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1. Introduction

1.1. Goal. Among several different, but equivalent, formulations of the famous Borsuk-
Ulam theorem, the following one is of our interest: if f : Sn → Rn is a continuous odd
map, then there exists an x ∈ Sn such that f (x) = f (−x) = 0 (see [17] for other formu-
lations, generalizations, and applications, and [11, 13] for a connection with the corre-
sponding Brouwer degree results).

Under the “stronger” assumption that f : Sn →Rm, where m < n, one can expect that
there are bigger coincidence sets. The results which measure the size of the set A := {x ∈
Sn | f (−x)= f (x)} in topological terms, like dimension, (co)homology, genus (or other
index theory), are usually called “Bourgin-Yang theorems.” The simplest result in this
direction (cf. [5, 19]) can be formulated as follows: (i) dimA( f ) ≥ n−m (covering or
cohomological dimension) and (ii) g(A( f ))≥ n−m+ 1, where g(·) stands for the genus
with respect to the antipodal action (see Example 2.4). We refer to [17] for extensions of
this result to more complicated (finite-dimensional) G-spaces, where G is a compact Lie
group, as well as to index theories different from genus.

Holm and Spanier were the first to extend the Bourgin-Yang theorem to infinite di-
mensions (see [10], where the solution set to the equation a(x)= f (x) was studied in the
case a is a proper C∞-smooth Fredholm operator and f is a compact map; both equivariant
with respect to a free involution). It should be pointed out that the assumptions on a re-
quired in [10] allow a clear finite-dimensional reduction (the kernels and images in ques-
tion are complementable). At the same time, the methods developed in [10] cannot be
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applied to treat the case when F is not Fredholm. The first step in this direction was done
in recent papers [8, 9], where the author studied the situation when a is a continuous
(resp., linear closed) linear operator without any restrictions with respect to dimker(a)
(in fact, in these papers only, the “dimension part” of the Bourgin-Yang theorem was
proved in the presence of the antipodal symmetry). The main new ingredient in [8, 9] al-
lowing the author to go around the “complementability problem” is the application of the
Michael selection theorem respecting the antipodal symmetry to the multivalued map a−1.
Observe, however, that the corresponding “equivariant selection theorem” was proved in
[7] for free actions of a finite group—by no means to be extended to nonfree actions of
compact Lie groups.

The main goal of our paper is to extend the results from [8–10] in several directions:
(i) a is an arbitrary closed linear map (in general, unbounded, and having an infi-

nite-dimensional kernel) equivariant with respect to arbitrary compact Lie group
representations;

(ii) f is a so-called a-compact G-equivariant map (see Definition 4.1);
(iii) the coincidence set is estimated in terms of an arbitrary index theory with the

so-called “dimension property” (cf. [4, 17], [14, Chapter 5]).
To this end, based on the results from [1], we establish a general equivariant version
of the Michael selection theorem (without any restrictions with respect to G-actions)
which, in our opinion, is interesting in its own. This result allows us to construct for a
an equivariant section taking bounded sets to the bounded ones (see Lemma 3.6). Using
this lemma, we reduce the coincidence problem to the fixed point problem.

1.2. Overview. After Section 1, the paper is organized as follows. In Section 2, we briefly
discuss “index theories.” Section 3 is devoted to the proof of the equivariant Michael
selection theorem and Lemma 3.6. After the reduction to the fixed point problem (see
Section 4), we prove the main result (Theorem 4.3) in Section 5. In the last section, we
give an application of the main result to integrodifferential equations. For the equivariant
jargon, frequently used in this paper, we refer to [6].

2. Index theories

Convention and notations. Hereafter, G stands for a compact Lie group.
Without loss of generality, we will assume all Banach G-representations to be isomet-

ric.
Given a Banach G-representation E,

(i) SR stands for the sphere in E of radius R centered at the origin;
(ii) EG = {x ∈ E | gx = x, for all g ∈G}—the fixed point set.

Let us recall the standard construction of the join.

Definition 2.1. Let X1, . . . ,Xn be topological spaces and Δn−1 = {(t1, . . . , tn)∈Rn | 0≤ ti ≤
1,
∑n

i=1 ti = 1}—the (n− 1)-dimensional standard simplex. The join X1 ∗ ··· ∗ Xn is
the quotient space of the product X1×···×Xn×Δn−1 under the following equivalence
relation: (x1, . . . ,xn, t1, . . . , tn) ∼ (x′1, . . . ,x′n, t′1, . . . , t′n) if and only if ti = t′i (i = 1, . . . ,n) and
xi = x′i whenever ti = t′i > 0.
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It is convenient to denote a point of the join X1 ∗ ··· ∗Xn in the form of a formal
convex combination:

∑n
i=1 tixi.

If X1 = ··· = Xn = X , then write JnX for X1∗···∗Xn.
If X1, . . . ,Xn are G-spaces, then so is X1 ∗ ··· ∗Xn via g ·∑n

i=1 tixi :=∑n
i=1 tigxi,

g ∈G.

Example 2.2. Obviously, JnS0 = Sn−1, JnS1 = S2n−1, and JnS3 = S4n−1. Also, if we consider
S0 (resp., S1 and S3) as free Z2—(resp., S1- and SU(2)-spaces), then the action of Z2 on
JnS0 (resp., S1 on JnS1 and SU(2) on JnS3) corresponds to the antipodal action (resp.,
scalar multiplication in S2n−1 ⊂ Cn and scalar multiplication in S4n−1 ⊂ Hn, where H
stands for the quaternions).

Following [4], [14, Chapter 5], [17], we give the following definition.

Definition 2.3. A function “ind” that assigns to every G-space A a number ind(A)∈N∪
{0} or {∞} is called an index theory if it satisfies the following properties.

(i) ind(A)= 0 if and only if A=∅.
(ii) Subadditivity. If a G-space A is the union of two of its closed invariant subsets A1

and A2, then ind(A)≤ ind(A1) + ind(A2).
(iii) Continuity. If A is a closed invariant subset of a G-space X , then there exists a

closed invariant neighborhood � of A in X such that ind(A)= ind(�).
(iv) Monotonicity. If A1 and A2 are two G-spaces and there exists an equivariant map

ϕ : A1 → A2, then ind(A1)≤ ind(A2).
In particular, (a) if A1 ⊂ A2, then ind(A1)≤ ind(A2), and (b) if ϕ : A1 → A2 is an equi-

variant homeomorphism, then ind(A1)= ind(A2).

Example 2.4 (genus). For a G-space A set g(A)= k if there exist closed subgroups H1, . . . ,
Hk of G, Hi 
= G, i = 1, . . . ,k, and a G-equivariant map A→ G/H1 ∗ ··· ∗G/Hk, where
k is minimal with this property (G acts on G/Hi by left translations). If such k does not
exist, put g(A) :=∞. Also, g(∅)= 0.

It is easy to check (see [3]) that the function g satisfies all the properties required for
an index theory.

In fact, there is a “myriad” of nonequivalent index theories (mostly, cohomological
(see [3] and references therein)).

In this paper, we are dealing with index theories satisfying an additional property (cf.
[4], [14, Chapter 5], [17]). Namely, we have the following definition.

Definition 2.5 (dimension property). An index theory ind is said to satisfy the dimen-
sion property if there exists d ∈N such that for any Banach G-representation E, one has
ind(Ekd ∩ S1) = k for all invariant kd-dimensional subspaces Ekd of E satisfying Ekd ∩
EG = {0}.

As an immediate consequence of the dimension property, one has (cf. [4]) that ind(A)
<∞ for any compact invariant subset A ⊂ E of a Banach G-representation E with A∩
EG =∅. Although, in general, the genus does not satisfy the dimension property, there
are some important (from the application point of view) classes of groups for which it
does (see the examples following below).
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Example 2.6. (i) If G= Zp×···×Zp (p is prime), then the genus satisfies the dimension
property with d = 1 (cf. [3]).

(ii) If G = S1 × ··· × S1, then the genus satisfies the dimension property with d = 2
(cf. [3]).

Remark 2.7. Restricting the genus to free G-spaces, one can define a “restricted index
theory” satisfying the dimension property with d = 1 + dimG (cf. [3]). Recall that ifG acts
freely on a finite-dimensional sphere, then G is either finite, or S1, or S3, or the normalizer
of S1 in S3 (cf. [6, Chapter 4, Theorem 6.2]). All finite groups admitting a free action on
a finite-dimensional sphere are described in [18].

3. Equivariant selection theorem

We begin this section with recalling the Michael selection theorem. To this end, we need
several definitions.

Definition 3.1. (i) Let X and Y be topological spaces. It will be said that F is a mul-
tivalued map from X to Y if F associates with each point x ∈ X a nonempty subset
F(x) of Y . If, in addition, X and Y are G-spaces, then F is called a multivalued G-
map or a multivalued equivariant map, if F(gx)= gF(x) for all g ∈ G and x ∈ X , where
gF(x)= {g y | y ∈ F(x)}.

(ii) A multivalued map F from X to Y is called lower semicontinuous (l.s.c.) if for any
open subset U ⊂ Y , the set

F−1(U)= {x ∈ X | F(x)∩U 
= ∅} (3.1)

is open in X .

Definition 3.2. (i) A continuous (single-valued) map f : X → Y is called a selection for a
multivalued map F from X to Y if f (x)∈ F(x) for all x ∈ X .

(ii) Assume X and Y are G-spaces and F is a multivalued G-map. A selection f of F is
called a G-selection if, in addition, f is a G-map.

The following fact is well known as the Michael selection theorem.

Theorem 3.3 (see [15]). Let X be a paracompact space, Y a Banach space, and F an l.s.c.
multivalued map from X to Y such that F(x) is a nonempty, closed, convex set for all x ∈ X .
Then F admits a selection.

Below, we formulate and prove an equivariant version of the Michael selection theo-
rem.

Theorem 3.4. Let X be a paracompact G-space, Y a Banach G-representation, and F a
multivalued l.s.c. G-map from X to Y such that for all x ∈ X , F(x) is a closed, convex set.
Then F admits a G-selection.

Proof. According to the Michael selection theorem (Theorem 3.3), there exists a continu-
ous selection f : X → Y of F. Let dg be the normalized Haar measure on G. Define a new
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single-valued map ϕ : X → Y by

ϕ(x)=
∫

G
g−1 f (gx)dg, x ∈ X , (3.2)

(the symbol on the right-hand side denotes the vector-valued integral with respect to the
Haar measure).

We claim that ϕ is the desired G-selection of F. Indeed, since f (gx)∈ F(gx)= gF(x),
we see that g−1 f (gx) ∈ g−1(gF(x)) = F(x) for all g ∈ G. Since F(x) is a closed convex
set, we infer that the closed convex hull conv(Af ) of the set Af := {g−1 f (gx) | g ∈ G} is
contained in F(x). But the above integral belongs to conv(Af ) (see [16, Part 1, Theorem
3.27]). This yields that ϕ(x)∈ F(x).

Continuity and equivariance of the map ϕ : X → Y can be easily derived from the
corresponding properties of the integral presented in the following lemma �

Lemma 3.5 (see [1]). Assume that V is a complete (in the sense of the natural uniformity
induced from Z) convex invariant subset of a locally convex topological vector space Z on
which a compact group G acts linearly. Let C(G,V) denote the set of all continuous maps
f : G→ V endowed with the compact-open topology. Then the vector-valued Haar integral
∫

: C(G,V)→V is a well-defined continuous map satisfying the following properties:
(a)

∫
h f =

∫
f = ∫ fh for any f ∈ C(G,V) and any h ∈ G, where h f (g) = f (hg) and

fh(g)= f (gh) for all g ∈G;
(b)

∫
g ∗ f = g

∫
f for any f ∈ C(G,V) and any g ∈ G, where the action g ∗ f of G on

C(G,V) is defined by (g ∗ f )(x)= g f (x), x ∈G;
(c)

∫
f = v0, if f (G)= {v0} for a point v0 ∈V .

Also, assuming in addition that G is finite or Z is finite-dimensional, one can remove the
completeness requirement on V .

Next, we will apply Theorem 3.4 to prove the existence of a special G-selection of a
linear G-equivariant closed map of Banach G-representations.

Let E1 and E2 be Banach spaces, a : D(a) ⊂ E1 → E2 a linear closed surjective map.
Take the natural projection p : E1 → E1/Ker(a) := E1 and consider the (invertible) map
a1 : D(a1)⊂ E1 → E2, where D(a1) := p(D(a)) and a1([x]) := a(x). Put (see, e.g., [8, 9])

β(a) := sup
y∈E2\{0}

∥
∥a−1

1 (y)
∥
∥

‖y‖ = sup
y∈E2\{0}

inf
{‖x‖ | x ∈ E1, a(x)= y

}

‖y‖ . (3.3)

Lemma 3.6. Let E1 and E2 be Banach isometric G-representations, a : D(a) ⊂ E1 → E2 a
G-equivariant linear closed surjective map, and k > β(a) (cf. (3.3)). Then there exists a G-
equivariant continuous map q : E2 → E1 satisfying the following conditions:

(i) a(q(y))= y for all y ∈ E2;
(ii) q(y)≤ k‖y‖ for all y ∈ E2.

Proof. Denote by a−1 a multivalued map from E2 to E1 “inverse” to a, that is, a−1 assigns
to each y ∈ E2 its full inverse image under a. Obviously, a−1 is a multivalued G-map with
nonempty closed convex values. Moreover (cf. [2, Chapter 3], [8, 9]), a−1 is l.s.c. (even
Lipschitzian with the Lipschitz constant β(a)).
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Consider together with a−1 another multivalued map Φ from E2 to E1 defined by
Φ(y) := Br(y)[0], where Br(y)[0] is the closed ball of radius r(y) = β(a)‖y‖+ 1 centered
at the origin of E1. Obviously, Φ is also G-equivariant. Put F(y) := a−1(y)∩Φ(y). Still F
is a G-equivariant l.s.c map with nonempty closed convex values.

By Theorem 3.4, there exists a G-equivariant selection q : E2 → E1 of F. By construc-
tion, q is as required. �

Remark 3.7. Lemma 3.6 is quite obvious in the case dimker(a) <∞. Indeed, one has a di-
rect sum decomposition E1 =V ⊕ ker(a) andV is isomorphic to E2 as aG-representation.
However, in general, ker(a) is not complementable and, therefore, one can think of q as
a nonlinear equivariant replacement for the corresponding G-isomorphism (the use of
G-selections in this case seems to be unavoidable).

4. Main result: formulation and reduction to a fixed point problem

To formulate the main result of this paper (see Theorem 4.3), we need some preliminar-
ies.

Definition 4.1. Let E1, E2 be Banach spaces, a : D(a)⊂ E1 → E2 a closed surjective linear
map. A continuous map g : X ⊂ E1 → E2 is said to be a-compact if the set g(B∩ a−1(A)) is
compact for any bounded sets A⊂ E2 and B ⊂ X (the empty set is compact by definition).

To give a simple criterion for the a-compactness of g, recall that the graph norm makes
D(a) a Banach space, denoted by Ẽ. Clearly, the embedding j : Ẽ→ E1 is continuous. Put
X̃ := j−1(X) and consider the map g̃ : X̃ → E2 defined by g̃(x)= g( j(x)).

Proposition 4.2. Under the above notations, g is a-compact if and only if g̃ is compact.

As the proof of this proposition is straightforward, we omit it.
Here is our main result.

Theorem 4.3. Take an index theory ind satisfying the dimension property with some nat-
ural number d (cf. Definitions 2.3 and 2.5). Let E1, E2 be Banach G-representations and
EG

2 = {0}. Let, further, a : D(a) ⊂ E1 → E2 be a closed surjective G-equivariant linear map
such that EG

1 is a proper finite-dimensional subspace of ker(a), and denote by p the codi-
mension of EG

1 in ker(a) (the case p =∞ is not excluded). Let f : D( f )⊂ SR→ E2 satisfy the
following conditions:

(i) D( f )=D(a)∩ SR;
(ii) f is G-equivariant;

(iii) f is a-compact.
Denote by N(a, f ) the solution set to the equation

a(x)= f (x). (4.1)

Then,

ind
(
N(a, f )

)≥ p

d
. (4.2)
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The proof of Theorem 4.3 will be given in the next section. Here, by means of Lemma
3.6, we will reduce the study of (4.1) to a G-equivariant fixed point problem with a com-
pact operator.

By assumption, EG
1 is finite-dimensional, hence we have a direct sumG-decomposition

E1 = EG
1 ⊕ Ẽ1. Put ã := a|Ẽ1∩D(a)—the restriction. Since, by assumption, EG

1 ⊂ ker(a), we

still have that ã is a closed G-equivariant surjective map. Let q : E2 → Ẽ1 be the map pro-
vided by Lemma 3.6 (applied to ã).

Next, define the map g : D(a)∩ Ẽ1 → E2 by

g(x)=
⎧
⎪⎨

⎪⎩

‖x‖
R

f
(
Rx

‖x‖
)

, x 
= 0,

0, x = 0.
(4.3)

Further, take a direct sum G-decomposition ker(a) = EG
1 ⊕U (dimU = p), consider the

Banach G-representation E := E2 ⊕U equipped with diagonal G-action and the norm
‖(y,u)‖ = ‖y‖+ ‖u‖, and define the map α : E→ E2 by α(y,u) := g(q(y) + u). Since q
and g are equivariant, so is α. Let us show that α is a compact map.

Take a bounded set A⊂ E. Without loss of generality, one can assume that A= A1×U1

with A1 ⊂ E2 and U1 ⊂ U . By Lemma 3.6(ii), the set A2 := {q(y) + u | (y,u)∈ A} is also
bounded. Obviously, A2 ⊂ a−1(A1). By the a-compactness of g, one concludes that the set
g(A2)= α(A) is compact.

Finally, take the unit sphere S⊂ E and consider the equation

α(y,u)= y (y,u)∈ S. (4.4)

Lemma 4.4. Let N(α) be the solution set to (4.4), and define the map γ : N(α) ⊂ S ⊂ E→
SR ⊂ E1 by γ(y,u) := R((q(y) +u)/‖q(y) +u‖). Then

(i) γ is an equivariant homeomorphism onto its image;
(ii) γ(N(α))⊂N(a, f ).

Statement (i) follows immediately from Lemma 3.6(i). To show statement (ii), take
(y0,u0)∈ S being a solution to (4.4). Obviously, z0 := q(y0) +u0 
= 0. By direct computa-
tion,

f

(
Rz0∥
∥z0

∥
∥

)

= R
∥
∥z0

∥
∥ y0. (4.5)

On the other hand, using the linearity of a, one obtains

a
(
z0
)= y0. (4.6)

Combining (4.5) and (4.6) yields x0 := Rz0/‖z0‖ ∈N(a, f ).

5. Proof of the main result (Theorem 4.3)

Throughout this section, we keep the same notations as in the previous section (in par-
ticular, ker(a) = EG

1 ⊕U and E := E2 ⊕U). The proof of Theorem 4.3 splits into three
steps.
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Step 1 (finite-dimensional case). Under the assumptions of Theorem 4.3, suppose that
dimE <∞ and consider the equivariant map Φ : S ⊂ E→ E2 ⊂ E defined by Φ(y,u) :=
α(y,u)− y. Then N(α)=Φ−1(0). By the continuity property of ind, there exists a closed
neighborhood � of N(α) such that

ind
(
N(α)

)= ind(�). (5.1)

By the subadditivity property, one has

ind(S)≤ ind(�) + ind(S \�). (5.2)

Combining (5.1) and (5.2) yields

ind
(
N(α)

)≥ ind(S)− ind(S \�). (5.3)

Observe that the equivariant map Φ takes S \� to E2 \ {0}. Therefore, by the monotonic-
ity property,

ind(S \�)≤ ind
(
E2 \ {0}

)
. (5.4)

Further, S∩E2 is a G-retract of E2 \ {0}, therefore, it follows from (5.4) and monotonicity
property that

ind(S \�)≤ ind
(
S∩E2

)
. (5.5)

Combining (5.3) and (5.5) yields

ind
(
N(α)

)≥ ind(S)− ind
(
S∩E2

)
. (5.6)

Finally, using (5.6) and the dimension property of ind, one obtains

ind
(
N(α)

)≥ dimE

d
− dimE2

d
, (5.7)

and the result follows in the considered case.
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Step 2 (finite-dimensional kernel). Under the assumptions of Theorem 4.3, suppose that
dimU <∞ and reduce this situation to the previous step.

Put X := conv(α(S)) ⊂ E2. For any ε > 0, take the finite-dimensional G-equivariant
Schauder projection pε : X → X (see, e.g., [12, pages 69–70]) satisfying the property

∥
∥y− pε(y)

∥
∥ < ε (y ∈ X), (5.8)

and put αε := pεα. Denote by N(αε) the solution set to the equation αε(y,u)= y, (y,u)∈S.

Lemma 5.1. Under the above notations, ind(N(αε))≤ ind(N(α)) for all ε small enough.

Proof. By continuity property of ind, there exists a closed invariant neighborhood � ⊃
N(α) such that ind(�) = ind(N(α)). Since N(α) is compact, without loss of generality,
one can assume that � is a uniform δ-neighborhood: � =�δ(N(α)) := {z ∈ E | ‖z−
N(α)‖ < δ} for δ > 0 small enough.

Let us show, first, that there exists ε0 > 0 such that N(αε)⊂�δ(N(α)) for all 0 < ε < ε0.
Arguing indirectly, assume that for any n∈N, there exists (yn,un)∈N(α1/n) such that

∥
∥
(
yn,un

)−N(α)
∥
∥≥ δ. (5.9)

However, according to the definition of X and inequality (5.8), one has α(yn,un)∈ X and
‖yn − α(yn,un)‖ < 1/n. Since X and the unit sphere of U are compact, without loss of
generality, one can assume that yn→ y∗ and un→ u∗. Moreover, (y∗,u∗)∈ S. By passing
to the limit, one obtains α(y∗,u∗)= y∗ that contradicts (5.9).

Therefore, the statement of Lemma 5.1 follows from monotonicity property of ind.
�

Return to the proof of Theorem 4.3 in the considered case. Take ε small enough and the
Schauder projection pε satisfying (5.8). Let Rk ⊂ E2 be the invariant finite-dimensional
subspace containing pε(X). Put α′ε := αε|Rk⊕U and let N(α′ε) stand for the solution set to
the equation α′ε(y,u) = y. Combining the result obtained at the previous step with the
monotonicity property of ind, one obtains

p

d
≤ ind

(
N
(
α′ε
))≤ ind

(
N
(
αε
))≤ ind

(
N(α)

)
. (5.10)

Step 3 (infinite-dimensional kernel). Under the assumptions of Theorem 4.3, suppose
that p =∞ and take a finite-dimensional invariant subspace V ⊂ U (cf. [20, Section 4
and Appendix C] or [21, page 57]). Put E′ := E2 ⊕V and αV := α|E′ . Denote by N(αV )
the solution set to the equation

αV (y,u)= y
(
y ∈ E2, u∈V

)
. (5.11)
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By monotonicity property, N(αV ) ⊂ N(α) implies that ind(N(α)) ≥ ind(N(αV )). How-
ever (see Step 2), ind(αV )≥ dimV/d. Bearing in mind that dimV can be chosen arbitrar-
ily large (see again [20, Section 4 and Appendix C]), one obtains ind(N(α))=∞.

To complete the proof of Theorem 4.3, it remains to combine Steps 2 and 3 with
Lemma 4.4 and the monotonicity property of ind.

Corollary 5.2. Under the assumptions of Theorem 4.3, suppose that p=∞. Then dimN(a,
f )=∞.

Proof. Arguing indirectly, assume that dimN(a, f ) is finite. Then N(a, f ) is compact and,
therefore, ind(N(a, f )) is finite as well. The obtained contradiction completes the proof.

�

6. Application

Let Λ be a finite-dimensional linear space (thought of as a parameter space) and b :
Rn ×Λ→ Rn a continuous map. Let, further, C2π

[0,2π] be the space of continuous func-
tions x : [0,2π] → Rn with x(0) = x(2π) (equipped with the standard sup-norm). Put
E1 := C2π

[0,2π]⊕Λ and ‖(x,λ)‖E1 := ‖x‖+‖λ‖.
Consider the following problem.

Problem 6.1. Given a real number R > 0, do there exist a differentiable 2π-periodic vector-
function x :R→Rn and λ∈Λ such that

x′(t)= b
(
x(t),λ

)− 1
2π

∫ 2π

0
b
(
x(s),λ

)
ds ∀t ∈R, (6.1)

and ‖(x,λ)‖E1 = R? In addition, what can be said about the topological structure of the so-
lution set N(b) to the above problem?

Assume, in addition, Λ is an (isometric) S1-representation satisfying the condition
(∗) ΛS1 = {0}.
In particular, dimΛ is even and we will assume that
(∗∗) dimΛ > 0.
Identify C2π

[0,2π] with the space of continuous functions x : S1 →Rn and define on it the
natural (isometric) S1-representation: (hx)(t) = x(t +ϕ), where h= exp(iϕ) ∈ S1. Equip
E1 with the diagonal S1-action.

Assume, further, the map b from Problem 6.1 to be S1-invariant in the second variable,
that is,

(∗∗∗) b(x,hλ)= b(x,λ) for all x ∈Rn, λ∈Λ, h∈ S1.

Proposition 6.2. Under the assumptions (∗), (∗∗), and (∗∗∗), one has the following
genus estimate for N(b):

g
(
N(b)

)≥ dimΛ

2
(6.2)

(in particular, N(b) 
= ∅).
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Proof. Observe, first, that by condition (∗),

ES1

1 =
{(
x(·),0

) | x(·) is a constant function
}
. (6.3)

Next, denote by C[0.2π] the space of continuous functions from [0,2π] to Rn with the
standard sup-norm, and let d : D(d) ⊂ C2π

[0,2π] → C[0,2π] be the differentiation operator,
where

D(d)=
{
x(·)∈ C[2π]

[0,2π]

∣
∣
∣x(·) is smooth and x′(0)= x′(2π)

}
. (6.4)

Obviously, d is closed and ker(d) coincides with the set of constant functions.
Consider now the operator a : D(a)⊂ E1 → C[0,2π] defined by

a
(
x(·),λ

)
:= x′(·). (6.5)

Obviously,D(a)=D(d)⊕Λ and ker(a)= ker(d)⊕Λ. Moreover, a is still a closed operator.
Put

E2 := Im(a)=
{

y(·)∈ C[0,2π]

∣
∣
∣

∫ 2π

0
y(s)ds= 0, y(0)= y(2π)

}

. (6.6)

By direct computation, E2 is a closed S1-invariant subset of C2π
[0,2π], and a is equivariant.

Also, ES1

2 = {0}.
Consider now a nonlinear continuous map f determined by the right-hand side of

(6.1):

y(t) := f (x,λ)(t)= b
(
x(t),λ

)− 1
2π

∫ 2π

0
b
(
x(s),λ

)
ds. (6.7)

Obviously, y(0) = y(2π) and
∫ 2π

0 y(s)ds = 0. Hence, f takes E1 to E2. Moreover, since
Λ is assumed to be finite-dimensional, the map f is a-compact. To check that f is S1-
equivariant, take h= exp(iϕ)∈ S1. Using condition (∗∗∗), we have

f
(
h
(
x(t),λ

))= f
(
h
(
x(t),hλ

))= f
(
h
(
x(t),λ

)
)− 1

2π

∫

g
(
h
(
x(s)

)
,λ
)
ds

= g
(
x(t+ϕ),λ

)− 1
2π

∫ 2π

0
g
(
x(s+ϕ),λ

)
ds= h f

(
x(t),λ

)
.

(6.8)

To complete the proof of Proposition 6.2, take the sphere SR ⊂ E1 and apply Theorem 4.3
(cf. condition (∗∗) and Example 2.6(ii)). �

Remark 6.3. (i) In Proposition 6.2, one can take any index theory (for S1) satisfying the
dimension property. Also, the segment [0,2π] is taken to simplify the presentation.
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(ii) In this paper, we restrict ourselves with the simplest illustrative example. In forth-
coming papers, more involved applications (in particular, admitting closed operators
with infinite-dimensional kernels) will be considered.
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