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The system of quasilinear equations for symmetric flows of a viscous heat-conducting
gas with a free external boundary is considered. For global in time weak solutions hav-
ing nonstrictly positive density, the linear in time two-sided bounds for the gas volume
growth are established.
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1. Introduction

We consider the system of quasilinear equations describing symmetric flows of a viscous
heat-conducting perfect polytropic gas [1]

ηt =
(
rkv
)
x, (1.1)

vt = rkσx, (1.2)

cVθt =
(
rkπ
)
x + σ

(
rkv
)
x − 2kμ

(
rk−1v2)

x, (1.3)

rt = v, (1.4)

σ = νρ
(
rkv
)
x −Rρθ, π = κρrkθx, ρ = 1

η
, (1.5)

in the domain Q := Ω × R+ = (0,M)× (0,∞). The system is supplemented with the
boundary and initial conditions

v|x=0 = 0,
(
σ − 2kμ

v

r

)∣∣
∣
∣
x=M

= 0,
(
rkπ)

∣
∣
x=0,M = 0 for t > 0, (1.6)

{η,v,θ,r}|t=0 =
{
η0(x),v0(x),θ0(x),r0(x)

}
for x ∈Ω. (1.7)

The parameter k takes the values 1 or 2 accordingly to the cylindrical or spherical sym-
metry.
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2 The rate of the volume growth

The unknown functions η > 0, v, θ ≥ 0 and r ≥ r0 depend on the Lagrangian mass
coordinates (x, t) and denote the specific volume, the velocity, the absolute temperature
and the Eulerian coordinate that is the radius of a gas particle. The functions ρ, σ and−π
are the density, the stress and the heat flux. We consider flows around a hard core so that
r0 > 0 is its radius, and the internal boundary (x = 0) is one with the core. The external
boundary (x =M) is free; both boundaries are thermally isolated, see (1.6).

The quantities ν > 0, μ,R > 0, cV > 0 and κ > 0 are physical constants;M > 0 is the total
mass of the gas. We impose the standard condition on the viscosity coefficients ν and μ

ν1 := ν− 2k
k+ 1

μ > 0. (1.8)

The initial function r0 is not arbitrary but rather connected to η0 by the physical rela-
tion

(
r0)k+1

(x)= rk+1
0 + (k+ 1)

∫ x

0
η0(ξ)dξ for x ∈Ω. (1.9)

In the simpler case of the planar symmetry (k = 0), the asymptotic behavior of solu-
tions was studied in detail in [5] and more recently in [6, 7] for other boundary condi-
tions. In the case of the spherical symmetry, some results on the growth of the (scaled)
gas volume V(t) := ∫Ωη(x, t)dx as t→∞ are available in [2].

We prove the sharp result establishing the linear growth of V both in the cases of the
spherical and cylindrical symmetries like that for the planar one. In contrast to [2, 5–
7], we treat essentially more general global in time weak solutions to the problem whose
density is non-strictly positive only.

2. Results

We introduce the integration operators

Iz(x) :=
∫ x

0
z(ξ)dξ, I∗z(x) :=

∫M

x
z(ξ)dξ for z ∈ L1(Ω). (2.1)

They are connected by the identity
∫

Ω

(
Iz1
)
z2dx =

∫

Ω
z1I

∗z2dx for any z1,z2 ∈ L1(Ω). (2.2)

LetVq(QT) be the space of functionsw ∈ Lq,∞(QT) having the derivativewx ∈ Lq(QT), for
q = 1, 2 and QT :=Ω× (0,T); recall that ‖w‖Lq,s(QT ) = ‖‖w‖Lq(Ω)‖Ls(0,T), for q,s∈ [1,∞].

We study global in time weak solution to the problem (1.1)–(1.7) such that:
(1) the properties

η,ηt ∈ L1,2(QT
)
,

1
η
∈ L∞(QT

)
, v ∈V2

(
QT
)
,

θ ∈V1
(
QT
)
, r,rx,rt ∈ L1,∞(QT

) (2.3)

together with η > 0, θ ≥ 0, r ≥ r0 (almost everywhere in QT) and v|x=0 = 0 are valid;
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(2) equations (1.1) and (1.4) together with the initial conditions η|t=0 = η0 and r|t=0 =
r0 are satisfied;

(3) the integral identities

∫

QT

{
− vϕt + σ

(
rkϕ
)
x

}
dxdt =

∫

Ω
v0ϕ|t=0dx+ 2kμ

∫ T

0

(
vrk−1)|x=Mϕ|x=Mdt, (2.4)

for any ϕ∈H1(QT) with ϕ|x=0 = 0 and ϕ|t=T = 0, as well as

∫

QT

{
− cVθψt + rkπψx −

[
σ
(
rkv
)
x − 2kμ

(
rk−1v2)

x

]
ψ
}
dxdt =

∫

Ω
cVθ

0ψ|t=0dx, (2.5)

for any ψ ∈ C1(QT) with ψ|t=T = 0, are valid, where relations (1.5) are assumed to hold.
Hereafter T > 0 is arbitrary and it is assumed that η0 ∈ L1(Ω), v0 ∈ L2(Ω), θ0 ∈ L1(Ω)

as well as η0 > 0 and θ0 ≥ 0 (almost everywhere in Ω).
We have to justify correctness of the definition of the weak solution. First notice that

actually η ∈ L1,∞(QT) and r ∈ L∞(QT) according to properties (2.3). Next, we recall that
(1.1) and (1.4) together with relation (1.9) imply the following relation between r and η

rk+1 = rk+1
0 + (k+ 1)Iη. (2.6)

In particular, actually r ≥ r0 and ρrx = r−k. Consequently

σ = ρ(νrkvx −Rθ
)

+ νkr−1v ∈ L2(QT
)
, (2.7)

where the embedding V1(QT) ⊂ L2(QT) is taken into account. Moreover, for any ϕ ∈
V2(QT), we have

σ
(
rkϕ
)
x = σrkϕx + kr−1(νrkvx −Rθ

)
ϕ+ νk2rk−2rxvϕ, (2.8)

and since V2(QT)⊂ L∞,4(QT) [4], we obtain

σ
(
rkϕ
)
x ∈ L1(QT

)
. (2.9)

If in addition ϕx ∈ L2,∞(QT), then

σ
(
rkϕ
)
x ∈ L1,2(QT

)
. (2.10)

Furthermore

(
rk−1v2)

x = 2rk−1vvx + (k− 1)rk−2rxv
2 ∈ L1,2(QT

)
. (2.11)

Consequently identities (2.4) and (2.5) are well-defined.
Notice also that

ση = νrkvx −Rθ + νkr−1vη ∈ L1,2(QT
)
. (2.12)

Concerning the existence of strong and weak solutions, see in particular [1, 3, 8].



4 The rate of the volume growth

We will need the energy conservation law. Let us set σΓ := 2kμ(v/r)|x=M ; notice that
σΓ ∈ L4(0,T).

Lemma 2.1. The total kinetic energy (1/2)
∫
Ω v

2dx and the total internal energy
∫
Ω cVθdx

are absolutely continuous functions on [0,T] for any T > 0 having the derivatives

d

dt

1
2

∫

Ω
v2dx =−

∫

Ω
(σ − σΓ)

(
rkv
)
xdx,

d

dt

∫

Ω
cVθdx =

∫

Ω

(
σ − σΓ

)(
rkv
)
xdx.

(2.13)

Consequently the total energy conservation law holds

� :=
∫

Ω

(
1
2
v2 + cVθ

)
dx ≡�0 on R

+
, (2.14)

where �0 := ∫Ω((1/2)(v0)2 + cVθ0)dx is the total initial energy.

Proof. Though results of the stated type are known, we prefer to present an independent
proof.

(1) We first notice that if a function w ∈ L2(QT) has the derivatives wx, (I∗w)t ∈
L2(QT) and w|x=0 = 0, then the function

∫
Ωw

2dx is absolutely continuous on [0,T] and
has the derivative

d

dt

∫

Ω
w2dx = 2

∫

Ω

(
I∗w

)
twxdx. (2.15)

Actually, under the additional condition wt ∈ L2(QT), by exploiting identity (2.2) we
have

2
∫ t2

t1

∫

Ω

(
I∗w

)
twxdxdt =

∫

Ω
w2dx

∣
∣
∣
∣

t2

t1

(2.16)

for all 0≤ t1 ≤ t2 ≤ T . In the general case, by applying (2.16) for w mollified with respect
to t and passing to the limit there, we establish (2.16) for almost all t1 and t2 such that
0≤ t1 ≤ t2 ≤ T . This leads to (2.15).

(2) We rewrite identity (2.4) in the form

∫

QT

{
− vϕt +

(
σ − σΓ

)(
rkϕ
)
x

}
dxdt =

∫

Ω
v0ϕ|t=0dx. (2.17)

Since (rkϕ)x = rkϕx + (rk)xϕ, by choosing ϕ := Iζ with ζ ∈ C1(QT) having ζ|t=0,T = 0 and
applying (2.2), we get

∫

QT

{
− (I∗v)ζt +

(
σ − σΓ

)
rkζ +

{
I∗
[(
σ − σΓ

)(
rk
)
x

]}
ζ
}
dxdt = 0. (2.18)
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Thus by definition there exists the weak derivative

(
I∗v

)
t =−

(
σ − σΓ

)
rk − I∗

[(
σ − σΓ

)(
rk
)
x

]
∈ L2(QT

)
, (2.19)

see properties (2.7) and (2.10) for ϕ ≡ 1. By integrating over Ω this equality multiplied
by vx we have

∫

Ω

(
I∗vt

)
vxdx =−

∫

Ω

{(
σ − σΓ

)
rkvx +

(
σ − σΓ

)(
rk
)
xv
}
dx =−

∫

Ω

(
σ − σΓ

)(
rkv
)
xdx,

(2.20)

where property (2.9) for ϕ = v is also taken into account. This together with formula
(2.15) imply the first formula (2.13).

The second formula (2.13) arises simpler after choosing ψ ∈ C1[0,T] with ψ|t=0,T = 0
in identity (2.5). �

Let us establish the key equality in the paper. We set V0 := rk+1
0 /(k+ 1).

Lemma 2.2. The following equality holds

dW

dt
=
∫

Ω

{
1

k+ 1

[

1 + k
(
r0

r

)k+1
]

v2 +Rθ

}

dx, (2.21)

where the function

W := ν1V +
2k
k+ 1

μV0 log
(
V0 +V

)
+
∫

Ω

v

rk
Iηdx (2.22)

is absolutely continuous on [0,T] for any T > 0.

Proof. Equation (1.1) and the definition of σ imply

νηt = ση+Rθ = σΓη+
(
σ − σΓ

)
η+Rθ. (2.23)

By integrating this equality over Ω we get

ν
dV

dt
= σΓV +

∫

Ω

(
σ − σΓ

)
ηdx+

∫

Ω
Rθdx. (2.24)

Let us transform the first and second summands in the right-hand side. By integrating
(1.1) over Ω we get

dV

dt
= (rkv)|x=M. (2.25)

Using this equality together with (2.6) for x =M, we obtain

σΓV = 2kμ

(
rkv
)|x=M

rk+1|x=M V = 2k
k+ 1

μ
V

V0 +V
dV

dt
= 2k
k+ 1

μ
d

dt

[
V −V0 log

(
V0 +V

)]
.

(2.26)



6 The rate of the volume growth

Let ζ ∈ C1(QT) and ζ|t=0,T = 0. By choosing ϕ := Iζ/rk in identity (2.17), using the
formula

(
Iζ

rk

)

t
= Iζt
rk
− k Iζ

rk+1
v (2.27)

(see (1.4)) and applying identity (2.2), we find

∫

QT

{
−
(
I∗

v

rk

)
ζt + k

(
I∗

v2

rk+1

)
ζ +
(
σ − σΓ

)
ζ
}
dxdt = 0. (2.28)

This means that there exists the derivative

(
I∗

v

rk

)

t
=−kI∗

(
v2

rk+1

)
− (σ − σΓ

)∈ L2(QT
)
. (2.29)

Moreover, (I∗(v/rk))tη ∈ L1,2(QT) according to property (2.12). By integrating over Ω
the last equality multiplied by η we have

∫

Ω

(
σ − σΓ

)
ηdx =− d

dt

∫

Ω

(
I∗

v

rk

)
ηdx+

∫

Ω

(
I∗

v

rk

)
ηtdx−

∫

Ω
kI∗

(
v2

rk+1

)
ηdx. (2.30)

Therefore by applying identity (2.2), equalities Iηt = rkv and Iη = (rk+1/(k + 1)) −
(rk+1

0 /(k+ 1)), see (1.1) and (2.6), we obtain

∫

Ω

(
σ − σΓ

)
ηdx =− d

dt

∫

Ω

v

rk
Iηdx+

∫

Ω

{
1

k+ 1
v2 +

k

k+ 1
v2
(
r0

r

)k+1
}

dx. (2.31)

Inserting equality (2.26) together with the last one into (2.24), we complete the proof.
�

Now we are in a position to prove the main result. Let V 0 := ∫Ωη0dx be the initial
volume.

Proposition 2.3. The following two-sided bounds for the gas volume hold

α1ε�0t+β1ε ≤V(t)≤ α2ε�0t+β2ε for any t ≥ 0, (2.32)

with any 0 < ε < ν1 and

α1ε := min
{

2/(k+ 1),R/cV
}

ν1 + ε
, α2ε := max

{
2,R/cV

}

ν1− ε ,

βiε = βiε
(
V 0,�0,ν,μ,M,V0

)
, i= 1,2.

(2.33)
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Proof. By virtue of the energy conservation law we have

min
{

2
k+ 1

,
R

cV

}
�0 ≤

∫

Ω

{
1

k+ 1

[

1 + k
(
r0

r

)k+1
]

v2 +Rθ

}

dx ≤max
{

2,
R

cV

}
�0,

(2.34)

‖v‖Ω ≤
√

2�0. (2.35)

The latter bound and equality (2.6) together with the Young inequality imply

∣
∣
∣
∣

∫

Ω

v

rk
Iηdx

∣
∣
∣
∣≤ ‖v‖L1(Ω)

∥
∥
∥
∥

(
Iη

rk+1

)k/(k+1)∥∥
∥
∥
C(Ω)

V 1/(k+1)

≤
√

2M�0 1
(k+ 1)k/(k+1)

V 1/(k+1)

≤ 1
k+ 1

(
ε0V + c0ε−1/k

0

)
,

(2.36)

with c0 := c0k(M�0)(k+1)/(2k) and c0k > 0 depending on k only, for any ε0 > 0. Therefore

∣
∣W − ν1V

∣
∣≤ 1

k+ 1

[(
2k|μ|ε1 + ε0

)
V + 2k|μ|V0

(∣∣ logV0
∣
∣+ cε1

)
+ c0ε−1/k

0

]
, (2.37)

with cε1 := log(ε−1
1 ) + ε1 − 1, for any ε1 > 0. This inequality remains valid for W and V

replaced by W(0) and V 0.
By integrating the key equality (2.21) and applying inequalities (2.34) and (2.37) with

suitable ε0 and ε1 together with condition (1.8), we obtain the two-sided bounds (2.32).
�

Notice that the assumption r0 > 0 has been not so crucial, the quantities βiε in (2.32)
are bounded as r0 → 0 and thus the case without core, that is, r0 = 0, could be also covered
(at least for classical solutions) but we would not like to come into these details here.
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