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We apply a coincidence degree theorem of Mawhin to show the existence of at least one
symmetric solution of the nonlinear second-order multipoint boundary value problem
u′′(t)= f (t,u(t),|u′(t)|), t ∈ (0,1), u(0)=∑n

i=1μiu(ξi), u(1− t)= u(t), t ∈ [0,1], where
0 < ξ1 < ξ2 < ··· < ξn ≤ 1/2,

∑n
i=1μi = 1, f : [0,1]×R2 →R with f (t,x, y)= f (1− t,x, y),

(t,x, y)∈ [0,1]×R2, satisfying the Carathéodory conditions.

Copyright © 2006 Nickolai Kosmatov. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Definitions and technical results

We study symmetric solutions of the multipoint nonlinear boundary value problem

u′′(t)= f
(
t,u(t),

∣
∣u′(t)

∣
∣
)
, t ∈ (0,1), (1.1)

u(0)=
n∑

i=1

μiu
(
ξi
)
, (1.2)

u(1− t)= u(t), t ∈ [0,1], (1.3)

where ξi ∈ [0,1] with 0 < ξ1 < ξ2 < ··· < ξn ≤ 1/2, μi ∈R with

n∑

i=1

μi = 1, (1.4)

and the inhomogeneous term satisfies
(H0) f : [0,1]×R2 →R with

f (t,x, y)= f (1− t,x, y), (t,x, y)∈ [0,1]×R2. (1.5)
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2 A symmetric solution of a multipoint boundary value

If there is a μi > 1, we assume, in addition, that

n∑

i=1

μiξi
(
1− ξi

) �= 0. (1.6)

Due to the condition (1.4) the differential operator in the left side of (1.1) is not invert-
ible. In the literature, boundary value problems of this type are referred to as problems at
resonance. Boundary value problems at resonance have been studied by several authors
including the most recent works [1–9, 11]. In the recent works [5, 6, 8, 9], the inhomo-
geneous term is either a continuous function on [0,1]×R2 or the sum of a continuous
and a Lebesgue integrable functions. In this note, we merely require measurability of f in
the first variable, continuity in the rest of variables for a. a. values of t, and, in addition,
f being locally bounded by Lebesgue integrable functions for a. a. values of t. The above
assumptions constitute the so-called Carathéodory conditions.

In this section, we provide the necessary background definitions and facts and state
the key theorem due to Mawhin [10]. In the second section, we provide additional as-
sumptions on the inhomogeneous term and give the sufficient conditions of existence of
at least one solution of (1.1)–(1.3). The emphasis in this note is on symmetric solutions
at resonance.

Definition 1.1. Let X and Z be normed spaces. A linear mapping L : domL ⊂ X → Z is
called a Fredholm mapping if the following two conditions hold:

(i) kerL has a finite dimension,
(ii) ImL is closed and has a finite codimension.

If L is a Fredholm mapping, its (Fredholm) index is the integer IndL = dimkerL −
codimImL.

In this paper, we are concerned with a Fredholm mapping of index zero. From Defini-
tion 1.1, it follows that there exist continuous projectors P : X → X and Q : Z → Z such
that

ImP = kerL, kerQ= ImL, X = kerL⊕ kerP, Z = ImL⊕ ImQ, (1.7)

and that the mapping

L|domL∩kerP : domL∩ kerP −→ ImL (1.8)

is invertible. We denote the inverse of L|domL∩kerP by KP : ImL→ domL∩ kerP. The gen-
eralized inverse of L denoted by KP,Q : Z → domL∩ kerP is defined by KP,Q = KP(I −Q).

If L is a Fredholm mapping of index zero, then for every isomorphism J : ImQ→ kerL,
the mapping JQ+KP,Q : Z → domL is an isomorphism and, for every u∈ domL,

(
JQ+KP,Q

)−1
u= (L+ J−1P

)
u. (1.9)

Definition 1.2. Let L : domL ⊂ X → Z be a Fredholm mapping, let E be a metric space,
and let N : E→ Z be a mapping. Say that N is L-compact on E if QN : E→ Z and KP,QN :
E→ X are compact on E. In addition, say that N is L-completely continuous if it is L-
compact on every bounded E ⊂ X .
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When the boundary value problem is shown to be equivalent to the abstract equation
Lu=Nu, the existence of a solution will be guaranteed by the following theorem due to
Mawhin [10, Theorem IV.13].

Theorem 1.3. Let Ω ⊂ X be open and bounded, L be a Fredholm mapping of index zero,
and let N be L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lu �= λNu for every (u,λ)∈ ((domL\kerL)∩ ∂Ω)× (0,1);
(ii) Nu /∈ ImL for every u∈ kerL∩ ∂Ω;

(iii) deg(QN|kerL∩∂Ω,Ω∩ kerL,0) �= 0, with Q : Z → Z a continuous projector such that
kerQ = ImL.

Then the equation Lu=Nu has at least one solution in domL∩Ω.

The following definition introduces the so-called Carathéodory conditions imposed
on a map.

Definition 1.4. Say that the map f : [0,1]×Rn→R, (t,z) 
→ f (t,z) satisfies the Carathéodory
conditions with respect to L1[0,1] if the following conditions are satisfied:

(i) for each z ∈Rn, the mapping t 
→ f (t,z) is Lebesgue measurable;
(ii) for almost each t ∈ [0,1], the mapping z 
→ f (t,z) is continuous on Rn;

(iii) for each r > 0, there exists αr ∈ L1([0,1],R) such that for a.e. t ∈ [0,1] and every
z such that |z| ≤ r, | f (t,z)| ≤ αr(t).

We introduce the Sobolev space

W2,1(0,1)= {u : [0,1]−→R : u, u′ absolutely continuous on [0,1] and u′′ ∈ L[0,1]
}
.

(1.10)

Let X = C1[0,1] with the norm ‖u‖ =max{‖u‖∞,‖u′‖∞} and Z = L1[0,1] with the usual
Lebesgue norm denoted by ‖ · ‖1. Consider the mapping L : domL⊂ X → Z with

domL= {u∈W2,1(0,1) : u satisfies (1.2) and (1.3)
}

(1.11)

by

Lu(t)= u′′(t), t ∈ (0,1). (1.12)

Define the mapping N : X → Z by

Nu(t)= f
(
t,u(t),

∣
∣u′(t)

∣
∣
)
, t ∈ (0,1). (1.13)

Lemma 1.5. The mapping L : domL⊂ X → Z is a Fredholm mapping of index zero.

Proof. It is clear that kerL=R.
Let u∈ domL and consider the linear equation

u′′(t)= g(t), (1.14)
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subject to (1.2), (1.3). Then g ∈ Z is symmetric on the interval [0,1]. Since u′ is absolutely
continuous, it follows from the symmetry condition (1.3) that

u′(t)=
∫ t

0
g(s)ds−

∫ 1

0
(1− s)g(s)ds. (1.15)

Integrating again, we get

u(t)=
∫ t

0
(t− s)g(s)ds− t

∫ 1

0
(1− s)g(s)ds+ c. (1.16)

Since
∑n

i=1μi = 1, it follows from (1.2) that we must have

n∑

i=1

(

μi

∫ ξi

0

(
ξi− s

)
g(s)ds−μiξi

∫ 1

0
(1− s)g(s)ds

)

= 0. (1.17)

Conversely, if (1.17) holds for some g ∈ Z, we take the candidate of u∈ domL as given by
(1.16) and establish that it is symmetric, absolutely continuous along with its derivative,
u′′(t)= g(t) for a. a. t ∈ (0,1) and (1.2) is satisfied. In fact, we have

ImL= {g ∈ Z : g satisfies (1.3) and (1.17)
}
. (1.18)

We recall the condition (1.6) and define the continuous linear mapping Q : Z → Z by

Qg = 2
∑n

i=1μiξi
(
1− ξi

)
n∑

i=1

(

μiξi

∫ 1

0
(1− s)g(s)ds−μi

∫ ξi

0

(
ξi− s

)
g(s)ds

)

. (1.19)

It is easy to see that Q2g =Qg for all g ∈ Z, that is, the mapping Q is idempotent. Observe
also that (1.17) and (1.19) imply that ImL= kerQ. Take g ∈ Z in the form g = (g −Qg) +
Qg so that g −Qg ∈ ImL and Qg ∈R. If g ≡ c �= 0, then, by (1.6), Qg �= 0, which implies
that ImL∩R= {0}. Hence Z = ImL⊕R.

Now, IndL = dimkerL− codimImL = 0 and so L is a Fredholm mapping of index
zero. �

The continuous projector P : X → X is defined by

Pu(t)= u(0), t ∈ (0,1). (1.20)

By taking u∈ X in the form u(t)= u(0) + (u(t)−u(0)), it is clear that X = kerL⊕ kerP.
Note that the projectors P and Q are exact, that is, satisfy the relationships (1.7). Define
KP : ImL→ domL∩ kerP by

KPg(t)=
∫ t

0
(t− s)g(s)ds− t

∫ 1

0
(1− s)g(s)ds, (1.21)

so that

(
KPg(t)

)′ =
∫ t

0
g(s)ds−

∫ 1

0
(1− s)g(s)ds. (1.22)
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Then ‖KPg‖∞ ≤ 2‖g‖1 and ‖(KPg)′‖∞ ≤ 2‖g‖1, and thus

∥
∥KPg

∥
∥≤ 2‖g‖1. (1.23)

In fact if g ∈ ImL, then

(
LKP

)
g(t)= d2

dt2

(∫ t

0
(t− s)g(s)ds− t

∫ 1

0
(1− s)g(s)ds

)

= g(t). (1.24)

Also, if u∈ domL∩ kerP, then

(
KPL

)
u(t)=

∫ t

0
(t− s)u′′(s)ds− t

∫ 1

0
(1− s)u′′(s)ds= u(t)−u(0)− t

(
u(1)−u(0)

)= u(t)

(1.25)

(since u∈ kerP and u is symmetric, u(0)= u(1)= 0). Thus, we get that

KP =
(
L|domL∩kerP

)−1
. (1.26)

For convenience, we introduce a constant

C = 2
∑n

i=1μiξi
(
1− ξi

) . (1.27)

Now

QNu=C
n∑

i=1

(

μiξi

∫ 1

0
(1−s) f (s,u(s),

∣
∣u′(s)

∣
∣
)
ds−μi

∫ ξi

0

(
ξi− s

)
f
(
s,u(s),

∣
∣u′(s)

∣
∣
)
ds

)

,

KP,QNu(t)=
∫ t

0
(t− s)Nu(s)ds− t

∫ 1

0
(1− s)Nu(s)ds

−
∫ t

0
(t− s)(QN)u(s)ds+ t

∫ 1

0
(1− s)(QN)u(s)ds

=
∫ t

0
(t− s) f

(
s,u(s),

∣
∣u′(s)

∣
∣
)
ds− t

∫ 1

0
(1− s) f

(
s,u(s),

∣
∣u′(s)

∣
∣
)
ds

− 1
2
Ct(t− 1)

n∑

i=1

(

μiξi

∫ 1

0
(1− s) f

(
s,u(s),

∣
∣u′(s)

∣
∣
)
ds

−μi

∫ ξi

0

(
ξi− s

)
f
(
s,u(s),

∣
∣u′(s)

∣
∣
)
ds

)

.

(1.28)

Lemma 1.6. The mapping N is L-completely continuous.

Proof. Let E⊂X be bounded and {uk}⊂E. Define the sequence {vk} by vk(t)=KP,QNuk(t).
Set

r = sup
{‖u‖ : u∈ E

}
. (1.29)
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Since the function f : [0,1]×R2 →R satisfies the Carathéodory conditions with respect
to L1[0,1], there exists a Lebesgue integrable function αr such that for all k ∈N and a.e.
t ∈ [0,1],

∣
∣Nuk(t)

∣
∣= ∣∣ f (t,uk(t),

∣
∣u′k(t)

∣
∣
)∣
∣≤ αr(t). (1.30)

For t ∈ [0,1] and k ∈N,
∣
∣vk(t)

∣
∣= ∣∣KP(I −Q)Nuk(t)

∣
∣

=
∣
∣
∣
∣
∣

∫ t

0
(t− s)Nuk(s)ds− t

∫ 1

0
(1− s)Nuk(s)ds

− 1
2
Ct(t− 1)

n∑

i=1

(

μiξi

∫ 1

0
(1− s)Nuk(s)ds−μi

∫ ξi

0

(
ξi− s

)
Nuk(s)ds

)∣
∣
∣
∣
∣

≤
∫ t

0
(t− s)

∣
∣Nuk(s)

∣
∣ds+ t

∫ 1

0
(1− s)

∣
∣Nuk(s)

∣
∣ds

+
1
2
C
∣
∣t(t− 1)

∣
∣

n∑

i=1

(

μiξi

∫ 1

0
(1− s)

∣
∣Nuk(s)

∣
∣ds+μi

∫ ξi

0

(
ξi− s

)∣
∣Nuk(s)

∣
∣ds

)

≤
(

1 +
C

8

n∑

i=1

μiξi
(
1 + ξi

)
)
∥
∥αr
∥
∥

1,

(1.31)

that is, the sequence {vk} is uniformly bounded on [0,1].
Now

∣
∣v′k(t)

∣
∣=

∣
∣
∣
∣
∣

∫ t

0
Nuk(s)ds−

∫ 1

0
(1− s)Nuk(s)ds

− 1
2
C(2t− 1)

n∑

i=1

(

μiξi

∫ 1

0
(1− s)Nuk(s)ds−μi

∫ ξi

0

(
ξi− s

)
Nuk(s)ds

)∣
∣
∣
∣
∣

≤
∫ t

0

∣
∣Nuk(s)

∣
∣ds+

∫ 1

0
(1− s)

∣
∣Nuk(s)

∣
∣ds

+
1
2
C|2t− 1|

n∑

i=1

(

μiξi

∫ 1

0
(1− s)

∣
∣Nuk(s)

∣
∣ds+μi

∫ ξi

0

(
ξi− s

)∣
∣Nuk(s)

∣
∣ds

)

≤ 1
2

(

3 +C
n∑

i=1

μiξi
(
1 + ξi

)
)
∥
∥αr
∥
∥

1

(1.32)

for all t ∈ [0,1] and k ∈N, that is, the sequence {v′k} is uniformly bounded on [0,1] and
as such is equicontinuous on [0,1]. Since {vk} is uniformly bounded and equicontinuous
on [0,1], by Arzela-Ascoli theorem, it has a subsequence {vkl} that converges to some
v ∈ C[0,1].
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Consider the sequence {wkl} defined by

wkl(t)=
d

dt
KP(I −Q)Nukl(t)

=
∫ t

0
Nukl(s)ds−

∫ 1

0
(1− s)Nukl(s)ds

− 1
2
C(2t− 1)

n∑

i=1

(

μiξi

∫ 1

0
(1− s)Nukl(s)ds+μi

∫ ξi

0

(
ξi− s

)
Nukl(s)ds

)

.

(1.33)

Employing arguments similar to that for {vk} one can show that {wkl} is uniformly
bounded and equicontinuous on [0,1]. Hence {wkl} as a subsequence that converges to
some w ∈ C[0,1]. In fact, w(t)= v′(t), t ∈ [0,1] and, thus, there is a subsequence of {vkl}
that converges in C1[0,1]. Therefore, the image of E under KP,QN is relatively compact.
Since the function f : [0,1]×R2 →R satisfies the Carathéodory conditions with respect
to L1[0,1], the continuity of KP,QN on E follows from the Lebesgue dominated conver-
gence theorem.

Similar considerations apply to show that QN is continuous and that QN(E) is rel-
atively compact. Now, since the mappings QN and KP,QN are compact on an arbitrary
bounded E ⊂ X , the mapping N : X → Z is L—completely continuous by Definition 1.2.

�

2. Solutions at resonance

Assume that the following conditions on the function f (t,x1,|x2|) are satisfied:
(H1) there exists a constant A > 0 such that for each u∈ domL \ kerL satisfying |u(t)|

> A for all t ∈ [0,1], we have

n∑

i=1

(

μiξi

∫ 1

0
(1− s) f

(
s,u(s),

∣
∣u′(s)

∣
∣
)
ds−μi

∫ ξi

0

(
ξi− s

)
f
(
s,u(s),

∣
∣u′(s)

∣
∣
)
ds

)

�= 0; (2.1)

(H2) there exist functions α,β,γ,ρ ∈ L1[0,1] and a constant ε ∈ [0,1) such that for all
(x1,x2)∈R2 and a.e. t ∈ [0,1], we have either

∣
∣ f
(
t,x1,

∣
∣x2
∣
∣
)∣
∣≤ ρ(t) +α(t)

∣
∣x1
∣
∣+β(t)

∣
∣x2
∣
∣+ γ(t)

∣
∣x1
∣
∣ε (2.2)

or
∣
∣ f
(
t,x1,

∣
∣x2
∣
∣
)∣
∣≤ ρ(t) +α(t)

∣
∣x1
∣
∣+β(t)

∣
∣x2
∣
∣+ γ(t)

∣
∣x2
∣
∣ε; (2.3)

(H3) there exists a constant B > 0 such that for every c ∈Rwith |c| > B, we have either

c
n∑

i=1

(

μiξi

∫ 1

0
(1− s) f (s,c,0)ds−μi

∫ ξi

0

(
ξi− s

)
f (s,c,0)ds

)

< 0 (2.4)

or

c
n∑

i=1

(

μiξi

∫ 1

0
(1− s) f (s,c,0)ds−μi

∫ ξi

0

(
ξi− s

)
f (s,c,0)ds

)

> 0. (2.5)
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Theorem 2.1. If (H0)–(H3) hold, then the boundary value problem (1.1)–(1.3) has at least
one solution provided that

‖α‖1 +‖β‖1 <
2
5
. (2.6)

Proof. We construct an open bounded set Ω⊂ X that satisfies the assumptions of Theo-
rem 1.3. Let

Ω1 =
{
u∈ domL \ kerL : Lu= λNu for some λ∈ (0,1)

}
. (2.7)

For u∈Ω1, we have u /∈ kerL, λ �= 0 and Nu∈ ImL. But kerQ = ImL and, thus,

n∑

i=1

(

μiξi

∫ 1

0
(1− s) f

(
s,u(s),

∣
∣u′(s)

∣
∣
)
ds−μi

∫ ξi

0

(
ξi− s

)
f
(
s,u(s),

∣
∣u′(s)

∣
∣
)
ds

)

= 0 (2.8)

since QNu = 0. It follows from (H1) that there exists t0 ∈ [0,1] such that |u(t0)| ≤ A.
Now,

∣
∣u(0)

∣
∣=

∣
∣
∣
∣
∣
u
(
t0
)−

∫ t0

0
u′(s)ds

∣
∣
∣
∣
∣
≤ ∣∣u(t0

)∣
∣+

∫ t0

0

∣
∣u′(s)

∣
∣ds≤A+‖u′‖∞. (2.9)

Also, since u′ is absolutely continuous, and, by symmetry, u′(1/2)= 0, u′′(1− t)= u′′(t),

u′(t)=−
∫ 1/2

t
u′′(s)ds. (2.10)

Hence

‖u′‖∞ ≤ 1
2
‖u′′‖1 = 1

2
‖Lu‖1 <

1
2
‖Nu‖1. (2.11)

Combining the above inequalities, we get

∣
∣u(0)

∣
∣ < A+

1
2
‖Nu‖1. (2.12)

Observe that (I −P)u∈ ImKP = domL∩ kerP for u∈Ω1. Then, by (1.23) and (1.26),

∥
∥(I −P)u

∥
∥= ∥∥KPL(I −P)u

∥
∥≤ 2

∥
∥L(I −P)u

∥
∥

1 = 2‖Lu‖1 < 2‖Nu‖1. (2.13)

Using (2.12) and (2.13), we obtain

‖u‖ = ∥∥Pu+ (I −P)u
∥
∥≤ ‖Pu‖+

∥
∥(I −P)u

∥
∥ <

∣
∣u(0)

∣
∣+ 2‖Nu‖1 < A+

5
2
‖Nu‖1,

(2.14)

that is, for all u∈Ω1,

‖u‖ < A+
5
2
‖Nu‖1. (2.15)
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If the second condition of (H2) is satisfied, then

‖u‖∞,‖u′‖∞ ≤ ‖u‖ ≤ 5
2

(‖ρ‖1 +‖α‖1‖u‖∞ +‖β‖1‖u′‖∞ +‖γ‖1‖u′‖ε∞
)

+A, (2.16)

and consequently,

‖u‖∞ ≤ 5
2− 5‖α‖1

(

‖ρ‖1 +‖β‖1‖u′‖∞ +‖γ‖1‖u′‖ε∞ +
2A
5

)

(2.17)

or

‖u‖∞ ≤ 5‖β‖1

2− 5‖α‖1
‖u′‖∞ +

5‖γ‖1

2− 5‖α‖1
‖u′‖ε∞ +

5‖ρ‖1 + 2A
2− 5‖α‖1

. (2.18)

Also, by (2.16) and (2.17),

‖u′‖∞ ≤ 5
2
‖α‖1‖u‖∞ +

5
2

(

‖ρ‖1 +‖β‖1‖u′‖∞ +‖γ‖1‖u′‖ε∞ +
2A
5

)

≤ 5‖β‖1

2− 5‖α‖1
‖u′‖∞ +

5‖γ‖1

2− 5‖α‖1
‖u′‖ε∞ +

5‖ρ‖1 + 2A
2− 5‖α‖1

,

(2.19)

that is,

‖u′‖∞ ≤ 5‖γ‖1

2− 5
(‖α‖1 +‖β‖1

)‖u′‖ε∞ +
5‖ρ‖1 + 2A

2− 5
(‖α‖1 +‖β‖1

) . (2.20)

But ε ∈ [0,1) and ‖α‖1 + ‖β‖1 < 2/5, so there exists M1 > 0 such that ‖u′‖∞ ≤M1 for all
u∈Ω1. The inequality (2.18) then shows that there existsM2 > 0 such that ‖u‖∞ ≤M2 for
all u ∈Ω1. Therefore, Ω1 is bounded given the second condition of (H2). If, otherwise,
the first part of (H2) holds, then with minor adjustments to the arguments above we
derive the same conclusion.

Define

Ω2 = {u∈ kerL : Nu∈ ImL}. (2.21)

Then u≡ c ∈R and

Nu∈ ImL= kerQ (2.22)

imply that

n∑

i=1

(

μiξi

∫ 1

0
(1− s) f (s,c,0)ds−μi

∫ ξi

0

(
ξi− s

)
f (s,c,0)ds

)

= 0. (2.23)

Hence, by (H3),

‖u‖ = c ≤ B, (2.24)

that is, Ω2 is bounded.
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We take our isomorphism, J , to be the identity map Id : kerL→ ImL, that is, Jc = c for
c ∈R. Set

Ω3 = {u∈ kerL :−λJu+ (1− λ)QNu= 0, λ∈ [0,1]}. (2.25)

For every c ∈Ω3,

λc = (1− λ)
n∑

i=1

(

μiξi

∫ 1

0
(1− s) f (s,c,0)ds−μi

∫ ξi

0

(
ξi− s

)
f (s,c,0)ds

)

. (2.26)

If λ= 1, then c = 0 and in the case λ∈ [0,1), if |c| > B, then by (H3),

λc2 = (1− λ)c
n∑

i=1

(

μiξi

∫ 1

0
(1− s) f (s,c,0)ds−μi

∫ ξi

0

(
ξi− s

)
f (s,c,0)ds

)

< 0, (2.27)

which, in either case, is a contradiction. If the other part of (H3) is satisfied, then we take

Ω3 =
{
u∈ kerL : λJu+ (1− λ)QNu= 0, λ∈ [0,1]

}
(2.28)

and, again, obtain a contradiction. Thus, in either case ‖u‖ = c ≤ B for all u∈Ω3, that is,
Ω3 is bounded.

Let Ω be open and bounded such that
⋃3

i=1Ωi ⊂ Ω. Then the assumptions (i) and
(ii) of Theorem 1.3 are fulfilled. By Definition 1.2, the mapping N is L-compact on Ω.
Lemma 1.5 establishes that L is Fredholm of index zero. It only remains to verify that the
third assumption of Theorem 1.3 applies.

We apply the degree property of invariance under a homotopy. To this end, we define
a homotopy

H(u,λ)=±λJu+ (1− λ)QNu. (2.29)

If u∈ kerL∩ ∂Ω, then

deg
(
QN|kerL∩∂Ω,Ω∩ kerL,0

)= deg
(
H(·,0),Ω∩ kerL,0

)

= deg
(
H(·,1),Ω∩ kerL,0

)

= deg
(± J ,Ω∩ kerL,0

)

�= 0,

(2.30)

so, the third assumption of Theorem 1.3 is fulfilled and the proof is complete. �
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