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1. Introduction

Since the paper of Amann and Zehnder [1], the existence of nontrivial solutions u for
semilinear elliptic problems of the form

—Au=g(u) inQ, u=0 onoQ, (1.1)

with g(0) = 0, has been the object of several studies, in which topological and variational
methods are successfully applied. We refer the reader to [2, 3, 8, 10]. In particular, since
the combination of linking theorems and Morse theory has turned out to be very fruitful,
it is customary to impose conditions on g that guarantee that the associated functional
f:H}(Q) — R, given by

Flu) = %L) |Duldx — JQ Gwdx,  G(s) = L g(t)dt, (1.2)

is of class C2.

In a recent paper [12], Perera and Schechter have proved a result of Amann-Zehnder
type under assumptions that imply f to be only of class C'. More precisely, about the
regularity of g, they assume that g is continuous, there exist in R the limits

lim ‘@, lim ‘@, lim‘is) (1.3)
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2 Existence of nontrivial solutions for semilinear problems

and that
g(s)

o is Lipschitz continuous in a neighbourhood of 0. (1.4)

One could observe that hypothesis (1.4) allows f not to be of class C2, but it does not
include every g satisfying the usual assumption that g is of class C' and g’ is bounded. In
particular, condition (1.4) is not stable if we add to g a term of the form

|S|3/2

T+ (1.5)
The first purpose of this paper is to extend the result of [12] in such a way that also the
classical smooth case is included. Our result is the following.

TaEOREM 1.1. Let Q) be a bounded open subset of R" and g : R — R be a continuous function
satisfying g(0) = 0 and
(a) there exists C > 0 such that

|g(s) | < C(1+1sl); (1.6)
(b) there exists « € R such that

lim&=¢x

s—too §

(1.7)

If we denote by (A,,) the sequence of the eigenvalues of —A with homogeneous Dirichlet
boundary condition, let us assume that « # A, for any m € N. Moreover, let us suppose that
g is strictly differentiable at 0 (see Definition 3.1 below) and that there exists m € N with
either g'(0) <Ay <aor g'(0) > A, > .

Then (1.1) admits a nontrivial solution.

Theorem 1.1 isin fact a particular case of a more general result, which will be presented
in Section 2.

Remark 1.2. 1If, as in [12], we have g(s) = sy(s), with y Lipschitz continuous in a neigh-
bourhood of 0, then it is easy to see that g is strictly differentiable at 0.

A second purpose of the paper is to improve the saddle theorem proved in [11, Theo-
rem 1.4], also mentioned in [12], in which the functional is of class C2, but nonstandard
geometrical assumptions are considered. We will prove the following.

TaeoreM 1.3. Let H be a Hilbert space such that H = H_ & H, with dimH_ < co and H,
closed in H. Let f : H — R be a functional of class C* and assume that

co =inf f > —oo, c1 =sup f < +oo, (1.8)
H, H

f satisfies (PS), for every ¢ € [co,c1], f''(u) is a Fredholm operator at every critical point u

-1
in f~([co,c1]).
Then there exists a critical point u of f with ¢y < f(u) < ¢y and m(f,u) <dimH_ <

m*(f,u).
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In [11] it is only shown that there exist critical points u, u with ¢y < f (%) < f(u) <
c1 and m(f,u) < dimH_ < m*(f,u), but one cannot say if there exists a critical point
u = u =1, as in the case with standard geometrical assumptions (see [8]), or not. Our
improvement is related to the fact that, according to Proposition 4.3 below, also under
the nonstandard geometrical assumptions of Theorem 1.3, it is possible to recognize a
homological linking structure.

The paper is organized as follows: in Section 2 we state the result of existence of non-
trivial solutions; Sections 3 and 4 are devoted to prove some auxiliary results, while in
Section 5 we prove the main theorems.

2. Existence of a nontrivial solution

Let Q) be a bounded open subset of R” and g: QX R — R be a Carathéodory function
satisfying
(g0) g(x,0) =0 for a.e. x € Q)
(g1) there exists C > 0 such that |g(x,s)| < C(1 +|s]) for a.e. x € Q and every s € R;
(g2) fora.e. x € Q, the function {s— g(x,s)} is strictly differentiable at 0 (see Definition
3.1 below) with Dyg(-,0) € L*(Q);
(g3) there exist C > 0and 8 >0 such that, for a.e. x € Q, we have

Vst €] —8,0[: |g(x,s) —glx,t)| < Cls—tl. (2.1)

If we set G(x,s) = f(fg(x, t)dt, it is well known that the functional f : Hj(Q) — R defined
by

Flu) = %L) | Duldx JQ Glx,u)dx (2.2)

is of class C'.
We denote by m(f,0) the supremum of the dimensions of the linear subspaces of
H{} () where the quadratic form

Qu) = L} |Dul?dx — JQDsg(x,O)uzdx (2.3)

is negative definite, and by m*(f,0) the supremum of the dimensions of the linear sub-
spaces of H{ (Q) where Q is negative semidefinite. We call m(f,0) (resp., m*(f,0)) the
strict (resp., large) Morse index of f at 0.

THEOREM 2.1. Assume that H (Q) = X_ @ X, with dimX_ < oo and X, closed in H} (Q).
Suppose also that

co = i}I{lff > —o00, c1 =sup f < +oo, (2.4)
+ X

and that f satisfies (PS). for every ¢ € [co,c1],
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Ifitis dimX_ & [m(f,0),m*(f,0)], then the problem
—Au=g(x,u) inQ, u=0 onodQ, (2.5)

admits a nontrivial solution u.

Remark 2.2. Under the assumption of Theorem 1.1, it is well known that f satisfies (PS)
for any ¢ € R and the geometrical assumptions of Theorem 2.1. Since it is clear that also
(g0)—(g3) are satisfied, Theorem 1.1 is a consequence of Theorem 2.1.

3. Computations of critical groups

Definition 3.1. Let ® be a map from an open subset U of a normed space X to a normed
space Y and let u € U. We say that @ is strictly differentiable at u (strongly differentiable in
the sense of [6]), if there exists a continuous linear map L: X — Y such that

lim O(wy) —O(wy) — L(wi —w»)

(wi,w2) = (u,14) ||W1 - W2||
W1 FW2

=0. (3.1)

Of course, in such a case @ is Fréchet differentiable at u and L = @ (u).

Definition 3.2. Let K be a field, X be a metric space and f : X — R be a continuous
function. For u € X and ¢ = f(u), let us set

VqeZ:Cyf,u)=Hy(f f\ {u}), (3.2)

where f¢={v € X: f(v) < c} and Hy(A, B) denotes the gth singular homology group of
the pair (A, B), with coefficients in K (see, e.g., [14]). The vector space Cy(f,u) is called
the qth critical group of f at u. Because of the excision property, we may replace f by flu
for any neighborhood U of u in X.

Definition 3.3. Let X be a Banach space, U an open subset of X and f: U — R be a
function of class C'. Let C be a closed subset of X with C = U. We say that f satisfies
the Palais-Smale condition ((PS), for short) on C, if every sequence (uy,) in C with f(up)
bounded and f’(uj) — 0 admits a convergent subsequence. In the case C = A = X, we
simply say that f satisfies (PS).

Let c € R. We say that f satisfies the Palais-Smale condition at level ¢ ((PS),, for short),
if every sequence () in U with f(uy) — ¢ and f'(uy) — 0 admits a convergent subse-
quence.

Let Q be abounded open subset of R" (n > 3),1 < p<(n+2)/(n—2)andg: QxR —
R be a Carathéodory function satisfying
(g1) there exists C > 0 such that |g(x,s)| < C(1+ [s|?) for a.e. x € Q and every s € R.
Let up € H} (Q) be an isolated weak solution of the semilinear problem

-Au=g(x,u) inQ, u=0 onodQ. (3.3)
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By regularity theory, we automatically have uy € L*(Q). Moreover, let us assume that:
(g5) for a.e. x € Q, the function {s — g(x,s)} is strictly differentiable at u(x) and
Dig(-,up) € L*(2);
(g5) there exist C > 0and 8 >0 such that for a.e. x € Q

Vst €] —8,00: |g(x,uo(x)+s) —g(x,up(x) +t)| < Cls—tl. (3.4)

Let f : H}(Q) — R be the functional
Flu) = 1J |Duldx —J Glx,u)dbx, (3.5)
2 Ja Q
where G(x,s) = [; g(x,t)dt, and let Q : H} (Q) — R be the quadratic form

Q(u) = L} |Du|*dx — JQDSg(x,uo)uzdx. (3.6)

Finally, let m( f,u) and m™*(f,uo) be defined as in Section 2.

TueoreM 3.4. We have that Cy(f,uo) = {0} for every q < m(f,up) — 1 and every q =
m*(f,up) + 1.

The proof will be given at the end of the section.

As a first step, we approximate the functional f with suitable functionals f) of class
C! with f} strictly differentiable at 1y and such that the critical groups of f; at u, are
independent of A.

Let us denote by || - [|; the norm of L7(Q) and by || - |1 > the norm of H} (Q).

Remark 3.5. Up to substitute g with §: QO X R — R defined by
gN(X:S) :g(xauo(x)+5) _g(x>u0(x))s (37)

we may assume that 1y = 0 and that g(x,0) = 0.

LEMMA 3.6. There exists a constant C > 0 such that, for a.e. x € Q and for any s € R, we
have

lg(x,9)| < C(1+s|P71)]s]. (3.8)

Proof. 1f0 < |s| < 8, then by (g3) it is

~

<C. (3.9)

g(x,s)
s

Otherwise, if |s| = §, then it is

+Cls|P7L. (3.10)

IA

'g(x,S)

N

_cl+lsl) _c
B [s] 0

Hence the assertion follows. (I
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Now let § >0 be as in (g3) and 9 € CZ(R) such that 0 <9 < 1, supt(9) = ] - §,6[ and
Is)=1 ifse [— 0 6],

44
_9 §]
2]

(3.11)

0<9< ifse[—&(ﬂ\[

1
2
For every A € [0,1] let us define g) (x,s) = g(x,9(As)s) and let f; : H}(Q) — R be the func-
tional

filw) = % L} | Dul2dx - L) Ga (1), (3.12)

where G)(x,s) = f(f &1 (x,t)dt. It is clear that:

(a) for every A > 0 and for a.e. x € Q, the function {s — gy(x,s)} is Lipschitz contin-
uous uniformly with respect to x;

(b) for every A and for a.e. x € Q, the function {s — g\(x,s)} is strictly differentiable
at 0 with Dsgy(x,0) = D;g(x,0);

(c) for a.e. x € Q, the functions {(,s) — g1(x,s)} and {(A,s) — Gyr(x,s)} are contin-
uous;

(d) there exists C > 0 such that [gi(x,s)| < C(1+1s|?), |Ga(x,s)| < C(1+ |s]PT1).

THeOREM 3.7. The following facts hold:
(i) for every A € [0,1], the functional f, is of class C';
(ii) there exists an open bounded neighbourhood U of 0 in H}(Q) such that, for every
A €[0,1], 0 is the only critical point of f) in U;
(iii) for every A €]0,1], f{ is strictly differentiable at 0 with { f{’(0)v,v) = Q(v).

Proof. Tt is readily seen that assertion (i) holds.

Let us consider assertion (ii). By contradiction, let us assume that there exist (1) in
[0,1] and (uy,) in HE (Q) with uy, # 0 and uy, — 0 strongly in H{ (Q) such that f,{h(uh) =0.
Up to a subsequence, A, — A in [0, 1]. Since uy, is a critical point of f),, we have that v, is
a weak solution of

—Au=g,(x,u) inQ, u=0 onoQ. (3.13)
Let

Up (3.14)

M where uy, # 0,
ap =
0 where uj, = 0.

By Lemma 3.6 it is

SC(I-F {S(Ahuh)uﬂp_l) SC<1+ |uh|P_l)~
(3.15)

Up

‘ g(x,S(Ahuh)uh)
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Since uy, is bounded in L>"("~2)(Q), then aj, belongs to L1(Q) with g > n/2 and
llanll, < € (1+ |[uanl 5,0, ) < M. (3.16)
Hence uy, is a weak solution of the linear problem
—Au=apu inQ, u=0 onodQ. (3.17)

By [7, Theorem 3.13.1] uy, € L*(Q)) and there exists C > 0 such that [luplle < Cl|Duyll5.
Hence u, — 0 in L®(Q). Since 9 = 1 on [—8/4,68/4], for h sufficiently large we have that
uy, is a weak solution of (3.3). It follows that 0 is not an isolated solution of (3.3): a con-
tradiction.

Finally, let us consider assertion (iii). Let L : H} (Q2) — H~'(Q) be the continuous linear
operator such that

(Lv,w) = (Lw,v), (Lv,v) = Q(v). (3.18)

Let (uy), (v4), (wp) in H} () be such that uy — 0, wy — 0 in H3(Q) and [[vp]l,2 < 1. Up
to a subsequence, w, — 0 and u; — 0 a.e. in Q). We have that

[ <A Own)sv) = (Y (un)svi) — (L(wp — un),va) |

- ‘ J [gA(x,Wh) — g1 (x, up) _Dsg(x,O):| (Wi — up) vidax
{xeQuwp (x)#£up(x)}

Wp — Up
( | ( | vy (3.19)
B C(J X W) — QL X, Up — Dig(x,0) dx)
{xeQuwy (x)#un(x)} Wh — Up

X ||wh — ”h||1,2||"h||1,2'
Then it is

LA (wn)svn) = (R (un)svi) = (L(wn = up),vn) |

[lwn = |, ,
c(j
{xeQuwy (x)#un(x)}

(.

n/2
a(xwn) — g (x, un)

Wh — Up

IA

2/n
dx) Il

- Dsg(x> 0)

a (x,Wh) -4\ (x,u;,)
W — Up

IA

n/2 2/n
— D.g(x,0) X{xeﬂzwh(x)%uh(x)}dx> :

(3.20)
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By (a) and (b) we can apply Lebesgue’s theorem, obtaining

( ) ( ) n/2 2/n
xwh) —a(xu
( J 8 h & Mo Dsg(xy 0) X{xeQuwp(x)#up(x)} dx) — 0. (3.21)
Q Wi — up
Therefore
' 5 - ' ) - L - 5
i S Own)vi) = Cf (n)yvi) = (L (wh = un)ovn) _ (3.22)
htoo llwn — |, ,
and assertion (iii) follows. |

Tueorem 3.8. The critical groups Cy( f3,0) are independent of A. In particular
VqeZ:Cy(f,0) =~ Cy(£1,0). (3.23)

Proof. Let U be an open bounded neighbourhood of 0 in Hg(Q) as in assertion (ii) of
Theorem 3.7. We claim that if A4 — A in [0,1], then || fi, ;7 — fijzll1,0 — 0. Let (1) be a
sequence in U. Up to a subsequence, u, — u in H} (Q) and uy, — u a.e in Q. Itis

i) = i) = | [Guy (50) = G (x4

(3.24)
= L} [Gy, (x,up) — Gy (x,u) |dx + L} [Gr(x,u) — Gy (x, up) |dx.
By (c), (d) and Lebesgue’s theorem we deduce that
J [Gy, (x,un) — Ga(x,u) Jdx — 0. (3.25)
Q

Therefore f), — f, uniformly on U.
Now, let v, € H} () with |[vy]l12 < 1. Up to a subsequence v, — v in H} (Q), v, — v
in L2"("=2(Q)) and v, — v a.e. in Q. It is

| <f)l’h(uh)’vh> - <f)l’ (Uh),Vh) |

= ' L) [gn, (s un) — g1 (o6, up) vidx

(3.26)

L} [ (o, 9 Apun) un) — g (2, 9(Aup) up) |vadx

(n+2)/2n
< C(L) | g (o6, 9 (Aun) un) — g (2,9 (Aun) up,) |2n/(n+2)dx) |

|Vh||1,2'
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As before we have that
L) | g, (o6, un) — g (x,un) |2"/("+2)dx — 0. (3.27)

It follows that f;, — f uniformly on U. Finally, since U is bounded and g has subcritical
growth, we have that for every A € [0,1] fj satisfies (PS) in U. By [5, Theorem 5.2] the
assertion follows. O

In the second part of this section we deduce from [6] a generalization of the classical
Shifting theorem (see [3, Theorem 1.5.4], [10, Theorem 8.4]).

Let H be a Hilbert space, U be an open subset of H, uy € U and f : U — R be a func-
tion of class C' such that f” is strictly differentiable at uy and " (uo) is a Fredholm op-
erator. In particular, f” is Lipschitz continuous in a neighbourhood of ug. Let L: H — H
be the linear operator defined by

Yv,we H: (Lv,w) = (f" (uo)v,w), (3.28)
let Vo = ker L and let Py, be the orthogonal projection on V. We also denote by m( f,uo)
(resp., m* (f,uo)) the strict (resp., large) Morse index of f at uy.

THEOREM 3.9. Let ug be an isolated critical point of f. Then there exist a neighbourhood U
of Py, ug in Vo and a function f : U — R of class C! with locally Lipschitz gradient such that
Py, uq is an isolated critical point of f and

Co—m(fup A,P . ] R < 00,
VqeZ:Cylf,up) z{{g} (o) (f>Protio) :;:Ejf[ ZOZ ) (3.29)
yUg) = 00,
Vg <m(f,up) —1:Cy(f,uo) = {0},
(3.30)

Vg =m*(f,ug) +1:Cy(f,uo) = {0}.

Proof. Without loss of generality, we may assume that uy = 0. From [6, Theorem 1.2] we
also see that the generalized Morse lemma holds also in this setting. Arguing as in the
proof of [10, Theorem 8.4], we find that (3.29) holds. Actually, in our case f is of class
C?79 instead of C?, but the proof of [10, Theorem 8.4] remains valid also in this case.
On the other hand, also the proof of [10, Theorem 8.5] can be easily adapted from the
C? to the C?7° case. Therefore we have that Cq(f,onuo) = {0} if g = dim V;, + 1. Since
m*(f,uo) = m(f,ug) +dim Vj, the other assertions follow from (3.29). O

Finally, let us prove Theorem 3.4.

Proof. By Remark 3.5 we may assume that uy = 0. Let f, : H} (Q) — R be as in (3.12). By
Theorem 3.7 we have that f; is of class C! with f] strictly differentiable at 0 and 0 is an
isolated critical point of f;. Moreover, f;(0) is a Fredholm operator. By Theorem 3.8 it is

VqeZ:Cy(f,0) =~ Cy(f1,0). (3.31)
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On the other hand, since Q(u) = (f;"(0)u,u), we have that m(f,0) = m(f;,0) and m*(f,
0) = m*(f1,0). From Theorem 3.9 the assertion follows. O
4. Homological linking

Throughout this section, X will denote a Banach space, B, (1) the open ball of center
u € X and radius r and f: X — R a function of class C'. We set K = {u € X : f'(u) = 0}
and, for every c € R,

Ko={ueX:f'(u)=0, f(u)=c}. (4.1)
We also denote by Hy singular homology.

First of all, let us recall from [4] an extension of the homological linking of [3].

Definition 4.1. Let D, S, A be three subsets of X, m € N and K a field. We say that
(D,S) links A homologically in dimension m (over ), if S € D, SN A = & and there ex-
ists z € H, (X, S; K) belonging to the image of i, : H,,(D,S;K) — H,, (X, S;K) but not of
js 1 Hu(X\A,S$K) = Hy (X, S;K), where i : (D,S) — (X,S) and j: (X \A,S) - (X,S) are
the inclusion maps.

It is clear that, if (D, S) links A homologically, then DN A # &.

THEOREM 4.2. Let D, S, A be three subsets of X such that (D,S) links A homologically in
dimension m and let z € H,,(X,S;K) be as in Definition 4.1. Assume that

iIAl‘ff>—00, sup f < +oo, VueS:f(u)<i12‘ff (4.2)
D

and define

c=inf {b € R:Sc fPand z belongs to the image of the

4.3
homomorphism induced by inclusion Hy, (f°,$;K) — Hy(X,S;K)}. e

Suppose that f satisfies (PS) and that each element of K, is isolated in K.
Then infy f < ¢ < supp, f and there exists u € K. with C,,(f,u) # {0}.

To prove our main results we need the following.

ProposiTiON 4.3. Let X = X_ & X, with dimX_ < o and X, closed in X. Assume that

co = i)1(1ff > —00, c1=supf<+oo (4.4)
+ X

and that f satisfies (PS). for every ¢ € [co,c1].
Then there exists a compact pair (D, S) in X such that

mgxfsal, VuesS: f(u)<c (4.5)

and such that (D, S) links X, homologically in dimension dimX_ over all K.
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Proof. Since f satisfies (PS). for every ¢ € [co,c1], there exists r > 0 such that K n f~!([co,
ca]) € (B, (0) n X_) ® X,. Moreover, there exist §,0 > 0 such that

[1Px ul| =,

W—5ﬁfW)sQ+6=3”f“””>“ (4.6)

where Px denotes the projection on X_ induced by the decomposition X = X_ & X,. Let
¢ >0 be such that ||Px u|| < cllull for any u € X and let

R=cm+r+8, p1=1, p2=R—-r-4,
o (4.7)

C=X\[(Bripip (0)NX_) & X, ].

By [5, Theorem 2.1] applied to the function f|juex:f(u)=c,-s}> there exist a continuous
function

7:B, (C)N{ueX:ico—08 < f(u)<cy+8} — [0,+) (4.8)
and a continuous map

11:(BP,(C)m{ueX:c0—8sf(u)<c1+8}>X[O,l]—»{ueX:f(u)ZCO—S}

(4.9)
such that
(@) (u) =0 % f(u) =co—6;
(b) lIn(u,t) —ull < (uw)t;
(©) f(n(u,t)) < f(u) —or(u)t;
(d) f(n(u,1)) = co— 6.
Let 9; : R — [0,1] be a continuous function such that
. . é
91(s)=1 ifs<gc, 91(s)=0 1f52c1+5, (4.10)
andlet 9, : X — [0,1] be a continuous function such that
9(u)=1 if|lull =R, 9H(u)=0 ifllull <R-6. (4.11)
Let % : X x [0,1] — X be the deformation defined by
(17(u, 91 (f ()9, (Px u)t) ifue B, (C), co—8 =< f(u) <c1+6,
u if f(u) <co—9,
H(u,t) = A 5 (4.12)
u iff(u)2c1+z,
u if [|Px ul| <R-6.
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If u € X_, we have that

[|Px_ % (u,t) — ul| < cllH(u,t) —ul| < cf(u) —fa(%(u,t)) <4 —c+d <R-r.

o
(4.13)

It follows
I[Px ul| <r = H(u,t) = u,
ueXx., f(#(u,1)) < co, (4.14)

lull = R - ||Px_(#(u,t))||=r, Vte[o,1].

It is clear that (X,(X_ \ B,(0)) ® X, ) links X, homologically in dimension dimX_ and
that the inclusion map

i+ (Br(0)NX,9Bz (0) N X-) — (X,(X-\B,(0)) ®X.) (4.15)
induces an isomorphism in homology. Let m = dimX_ and
B=Br(0)nX., E=0Be(0)nX., F=(X_\B/(0)eX. (416

Consider now the commutative diagram

H,y(B,E) — H,,(X,E) < H,,(X \ X,,E)

U

Hp(X,F) —%> H,(X,F) <—— Hp (X \ X, F)

where horizontal rows are induced by the inclusions and the vertical rows are isomor-
phisms. We have that there exists z € H,,(X,E) belonging to the image of H,(B,E) —
H,,(X,E) such that iy (z) € H,,(X,F), but not to the image of H,,(X \ X;,F) — H(X,F).
Let us consider the compact sets D = #(B,1) and S = #(E, 1). We have that

mgxfscl, m§xf<co, ScFE (4.18)
Consider now the commutative diagram

H,(B,E) — H,(X,E)

%*(')l)l %*(-,l)l

Hm(D,S) I Hm(X)S) ~ Hm(X \X+;S) (4.19)

L |

Hn(X,F) —4 = Hp(X,F) ~—— Hp(X \ X, F)
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Since #(+,1) : (X,E) — (X, F) is homotopically equivalent to the identity map, then (D, S)
links X homologically in dimension m = dim X_ and the assertions follows. O

5. Proof of the main results

Proof of Theorem 2.1. By contradiction, let us assume that 0 is the unique solution of
(2.5). Since m = dimX_ ¢ [m(f,0),m*(f,0)], by Theorem 3.4 it is C,(f,0) = {0}. By
Proposition 4.3 there exists a compact pair (D, S) in H} (Q) such that

VueS:f(u)<i)r(1ff (5.1)

and (D, S) links X, homologically in dimension m over all K. By Theorem 4.2 there exists
a critical point u € H}(Q) of f such that Cy,(f,u) # {0}. Hence u # 0 and u is a weak
solution of (2.5): a contradiction. O

proof of Theorem 1.3. Let (D,S) be as in Proposition 4.3. By [13, Proposition 3.9 and Re-
mark] there exists § > 0 such that f satisfies (PS), for every ¢ € [cy — J,¢; + 6] and f"'(u)
is a Fredholm operator at every critical point u in f~!([cy — J,¢; + 8]). Let us argue by
contradiction and set

Ki={ueH:cg-0<f(u)<c;+9, f'(u) =0, m*(f,u) <dimH_},
5.2
Ky={ueH:cg-0<f(u)<c+9, f'(u) =0, m(f,u) >dimH_}. 5-2)

Then Kj, K; are two disjoint compact sets whose union is the critical set of f in f~!([co —
8,¢1 + 6]). By Marino-Prodi perturbation lemma [9, Teorema 2.2], there exists a func-
tional f : H — R of class C? such that

inff >co— 0/2, supf< c1+6/2, maxf< inff, (5.3)
H, S S H,

f satlsﬁes (PS). for every ¢ € [co — 6/2,¢1 +6/2] f has only nondegenerate critical points
u mf ([eco = 6/2,c1 +8/2]) with either m f u) <dimH_ or m* f u) >dimH_. If we
apply Theorem 4.2 to f we find a critical point u off with ¢y — /2 < f(u <c+6/2

and C,, (f u) # {0}, where m = dim H_. By the Morse lemma, we have m(f u) = m and
a contradiction follows. O
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