x, y)
D
(

A
1
4
ρ

) =
((

I + ρA 1
2

)
x, y

)
L2(Ω)

, x, y ∈ H1
0 (Ω). (5.4.14b)

(ii) We introduce the Green map G2 by

y = G2v ⇐⇒
{
∆2y = 0 in Ω; y|Γ = 0; ∆y|Γ = v

}
, (5.4.15)

and by elliptic theory [L-M.1, vol. I, p. 188]

G2 : Hs(Γ) → Hs+ 5
2 (Ω), s ∈ R. (5.4.16)
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We have already shown in [L-T.4]-[L-T.6], that

G2 = −A− 1
2D where y = Dv ⇐⇒ {∆y = 0 in Ω; y|Γ = v}, (5.4.17)

D being the Dirichlet map satisfying the regularity,

D : continuous Hs(Γ) → Hs+ 1
2 (Ω); in particular,

D : continuous L2(Γ) → H
1
2 (Ω) ⊂ H

1
2−2ε(Ω)

= D
(
A 1

8− ε
2

)
, ε > 0;

(5.4.18a)

(5.4.18b)

A 1
8− ε

2D ∈ L(L2(Γ);L2(Ω)); D∗A 1
8− ε

2 ∈ L(L2(Ω);L2(Γ)), (5.4.18c)
with the property,

G∗
2Ah = −D∗A 1

2h = − ∂

∂ν
h, h ∈ D(A). (5.4.19)

(iii) By (5.4.15), (5.4.1), problem (5.1.1) can be written abstractly, first
as (

I + ρA 1
2

)
wtt + A(w − G2u) = 0 on L2(Ω),

or wtt = −Aw +AG2u on [D(A)]′, (5.4.20)

recalling (5.4.3), next as in (1.1); i.e., as

yt = Ay +Bu on [D(A∗)]′, y(0) = y0 ∈ Y ; (5.4.21)

Y ≡ D
(
A 1

2

)
× D

(
A

1
4
ρ

)
= [H2(Ω) ∩ H1

0 (Ω)] × H1
0 (Ω);

U = L2(Γ) (equivalent norms); (5.4.22)

y =
[

w
wt

]
; A =

[
0 I

−A 0

]
, D(A) = D

(
A 3

4

)
× D

(
A 1

2

)
→ Y ; (5.4.23)

Bu =
[

0
AG2u

]
: continuous U → [D(A∗)]′ (duality w.r.t. Y ), (5.4.24)

equivalently,

A−1B : continuous U → Y, (5.4.25)

since, in fact, for u ∈ L2(Γ), recalling (5.4.23) and (5.4.17),

A−1Bu =
[
0 −A−1

I 0

] [
0

AG2u

]
=

[ −G2u
0

]
=

[
A− 1

2Du
0

]
∈ Y

A− 1
2Du ∈ D

(
A 5

8− ε
2

)
. (5.4.26)

It is property (5.4.14) for A that makes the choice of D
(

A
1
4
ρ

)
as the second

component space of Y particularly convenient. In fact, with such a choice,

we have that A in (5.4.23) is skew-adjoint on Y = D
(
A 1

2

)
× D

(
A

1
4
ρ

)
, i.e.,

A∗ = −A, and so it generates a s.c. unitary group eAt on Y .
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Starting from (5.4.24) we compute B∗ with respect to Y topologized as

D
(
A 1

2

)
× D

(
A

1
4
ρ

)
, to obtain for v = [v1, v2], recalling (5.4.14):

(Bu, v)Y = (AG2u, v2)D
(

A
1
4
ρ

) = (AG2u, v2)L2(Ω)

= (u,G∗
2Av2)L2(Γ); (5.4.27)

i.e., by virtue of (5.4.19):

B∗
[

v1
v2

]
= G∗

2Av2 = −∂v2

∂ν
: D(A∗) = D(A) → U. (5.4.28)

Eqn. (5.4.22), the solution of problem (5.1.1), or (5.4.21), with initial condi-
tion y(s) = y0 = [w0, w1] is written abstractly as[

w(t, s; y0)
wt(t, s; y0

]
= eA(t−s)

[
w0
w1

]
+ (Lsu)(t); (5.4.29)

(Lsu)(t) =
∫ t

s
eA(t−τ)Bu(τ)dτ =



A

∫ t

s
S(t − τ)G2u(τ)dτ

A
∫ t

s
C(t − τ)G2u(τ)dτ




=




−
(
I + ρA 1

2

)−1 A 1
2

∫ t

s
S(t − τ)Du(τ)dτ

−
(
I + ρA 1

2

)−1 A 1
2A

∫ t

s
C(t − τ)Du(τ)dτ


 ,

(5.4.30)

after recalling, in the last step, (5.4.3) and (5.4.17), where A generates a s.c.
group eAt on Y , t ∈ R, which is given by

eAt =
[

C(t) S(t)
−AS(t) C(t)

]
. (5.4.31)

In (5.4.31), C(t) is even and S(t) is odd. By (5.4.28) and (5.4.31), since
A is skew-adjoint on Y, A∗ = −A, and so eA

∗t = e−At, we compute with

x = [x1, x2] ∈ Y = D
(
A 1

2

)
× D

(
A

1
4
ρ

)
:

B∗eA
∗tx = G∗

2A[AS(t)x1 +C(t)x2] (5.4.32)

= G∗
2AA 1

2

[
C(t)A− 1

2x2 + S(t)
(
I + ρA 1

2

)−1 A 1
2x1

]
(5.4.33)

(by (5.4.28)) = G∗
2AA 1

2 [C(t)φ0 + S(t)φ1] = − ∂

∂ν
∆φ(t;φ0, φ1), (5.4.34)

recalling (5.4.28), (5.4.2), and (5.4.12), where φ(t;φ0, φ1) solves problem
(5.3.1) with f ≡ 0 and

φ0 = A− 1
2x2 ∈ D

(
A 3

4

)
, for x2 ∈ D

(
A 1

4

)
= D

(
A

1
4
ρ

)
; (5.4.35)

φ1 =
(
I + ρA 1

2

)−1 A 1
2x1 ∈ D

(
A 1

2

)
for x1 ∈ D

(
A 1

2

)
. (5.4.36)
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5.5. Verification of assumption (H.1) = (1.6)

From (5.4.34)–(5.4.36), we see that (H.1) = (1.6) holds true∫ T

0

∥∥∥B∗eA
∗tx

∥∥∥2

U
dt ≤ CT ‖x‖2

Y , x ∈ Y, (5.5.1)

if and only if problem (5.3.1) with f ≡ 0 satisfies∫ T

0

∫
Γ

(
∂∆φ

∂ν

)2
dΣ ≤ CT ‖{φ0, φ1}‖2

D(A 3
4 )×D(A 1

2 )
, (5.5.2)

which is precisely the trace regularity result, guaranteed by Theorem 5.3.1,
Eqn. (5.3.5). Then, according to duality [L-T.2]-[L-T.6], estimate (5.5.1),
i.e., (5.5.2), is, in turn, equivalent to the following property that

(Lsu)(t) =
∫ t

s
eA(t−τ)Bu(τ)dτ =

[
w(t; 0, 0)
wt(t; 0, 0)

]
: continuous L2(s, T ;L2(Γ)) (5.5.3a)

→ C

(
[s, T ];D

(
A 1

2

)
× D

(
A 1

4

)
≡ [H2(Ω) ∩ H1

0 (Ω)] × H1
0 (Ω)

)
(5.5.3b)

uniformly in s, where w0 = w1 = 0 in problem (5.1.1). This is precisely
conclusion (5.3.7) of Theorem 5.3.2, the additional statement of uniformity
in s being an immediate consequence of formula (5.5.3a) for Ls (via a change
of variable). Moreover, recalling (5.4.33), we have, by duality on (5.5.3) with
v = [v1, v2]:

(L∗
sv)(t) = B∗

∫ T

t
eA

∗(τ−t)v(τ)dτ, s ≤ τ ≤ T ; (5.5.4)

(by (5.4.33)) = G∗
2AA 1

2

{∫ T

t
S(τ − t)

(
I + ρA 1

2

)−1 A 1
2 v1(τ)dτ

+
∫ T

t
C(τ − t)A− 1

2 v2(τ)dτ
}

(5.5.5)

: continuous L1

(
s, T ;D

(
A 1

2

)
× D

(
A 1

4

))

→ L2(s, T ;L2(Γ)) (5.5.6)

uniformly in s. Now, let ψ(t;h) be the solution of the (adjoint) problem


ψtt − ρ∆ψtt +∆2ψ = f in Q;

ψ(T, · ) = 0; ψt(T ; · ) = 0 in Ω;

ψ|Σ ≡ ∆ψ|Σ ≡ 0 in Σ,

(5.5.7a)

(5.5.7b)

(5.5.7c)

rewritten abstractly via (5.4.3) as

ψtt = −Aψ + h; h =
(
I + ρA 1

2

)−1
f ; ψ(T ) = ψt(T ) = 0, (5.5.8)
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hence given explicitly by

ψ(t;h) =
∫ t

T
S(t − τ)h(τ)dτ ; ψt(t;h) =

∫ t

T
C(t − τ)h(τ)dτ. (5.5.9)

Then, recalling (5.4.19) and (5.4.2), we see via (5.5.9) that the two terms in
(5.5.5) can be rewritten, with

v = [v1, v2] ∈ L1

(
0, T ;D

(
A 1

2

)
× D

(
A 1

4

))
,

as

(L∗
sv)(t) =

∂∆
∂ν

{∫ t

T
S(t − τ)h1(τ)dτ −

∫ t

T
C(t − τ)h2(τ)dτ

}

=
∂∆ψ(t;h1)

∂ν
− ∂∆ψt(t;h2)

∂ν
(5.5.10)

: continuous v = [v1, v2] ∈ L1

(
0, T ;D

(
A 1

2

)
× D

(
A 1

4

))

→ L2(0, T ;L2(Γ)). (5.5.11)

h1 =
(
I + ρA 1

2

)−1 A 1
2 v1 ∈ L1

(
0, T ;D

(
A 1

2

))
; (5.5.12)

h2 = A− 1
2 v2 ∈ L1

(
0, T ;D

(
A 3

4

))
. (5.5.13)

Notice that regularity (5.5.11) of the normal trace ∂∆
∂ν ψ(t;h1), for ψ(t;h1)

solution of (5.5.8) due to h = h1 given by (5.5.12), is precisely conclusion
(5.3.5) of Theorem 5.3.1 for the time-reversed problem ψ in (5.3.1) with ini-
tial data at t = 0, rather than t = T as for ψ, an inessential modification. The
proof of Theorem 5.3.1 in [L-T.5] is by energy (P.D.E.’s)-methods. Instead,
regularity (5.5.9) for the normal trace ∂∆

∂ν ψt(t;h2) for the time derivative ψt

of the solution ψ(t;h2) of problem (5.5.8) due to h = h2 given by (5.5.13) is
obtained by duality via operator methods as in (5.5.6)–(5.5.11) [while it ap-
pears that purely P.D.E. methods will require a time regularity assumption
of the right-hand side, non-homogeneous term]. Thus, assumption (H.1) =
(1.6) is verified.

5.6. Selection of spaces Uθ and Yθ IN (1.10)

We select the spaces in (1.10) to be the following Sobolev spaces

Uθ = Hθ(Γ); U0 = U = L2(Γ), 0 ≤ θ ≤ 1
2
+ δ, θ �= 1

2
; (5.6.1)

Yθ = D
(
A 1

2+ θ
4

)
× D

(
A 1

4+ θ
4

)
≡ D(Aθ),

Y0 = Y = D
(
A 1

2

)
× D

(
A 1

4

)
,

(5.6.2)
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where A is as in (5.4.23), in particular the critical spaces for θ = 1
2 ± δ:

U−
δ = U 1

2−δ = H
1
2−δ(Γ); U+

δ = U 1
2+δ = H

1
2+δ(Γ) (5.6.3)

Y −
δ = Y 1

2−δ = D
(
A

1
2−δ

)
= D

(
A

5
8− δ

4

)
× D

(
A

3
8− δ

4

)
=

[
H

5
2−δ(Ω) ∩ H1

0 (Ω)
]
×

[
H

3
2−δ(Ω) ∩ H1

0 (Ω)
]

(5.6.4)

Y +
δ = Y 1

2+δ = D
(
A

1
2+δ

)
= D

(
A

5
8+ δ

4

)
× D

(
A

3
8+ δ

4

)
=

{
h ∈ H

5
2+δ(Ω) : h|Γ = ∆h|Γ = 0

}
×

[
H

3
2+δ(Ω) ∩ H1

0 (Ω)
]
, (5.6.5)

recalling (5.4.4) and, respectively, (5.4.5), with equivalent norms. The spaces
[Y −

δ ]′ and [Y +
δ ]′, duality with respect to Y = D

(
A 1

2

)
× D

(
A 1

4

)
, are given

by

[Y −
δ ]′ = D

(
A 3

8+ δ
4

)
× D

(
A 1

8+ δ
4

)

=
[
H

3
2+δ(Ω) ∩ H1

0 (Ω)
]
× H

1
2+δ
0 (Ω) (5.6.6)

[Y +
δ ]′ = D

(
A 3

8− δ
4

)
× D

(
A 1

8− δ
4

)

=
[
H

3
2−δ(Ω) ∩ H1

0 (Ω)
]
× H

1
2−δ(Ω). (5.6.7)

Thus, by (5.6.4) and (5.6.7) we verify the interpolation property

[Y −
δ , [Y +

δ ]′]θ= 1
2−δ = Y = D

(
A 1

2

)
× D

(
A 1

4

)
, (5.6.8)

as required in (1.10), since
(

5
8 − δ

4

)
(1 − θ) +

(
3
8 − δ

4

)
θ = 1

2 for the first

component; and
(

3
8 − δ

4

)
(1 − θ) +

(
1
8 − δ

4

)
θ = 1

4 for θ = 1
2 − δ, for the

second component space. Moreover, the injections Uθ1 ↪→ Uθ2 , Yθ1 ↪→ Yθ2

are compact, 0 ≤ θ2 < θ1 ≤ 1
2 +δ, as required in (1.10), since Ω is a bounded

domain. Thus, the spaces in (1.11), (1.12) are in the present case as follows
for 0 ≤ θ ≤ 1

2 + δ, θ �= 1
2 :

Uθ[s, T ] = Hθ,θ(ΣsT )

= L2

(
s, T ;Hθ(Γ)) ∩ Hθ(s, T ;L2(Γ)

)
(5.6.9)

Yθ[s, T ] = L2

(
s, T ;D

(
A 1

2+ θ
4

)
× D

(
A 1

4+ θ
4

))

∩ Hθ
(
s, T ;D

(
A 1

2

)
× D

(
A 1

4

))
(5.6.10)

= L2

(
s, T ;D

(
Aθ

))
∩ Hθ(s, T ;Y ) (5.6.11)

D(Aθ) = D
(
A 1

2+ θ
4

)
× D

(
A 1

4+ θ
4

)
. (5.6.12)
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5.7. Verification of assumption (H.2) = (1.14)

The following regularity result is critical in verifying assumption (H.2) =
(1.14). It is the main new P.D.E. result of this paper.

Theorem 5.7.1. With reference to the non-homogeneous problem (5.1.1),
assume


w0 ∈ H3(Ω) ∩ H1

0 (Ω), w1 ∈ H2(Ω) ∩ H1
0 (Ω);

with the compatibility relations

w0|Γ = 0 and ∆w0|Γ = u(0);

(5.7.2)

u ∈ C
(
[0, T ];H

1
2 (Γ)

)
∩ H1(0, T ;L2(Γ)) (5.7.3)

[(5.7.2) is a fortiori guaranteed, if u ∈ H1,1(Σ), by [L-M.1, I, Thm. 3.1, p.
19].

Then, the unique solution to problem (5.1.1) satisfies

{w,wt, wtt}
∈ C

(
[0, T ]; [H3(Ω) ∩ H1

0 (Ω)] × [H2(Ω) ∩ H1
0 (Ω)] × H1

0 (Ω)
)
,

(5.7.4)

continuously.

Proof. The proof of Theorem 5.7.1 will be given in Section 5.12 below.

Corollary 5.7.2.With reference to the non-homogeneousproblem (5.1.1),
assume w0 = w1 = 0, and for 0 ≤ θ < 1

2 :

u ∈ Hθ,θ(Σ) = Uθ[0, T ] = L2

(
0, T ;Hθ(Γ)

)
∩ Hθ (0, T ;L2(Γ)) . (5.7.5)

Then, the unique solution to problem (5.1.1) satisfies


w( · ; 0, 0) ∈ C
(
[0, T ];D

(
A 1

2+ θ
4

)
= H2+θ(Ω) ∩ H1

0 (Ω)
)
;

wt( · ; 0, 0) ∈ C
(
[0, T ];D

(
A 1

4+ θ
4

)
= H1+θ(Ω) ∩ H1

0 (Ω)
)
;

wtt( · ; 0, 0) ∈ C
(
[0, T ];D

(
A θ

4

)
= Hθ(Ω)

)
.

(5.7.6)

(5.7.7)

(5.7.8)




Dr
tw( · ; 0, 0) ∈ L2

(
0, T ;D

(
A 1

2+ θ
4− r

4

))
, 0 ≤ r ≤ 1;

Dθ
tw( · ; 0, 0) ∈ L2

(
0, T ;D

(
A 1

2

))
;

(5.7.9)

(5.7.10)




Dr
twt( · ; 0, 0) ∈ L2

(
0, T ;D

(
A 1

4+ θ
4− r

4

))
, 0 ≤ r ≤ 1;

Dθ
twt( · ; 0, 0) ∈ L2

(
0, T ;D

(
A 1

4

))
.

(5.7.11)

(5.7.12)
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A fortiori,

Lu ∈ Yθ[0, T ] = L2

(
0, T ;D

(
A 1

2+ θ
4

)
× D

(
A 1

4+ θ
2

)
= D(Aθ)

)

∩ Hθ
(
0, T ;D

(
A 1

2

)
× D

(
A 1

4

)
= Y

)
. (5.7.13)

Proof of Corollary 5.7.2. For θ < 1
2 , the compatibility relations in

(5.7.1), which now read u(0) = ∆w0|Γ = 0; w0|Γ = 0, do not interfere,
and we then interpolate between (5.3.6), (5.3.7), or (5.5.3b), for θ = 0 and
(5.7.2), (5.7.3) for θ = 1, thereby obtaining (5.7.5)–(5.7.7), as desired.

Next, application of the intermediate derivative theorem [L-M.1, p. 15]
to (5.7.5) and (5.7.6), as well as to (5.7.6) and (5.7.7), yields, respectively,
(5.7.8) and (5.7.10), which then specialize to (5.7.9), and respectively, (5.7.11)
for r = θ. Thus, (5.7.12) is a consequence of (5.7.5), (5.7.6), and (5.7.9),
(5.7.11).

Corollary 5.7.2 plainly verifies assumption (H.2) = (1.1.4).

5.8. verification of assumption (H.3) = (1.15)

Verification of assumption (H.3) = (1.15) is based upon the following
regularity result.

Theorem 5.8.1. (i) With reference to the operator L∗ defined by (5.5.4),
we have for 0 ≤ r ≤ 1,

(L∗
sv)(t) = B∗

∫ T

t
eA

∗(τ−t)v(τ)dτ, s ≤ t ≤ T

: continuous L2

(
s, T ;D

(
A 1

2+ r
4

)
× D

(
A 1

4+ r
4

)
≡ D(Ar)

)

→ Hr,r(ΣsT ) = Ur[s, T ], (5.8.1)

uniformly in s.

Proof. The proof of Theorem 5.8.1 will be given in Section 5.13 below.

Restricting (5.8.1) to 0 ≤ θ = r ≤ 1
2 + δ, θ �= 1

2 , we obtain verification of
assumption (H.3) = (1.15).

5.9. Verification of assumptions (H.4) = (1.18)
through (H.7) = (1.21)

Verification of assumption (H.4) = (1.18). For x = [x1, x2] ∈ Y +
δ =

D
(
A

1
2+δ

)
= D

(
A 5

8+ δ
4

)
× D

(
A 3

8+ δ
4

)
by (5.6.5), we compute starting from
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(5.4.33), and recalling G∗
2A = −D∗A− 1

2 from (5.4.17):

B∗eA
∗tx = G∗

2A
[
C(t)x2 + S(t)

(
I + ρA 1

2

)−1 Ax1

]
(5.9.1)

(by (5.4.17)) = −D∗A 1
2

[
C(t)x2 + S(t)

(
I + ρA 1

2

)−1 Ax1

]
(5.9.2)

= −D∗A 1
8− δ

4

[
C(t)A 3

8+ δ
4x2 + A 1

4S(t)
(
I + ρA 1

2

)−1 A 9
8+ δ

4x1

]
(5.9.3)

∈ C([0, T ];L2(Γ)), (5.9.4)

where the desired regularity in (5.9.4) follows since, recalling (5.4.18c) and
(5.4.11),

D∗A 1
8− δ

4 ∈ L(L2(Ω);L2(Γ)); t → A 1
4S(t),

C(t) strongly continuous on L2(Ω), (5.9.5)

as well as, via the assumptions on [x1, x2].

A 3
8+ δ

4x2 ∈ L2(Ω);
(
I + ρA 1

2

)−1 A 9
8+ δ

4x1 ∈ L2(Ω).
(5.9.6)

Thus, (5.9.4) verifies assumption (H.4) = (1.18).

Verification of assumption (H.5) = (1.19). With

Y −
δ = D

(
A 5

8− δ
4

)
× D

(
A 3

8− δ
4

)
by (5.6.4), C(t) and S(t) are likewise s.c. cosine/sine operators on any space
D(Aθ), hence eAt in (5.4.31) is a s.c. group on Y −

δ as well. The space D(A)
in (5.4.23) is clearly dense in Y −

δ .

Verification of assumption (H.6) = (1.20). For x = [x1, x2] ∈ Y −
δ =

D
(
A 5

8− δ
4

)
× D

(
A 3

8− δ
4

)
= D

(
A

1
2−δ

)
, we obtain via (5.4.23), (5.4.3),

Ax =

[
0 I

−
(
I + ρA 1

2

)−1 A 0

] [
x1
x2

]

=

[
x2

−
(
I + ρA 1

2

)−1 Ax1

]
∈ D

(
A 3

8− δ
4

)
× D

(
A 1

8− δ
4

)
≡ [Y +

δ ]′,

(5.9.7)

recalling in the last step (5.6.7) [and A is, in fact, an isomorphism Y −
δ onto

[Y +
δ ]′]. Eqn. (5.9.7) verifies assumption (H.6) = (1.20).

Remark 5.9.1. Returning to (5.4.26), we see via (5.6.4) that, in the
present case,

A−1B : continuous U → Y −
δ , (5.9.8)

which is property (1.32). Thus, as remarked below (1.32), property (5.9.8),
along with (H.5) = (1.19) and (H.6) = (1.20) already verified, reprove (H.4)
= (1.18).
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Verification of assumption (H.7) = (1.21). Let

u ∈ U−
δ = H

1
2−δ(Γ),

so that

Du ∈ H1−δ(Ω), (5.9.9)

by (5.4.18a). Thus, recalling (5.4.3), (5.4.24), and (5.4.17),

Bu =
[

0
AG2u

]
=


 0

−
(
I + ρA 1

2

)−1 A 1
2Du


 ⊂ [Y +

δ ]′

=
[
H

3
2−δ(Ω) ∩ H1

0 (Ω)
]
× H

1
2−δ(Ω), (5.9.10)

using, in the last step, (5.6.7) for [Y +
δ ]′, and (5.9.9). Thus, (5.9.10) shows

B : continuous U−
δ → [Y +

δ ]′, (5.9.11)

as desired, and assumption (H.7) = (1.21) is verified.

5.10. Proof of (5.3.5) of theorem 5.3.1

Key to this end is the following result. It is reported here because it will
be critically invoked in Section 5.13.

Lemma 5.10.1. [L-T.3] Let φ be a solution of Eqn. (5.3.1a) (with no
boundary conditions imposed) for smooth data, say

{φ0, φ1, f} ∈ D(A) × D
(
A 3

4

)
× L1

(
0, T ;D

(
A 1

4

))
. (5.10.1)

Then, the following identity holds true:∫
Σ

∂(∆φ)
∂ν

h · ∇(∆φ)dΣ+
∫

Σ

∂φt

∂ν
h · ∇φtdΣ

+
ρ

2

∫
Σ
(∆φt)2h · νdΣ − 1

2

∫
Σ

|∇(∆φ)|2h · νdΣ − 1
2

∫
Σ

|∆φt|2h · νdΣ

+
∫

Σ

∂φt

∂ν
φt div hdΣ −

∫
Σ
φt∆φth · νdΣ

=
∫
Q
H∇(∆φ) · ∇(∆φ)dQ+

∫
Q
H∇φt · ∇φtdQ

+
1
2

∫
Q
{|∇φt|2 + ρ(∆φt)2 − |∇(∆φ)|2} div h dQ

+
∫
Q
φt∇(div h) · ∇φtdQ+

∫
Q
fh · ∇(∆φ)dQ

− [(φt, h · ∇(∆φ))Ω + ρ(∆φt, h · ∇(∆φ))Ω]
T
0 , (5.10.2)
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where

H(x) =




∂h1
∂x1

, · · · ∂h1
∂xn

· · ·
∂hn
∂x1

, · · · ∂hn
∂xn


 , (5.10.3)

ν(x) = outward unit normal vector at x ∈ Γ, (5.10.4)

and h(x) = [h1(x), h2(x), . . . , hn(x)] ∈ C2(Ω̄) is a given vector field.

Proof of Lemma 5.10.1. The key is to multiply Eqn. (5.3.1a) by h ·
∇(∆φ) and integrate by parts over Q, see [L-T.5].

5.11. Proof of theorem 5.3.2

We now provide the details, already contained in the preceding develop-
ment, that the trace regularity for the homogeneous φ-problem (5.3.1),

{φ0, φ1} ∈ D
(
A 3

4

)
× D

(
A 1

2

)
f ≡ 0

}
⇒ ∂(∆φ)

∂ν
∈ L2(0, T ;L2(Γ))

≡ L2(Σ),

(5.11.1)

established in Theorem 5.3.1, implies by transposition the interior regularity

u ∈ L2(0, T ;L2(Γ)) ≡ L2(Σ)
w0 = w1 = 0

}
⇒

[
w(t)
wt(t)

]
=



A

∫ t

0
S(t − τ)G2u(τ)dτ

A
∫ t

0
C(t − τ)G2u(τ)dτ


 ∈ C([0, T ];Y ); (5.11.2)

Y = D
(
A 1

2

)
× D

(
A

1
4
ρ

)
= [H2(Ω) ∩ H1

0 (Ω)] × H1
0 (Ω) (5.11.3)

(see (5.4.30) and (5.4.22)) for the non-homogeneous w-problem (5.1.1).

Operator-theoretic proof of Theorem 5.3.2. Step 1. We have
already seen in Section 5.4, Eqns. (5.4.32)–(5.4.36), that

−∂∆φ

∂ν
(t;φ0, φ1) = G∗

2A
[
S(t)Ax1 +C(t)

(
I + ρA 1

2

)
x2

]
(5.11.4)

= B∗eA
∗tx; (5.11.5)

φ0 = A− 1
2x2; φ1 =

(
I + ρA 1

2

)−1 A 1
2x1. (5.11.6)

Thus, if we take

x1 ∈ D
(
A 1

2

)
, x2 ∈ D

(
A 1

4

)
= D

(
A

1
4
ρ

)
, hence

{φ0, φ1} ∈ D
(
A 3

4

)
× D

(
A 1

2

)
, (5.11.7)
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we then see, via (5.11.4), (5.11.5), that implication (5.11.1) of Theorem
5.3.1 applies and yields the following operator-theoretic restatement, already
noted in (5.5.1).

Theorem 5.11.1. With reference to (5.11.4)–(5.11.6), (5.11.1), we have
with Y as in (5.11.3) and A as in (5.4.3):

B∗eA
∗t : continuous Y → L2(0, T ;L2(Γ)) ≡ L2(Σ); (5.11.8)

G∗
2AA 1

2S(t), G∗
2AS(t) : continuous L2(Ω) → L2(Σ); (5.11.9)

G∗
2AA 1

4C(t); G∗
2A

3
4C(t) : continuous L2(Ω) → L2(Σ). (5.11.10)

Step 2. The following result then stems from Theorem 5.11.1, by an
application of [L-T.3] or [F-L-T.1, Appendix A]. With reference to the (op-
erator) explicit formulas (5.4.29), (5.4.30) for the solution {w(t), wt(t)} of
the w-problem (5.1.1) with initial conditions w0 = w1 = 0 at t = s = 0, we
have [

w(t)
wt(t)

]
= (Lu)(t) =

∫ t

0
eA(t−τ)Bu(τ)dτ

=



A

∫ t

0
S(t − τ)G2u(τ)dτ

A
∫ t

0
C(t − τ)G2u(τ)dτ


 (5.11.11)

: continuous L2(Σ) → C([0, T ];Y ), (5.11.12)

Y as in (5.11.3). This establishes (5.11.2) and, in turn, yields the key part of
Theorem 5.3.2 due to u. Then, recalling (5.4.20), (5.4.3), (5.4.17), we obtain

wtt = −Aw +AG2u

=
(
I + ρA 1

2

)−1 Aw −
(
I + ρA 1

2

)−1 A 1
2Du

∈ L2(0, T ;L2(Ω)), (5.11.13)

where the indicated regularity stems from the established regularity
w ∈ C

(
[0, T ];D

(
A 1

2

))
of w in (5.11.12), and by the regularity of D in

(5.4.18b). To get wtt ∈ L2(0, T ;L2(Ω)), we could also differentiate wt in
(5.11.1). Finally, we omit the details for the regularity due to the initial
conditions {w0, w1}, using (5.4.11). Theorem 5.3.2 is proved.

A P.D.E. version of the duality or transposition argument may be given.
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5.12. Proof of theorem 5.7.1

With reference to the non-homogeneous w-problem (5.1.1), we assume

{w0, w1} ∈ [H3(Ω) ∩ H1
0 (Ω)] × [H2(Ω) ∩ H1

0 (Ω)];

w0|Γ = 0; ∆w0|Γ = u(0) ∈ H
1
2 (Γ); (5.12.1)

u ∈ C
(
[0, T ];H

1
2 (Γ)

)
∩ H1(0, T ;L2(Γ)), (5.12.2)

and we must show that
{w,wt, wtt}

∈ C
(
[0, T ]; [H3(Ω) ∩ H1

0 (Ω)] × [H2(Ω) ∩ H1
0 (Ω)] × H1

0 (Ω)
)
.

(5.12.3)

Operator-theoretic proof. We return to the explicit solution formula
(5.4.30), i.e.,

w(t) = C(t)w0 + S(t)w1 +A
∫ t

0
S(t − τ)G2u(τ)dτ, (5.12.4)

and integrate by parts the integral term with u ∈ H1(0, T ;L2(Γ)), thus
obtaining

w(t) = C(t)[w0 − G2u(0)] + S(t)w1 +G2u(t) −
∫ t

0
C(t − τ)G2u̇(τ)dτ.

�
�

�✒

(5.12.5)

Here, by the first Compatibility Condition in (5.12.1), and, respectively,
u̇ ∈ L2(Σ), we have

w0 = G2u(0);
∫ t

0
C(t − τ)G2u̇(τ)dτ ∈ C

(
[0, T ];D

(
A 3

4

))
, (5.12.6)

recalling the definition of G2 in (5.4.15) and, respectively, the regularity
(5.11.2) (second component)

[
Az ∈ D

(
A 1

4

)
⇐⇒ z ∈ D

(
A 3

4

)]
. Likewise, by

(5.4.11),

S(t)w1 ∈ C
(
[0, T ];D

(
A 3

4

))
, with w1 ∈ D

(
A 1

2

)
. (5.12.7)

We now use that u ∈ C
(
[0, T ];H

1
2 (Γ)

)
as well, from (5.12.2), so that by

elliptic theory [(5.4.15), (5.4.16) with s = 1
2 ],

G2u(t) ∈ C
(
[0, T ];H3(Ω) ∩ H1

0 (Ω)
)
, (5.12.8)

since G2u(t)|Γ = 0 by definition (5.4.15). Thus, (5.12.6), (5.12.7), and
(5.12.8) used in (5.12.5), show (5.12.3) for w, via (5.4.8a). As to wt, we
differentiate (5.12.5), thus obtaining

wt(t) = C(t)w1 +G2u̇(t) − G2u̇(t) +A
∫ t

0
S(t − τ)G2u̇(τ)dτ

∈ C
(
[0, T ];D

(
A 1

2

))
. (5.12.9)
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Conclusion (5.12.3) for wt now follows from (5.12.9) [where a cancellation
of G2u̇(t) occurs] via (5.11.2) [first component] and (5.11.3). Similarly, one
differentiates (5.12.9) in t and obtains (5.12.3) for wtt via (5.11.2) [second
component] and (5.11.3).

A P.D.E. proof may also be given, of course.

5.13. Proof of theorem 5.8.1

5.13.1. A preliminary trace result

Theorem 5.13.1. (i) With reference to the operators in (5.11.8), (5.11.9),
we have the following regularity properties for 0 ≤ r ≤ 1 which generalize
the case r = 0 of Theorem 5.11.1:

G∗
2AA 1

2S(t), G∗
2AS(t) : continuous D

(
A r

4

)
→ Hr,r(Σ); (5.13.1)

G∗
2AA 1

4C(t), G∗
2A

3
4C(t) : continuous D

(
A r

4

)
→ Hr,r(Σ); (5.13.2)

B∗eA
∗t : continuous D(Ar) ≡ D

(
A 1

2+ r
4

)
×D

(
A 1

4+ r
4

)
→ Hr,r(Σ); (5.13.3)

Hr,r(Σ) ≡ L2(0, T ;Hr(Γ)) ∩ Hr(0, T ;L2(Γ)). (5.13.4)

(ii) Equivalently, in P.D.E.’s terms (see (5.3.5) for r = 0)

{φ0, φ1} → ∂∆φ(t;φ0, φ1)
∂ν

: continuous (5.13.5)

D
(
A1+r

)
= D

(
A 3

4+ r
4

)
× D

(
A 1

2+ r
4

)
→ Hr,r(Σ), (5.13.6)

where φ(t;φ0, φ1) is the solution of problem (5.3.1) with f ≡ 0, and where
we further recall (5.11.4)–(5.11.6) to justify the stated equivalence between
parts (i) and (ii).

Proof. Case r = 0. The case r = 0 is contained in Theorem 5.11.1
for (i) and in Theorem 5.3.1, Eqn. (5.3.5), for (ii). The stated equivalence
uses (5.11.4)–(5.11.6). Thus, it is sufficient to prove the case r = 1, and
interpolate to establish Theorem 5.13.1.

Case r = 1. We first show the time regularity

G∗
2AA 1

2S(t)x, G∗
2AA 1

4C(t)x ∈ H1(0, T ;L2(Γ)), x ∈ D
(
A 1

4

)
. (5.13.7)

Indeed, with x ∈ D
(
A 1

4

)
, we compute, recalling from (5.4.9) and f.f. that

−A is the infinitesimal generator of C(t)

d

dt
G∗

2AA 1
2S(t)x = G∗

2AA 1
4C(t)A 1

4x ∈ L2(Σ); (5.13.8)

d

dt
G∗

2AA 1
4C(t)x = −G∗

2A
2S(t)A 1

4x ∈ L2(Σ), (5.13.9)

where the regularity in (5.13.8) is a direct application of (5.11.10) (case
r = 0), while the regularity of (5.13.9) is equivalent to (5.11.9) (case r = 0)
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by the definition of A in (5.4.3). Thus, (5.13.7) is proved. To show the space
regularity

G∗
2AA 1

2S(t)x, G∗
2AA 1

4C(t)x ∈ L2(0, T ;H1(Γ)), x ∈ D
(
A 1

4

)
, (5.13.10)

we shall equivalently show, by (5.11.4)–(5.11.6) that

{φ0, φ1} → ∂∆φ(t;φ0, φ1)
∂ν

: continuous D(A2)

= D(A) × D
(
A 3

4

)
→ L2(0, T ;H1(Γ)) (5.13.11)

with φ(t;φ0, φ1) solutions of problem (5.3.1) with f ≡ 0. To this end, we
introduce


B =
∑
i

bi(x)
∂

∂xi
= first-order operator with

(time independent) coefficients bi smooth in Ω̄ and such that

B is tangent to Γ, i.e.,
∑
i

biνi = 0 on Γ.

(5.13.12)

Accordingly, we consider the problem


φtt − ρ∆φtt +∆2φ ≡ 0 in Q

φ(0, · ) = φ0; φt(0, · ) = φ1 in Ω or φtt = −Aφ,

φ|Σ ≡ ∆φ|Σ ≡ 0 in Σ

(5.13.13a)

(5.13.13b)

(5.13.13c)

{φ0, φ1} ∈ D(A) × D
(
A 3

4

)
⊂ H4(Ω) × H3(Ω), (5.13.14)

whose solution is

φ(t) = C(t)φ0 + S(t)φ1 ∈ C([0, T ];D(A)); (5.13.15)

φt(t) = −AS(t)φ0 +C(t)φ1 ∈ C
(
[0, T ];D

(
A 3

4

))
; (5.13.16)

φtt(t) = −AC(t)φ0 −AS(t)φ1 ∈ C
(
[0, T ];D

(
A 1

2

))
. (5.13.17)

We then introduce a new variable

z = Bφ, (5.13.18)

which, therefore, has a-priori regularity from (5.13.12) and
(5.13.15)–(5.13.17), given by


z ∈ C

(
[0, T ];H3(Ω) ∩ H1

0 (Ω)
)
;

zt ∈ C
(
[0, T ];H2(Ω) ∩ H1

0 (Ω)
)
;

ztt ∈ C
(
[0, T ];H1

0 (Ω)
)
.

(5.13.19)
(5.13.20)
(5.13.21)

Then proving (5.13.11) is equivalent to showing that

∂(∆Bφ)
∂ν

∣∣∣∣
Γ
=

∂(∆z)
∂ν

∣∣∣∣
Γ

∈ L2(Σ). (5.13.22)



DIFFERENTIAL RICCATI EQUATIONS 481

The variable z satisfies the problem


ztt − ρ∆ztt +∆2z = −[B,∆2]φ+ ρ[B,∆]φtt in Q,

z|Σ ≡ 0 in Σ,

∆z|Σ = −[B,∆]φ|Γ in Σ,

(5.13.23a)

(5.13.23b)

(5.13.23c)

as one readily sees by (5.3.18), (5.3.13). Since the commutators

[B,∆2] = operator of order 1 + 4 − 1 = 4;

[B,∆] = operator of order 1 + 2 − 1 = 2,

(5.13.24a)

(5.13.24b)

we see via the regularity (5.13.15) for φ and (5.13.17) for φtt that the right-
hand side term k in (5.13.23a) satisfies

k ≡ [B,∆2]φ+ ρ[B,∆]φtt ∈ C([0, T ];L2(Ω)), (5.13.25)

recalling D(A) ⊂ H4(Ω) and D
(
A 1

2

)
⊂ H2(Ω). Similarly, via (5.13.15),

(5.13.16), (5.13.24), as well as by using trace theory, we see that the boundary
term g in (5.13.23c) satisfies

g = −[B,∆]φ|Γ ∈ C
(
[0, T ];H

3
2 (Γ)

)
; (5.13.26)

gt = −[B,∆]φt|Γ ∈ C
(
[0, T ];H

1
2 (Γ)

)
. (5.13.27)

Thus, by (5.13.23), (5.13.25), (5.13.26), (5.13.27), we see that the z-problem
becomes:



ztt − ρ∆ztt +∆2z = k ∈ C([0, T ];L2(Ω)),

z|Σ ≡ 0,

∆z|Σ = g ∈ C
(
[0, T ];H

3
2 (Γ)

)
∩ C1

(
[0, T ];H

1
2 (Γ)

)
(5.13.28a)

(5.13.28b)

(5.13.28c)

with a-priori interior regularity given by (5.13.19)–(5.13.21). We now return
to the basic identity (5.10.2). Because of the a-priori interior regularity
(5.13.19), (5.13.20), for {z, zt} and that of k in (5.13.28a), the right-hand
side (R.H.S.) of identity (5.10.2) (with {φ, f} there replaced by {z, k} now)
is well defined. Thus, the left-hand side of identity (5.10.2) is well defined.
Taking the vector field h such that h|Γ = ν = outward unit normal vector
on Γ, we have that

on Γ : h · ∇(∆z) = ∇(∆z) · ν =
∂∆z

∂ν
; h · ∇zt =

∂φt

∂ν
; (5.13.29)

(∆zt)2h · ν = g2
t ;

∣∣∣∣∂zt∂ν

∣∣∣∣ = |∇zt|2 by (5.13.28b); (5.13.30)
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∇(∆z) =
∂(∆z)
∂ν

ν +
∂(∆z)
∂ν

τ, τ = tangential unit vector on Γ

=
∂(∆z)
∂ν

ν +
∂g

∂τ
τ (5.13.31)

|∇(∆z)|2 =
(
∂(∆z)
∂ν

)2

+
(
∂g

∂τ

)2
. (5.13.32)

Thus, the left-hand side (L.H.S.) of identity (5.10.2) can be rewritten, in the
new variable z as

L.H.S. of (5.10.2) =
1
2

∫
Σ

(
∂(∆z)
∂ν

)2

dΣ+
1
2

∫
Σ

(
∂zt
∂ν

)2
dΣ

+
ρ

2

∫
Σ
g2
t dΣ − 1

2

∫
Σ

(
∂g

∂τ

)2
dΣ (5.13.33)

= well defined by R.H.S. of (5.10.2),

since the last two integral terms on the L.H.S. of (5.10.2) vanish due to
the B.C. (5.13.28b). The two boundary terms containing g in (5.13.33) are
well defined by the regularity of g in (5.13.28c), while the boundary term
containing ∂zt

∂ν is well defined by (5.13.20) and trace theory. We conclude that
the remaining boundary term in (5.13.33) containing ∂(∆z)

∂ν is well defined,
i.e., ∂(∆z)

∂ν ∈ L2(Σ), and thus (5.13.22) is established, as desired. The proof
of Theorem 5.13.1 is complete.

Remark 5.13.1. In Theorem 5.3.1, the required interior regularity {φ, φt}
∈ C([0, T ];H3(Ω) × H2(Ω))-needed to guarantee that the right-hand side
of identity (5.10.2) is well defined—is ensured by the assumed regularity
of the data {φ0, φ1, f} as in (5.10.1), in particular f ∈ L1

(
0, T ;D

(
A 1

2

))
,

whereby then the (positive) left-hand side of identity (5.10.2) establishes
that ∂(∆φ)

∂ν ∈ L2(Σ). By contrast, in the z-problem (5.13.28), the right-
hand side k is only in C([0, T ];L2(Ω)). However, the required regularity
{z, zt} ∈ C([0, T ];H3(Ω)∩H2(Ω)) for the right-hand side of identity (5.10.2)
is guaranteed by the a-priori regularity (5.13.19), (5.13.20), which is a con-
sequence of the regularity (5.13.15), (5.13.16) of {φ, φt} via the change of
variable z = Bφ in (5.13.18). Thus, for the z-problem (5.13.28), k is only
required to have the regularity that makes the term

∫
Q kh ·∇(∆z)dQ on the

right-hand side of (5.10.2) well defined, i.e., say k ∈ L1(0, T ;L2(Ω)), and we
still obtain ∂(∆z)

∂ν ∈ L2(Σ). The above contrast between the φ-problem in
Theorem 5.3.1 and the z-problem in (5.13.28) did not occur in the case of
the wave equation of [L-T.3, Section 3], while instead is typical for the other
illustrating examples: Euler-Bernoulli equation, Schrödinger equations, etc.,
see [T.1], [L-T.8, Chapter 10].
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5.13.2. Completion of the proof of theorem 5.8.1

Space regularity. To show space regularity

(L∗v)(t) =
∫ T

t
B∗eA

∗(τ−t)v(τ)dτ (5.13.34)

: continuous L2

(
0, T ;D(Ar) ≡ D

(
A 1

2+ r
4

)
× D

(
A 1

2+ r
4

))

→ L2(0, T ;Hr(Γ)), 0 ≤ r ≤ 1, (5.13.35)

we simply invoke [L-T.3], [F-L-T.1, Appendix A], which is permissible by
virtue of the regularity (5.13.3) of Theorem 5.13.1.

Time regularity. It suffices to show the case r = 1, since the case
r = 0 is contained in (5.13.35), or in (5.5.6), and then interpolate. Thus,
differentiating (5.13.34) in t for

v ∈ L2(0, T ;D(A)) or A∗v ∈ L2(0, T ;Y ), (5.13.36)

since A is skew-adjoint on Y (see below (5.4.26)) yields

d(L∗v)
dt

(t) = − B∗v(t)

−
∫ T

t
B∗eA

∗(τ−t)A∗v(τ)dτ ∈ L2(0, T ;L2(Γ)),
(5.13.37)

as desired, by (5.13.36) and B∗A∗−1 ∈ L(Y ;U) in (1.5a), Y and U as in
(5.4.22). Then (5.13.37) shows

L∗ : continuous L2(0, T ;D(A)) → H1(0, T ;L2(Γ)), (5.13.38)

as required. The proof of Theorem 5.8.1 is complete except for noticing that
uniformity in s is obtained by a change of variable on formula (5.13.34), as
usual.
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