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In this paper we give a complete and improved proof of the “Theorem on the union of
two (n− 1)-cells.” First time it was proved by the author in the form of reduction to
the earlier author’s technique. Then the same reduction by the same method was carried
out by Kirby. The proof presented here gives a more clear reduction. We also present
here the exposition of this technique in application to the given task. Besides, we use
a modification of the method, connected with cyclic ramified coverings, that allows us
to bypass referring to the engulfing lemma as well as to other multidimensional results,
and so the theorem is proved also for spaces of any dimension. Thus, our exposition is
complete and does not require references to other works for the needed technique.
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and reproduction in any medium, provided the original work is properly cited.

1. Notations and statement of the result

Specify the standard coordinate system Ox1 ···xn with the origin O and coordinate axes
Oxi in the space Rn. The coordinate planes Ox1 ···xi will be identified with Ri. The unit
disc in Ri is denoted by Bi. The semispaces xn−1 ≥ 0 and xn−1 ≤ 0 are denoted as Rn

+ and
Rn−, respectively, while semiplanes Rn

+ ∩Rn−1 and Rn− ∩Rn−1 as Rn−1
+ and Rn−1− , respec-

tively. Semidiscs Bn−1∩Rn−1
+ and Bn−1∩Rn−1− are denoted by Bn−1

+ and Bn−1− , respectively.
We will say that an embedding q : Bi →Mn of an i-disc in a topological n-manifold

without boundary is topologically flat if one can extend it to an embedding in Mn of its
neighborhood in Rn. It is known that a topologically flat embedding of a disc into Rn

is extendable to a homeomorphism of Rn onto itself. An embedding of a submanifold is
locally flat if every point has a neighborhood in it that is homeomorphic to a disc and
the embedding on this disc is topologically flat. Any locally flat embedding of a disc is
topologically flat (see, e.g., [8]).

Theorem 1.1. Let an embedding q : Bn−1 →Rn be given, whose restrictions to both semidiscs
Bn−1

+ and Bn−1− are topologically flat. Then q is topologically flat.
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2 Union of flat (n− 1)-cells in Rn

We will denote the restriction of q onto Bn−1± as q±, respectively.
Notice an important corollary to this theorem (first time mentioned by Cantrell [1])

that in the case n≥ 4 for embedding of an (n− 1)-manifold into an n-manifold there are
no isolated points where the condition of locally flatness is destroyed. If n= 3, it is not the
case. The reason for this difference is the fact that for n≥ 4 an isolated singularity cannot
exist on the boundary of an (n− 1)-submanifold, and this is derived from the fact that in
the former dimensions the arcs with only one singularity do not exist, (see [5, 6]) while
it is well known that in the dimension 3 they do exist.

The proof of this theorem is based on a series of lemmas using the constructions of
some elementary homeomorphisms described in Section 2. Here we introduce some no-
tations.

Denote by Πα the semiplane, bounded by subspace Rn−2 and having the angle of α
radians with Rn−1

+ =Π0. (Π−π =Ππ =Rn−1− .) Q[α,β], α < β will denote a closed domain
between Πα and Πβ (Q[α,β]=∪α≤γ≤βΠγ), Q(α,β) denotes the interior of Q[α,β].

For a point z ∈ Rn we denote by xz its projection onto Rn−2 and by yz its projection
onto Rn−1.

Consider the system of 2-planes Px, x ∈Rn−2 orthogonal toRn−2 at the corresponding
points x. Consider also in every plane Px an orthonormal coordinate system with the
origin x and axes xs and xt, the former is parallel and codirected with the axe Oxn−1,
and the latter is parallel and codirected with the axe Oxn, s and t have the meaning of
coordinate parameters. For a point z ∈ Rn we denote by sz and tz its coordinates in the
plane Pxz . At last, Cx(r) will denote a circle with the radius r in the plane Px centred at x.
For a point z ∈Rn we denote by rz its distance from Rn−2, that is, the radius r of a circle
Cxz(r) passing through z.

2. Preliminary statements

The following two statements will help us to construct some elementary homeomor-
phisms of Rn that send every circle Cx(r) onto itself piecewise linearly.

Statement 2.1. Let for some α a closed subset M ⊂Rn be given such that in some neigh-
borhood of Bn−2 it does not intersect Πα \ Rn−2 and lies on one side of Πα (i.e., in
Q(α,α+π) or in Q(α−π,α)).

Then there exists a function ε(z) > 0, z ∈ Πα \Rn−2 (possibly in a smaller neighbor-
hood of Bn−2), that is continuous, tending to zero as z is tending to a point in Rn−2, and
such that for any circle Cx(r) in this neighborhood its arc with the length ε(z), having an
end in z ∈Πα and lying on one side of Πα as M, does not intersect M.

The construction of ε(z) is standard and evident, so that it may be omitted.

For z ∈Πα consider arcs of the circles Cxz(rz) having one end at z and the length ε(z),
where this function is chosen according to Statement 2.1 for some set M, the arcs are
taken on one side of Πα, as M. The surface, described by the second ends of these arcs
(i.e., not on Πα) will be called the fence separating M from Πα.

Note that every circle Cx (sufficiently close to Bn−2) intersects every Πα and every fence
exactly one time.
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Statement 2.2. Let four sets A, B, C, D in a neighborhood of Bn−2 be given so that each
of them is either a Πα or a fence, and the points of intersections of B and C with any
circle Cx(r) in this neighborhood are located between points of intersection of this circle
with the sets A and D. Then there exists a homeomorphism of Rn, identical outside a
neighborhood of Bn−2 and outside the domain between A and D (containing B and C),
that sends B into C in a smaller neighborhood.

For the proof it is sufficient to construct a homeomorphism on every circle Cx(r) in
a small neighborhood of Bn−2 that maps linearly the arc between A and B into the arc
between A and C and simultaneously the arc between B and D into the arc between
C and D, such that it is identical on the second arc between A and D. In some larger
neighborhood one can continuously reduce this homeomorphism to the identity.

The homeomorphisms constructed as in this proof will be called arcwise. Note that
arcwise homeomorphisms are naturally isotopic to the identity.

Before turning to our lemmas, let us introduce the following definitions.

Defintions 2.3. An embedding γ : Πα→Rn, being identity on Rn−2, touches Πβ at points
of Bn−2 if for every ε > 0 one can find δ > 0 so that γΠα∩Oδ(Bn−2)⊂Q[β− ε, β+ ε].

Analogously, a sequence of points zn ∈Rn touches Πα at a point x ∈ Bn−2 if for every
ε > 0 there exists nε such that zn ∈Q[β− ε, β+ ε]∩Oε(x) for all n > nε.

3. Lemmas

Lemma 3.1. Let an embedding p1 : Bn \ (Bn−1− \Bn−2)→ Rn be identical on Bn−2, and for
every α∈ [−π +π/4, π−π/4] the set p1(Πα) touches Πα. Let also p1Bn−1

+ ⊂Rn
+.

Then the cell Bn−1− ∪ p1Bn−1
+ is embedded topologically flat, that is, there is a home-

omorphism p̄1 of Rn that maps Bn−1 onto Bn−1− ∪ p1Bn−1
+ . (The tangency of Πα for α ∈

Q(−π/2,+π/2) is not essential and has only a technical role.)

Proof. First we will construct a mapping w : Rn → Rn, that orthogonally projects Bn−1−
onto Bn−2, is homeomorphic outside Bn−1− , and is identical on Rn

+. Under the given con-
ditions it is clear that the composition w−1πw coincides with p1 on Bn−1

+ . At the same
time it occurs that this composition can be extended identically on Bn−1− . The obtained
extension is the homeomorphism p̄1 we are looking for.

The beginning of this construction of w is determined by the requirements that w = 1
on Rn

+ and w(y) = xy for y ∈ Bn−1− . Extend w identically to the points y ∈ Rn−1− whose
projections xy onto Rn−2 are situated outside Bn−2. If xy ∈ Bn−2 and y ∈Rn−1− \Bn−1− , we
take as w(y) the point that is obtained from y by the shift along the direction of the axe
Oxn−1 in the distance equal to the intersection segment of Bn−1− with the axe xys in Pxy .
Thus we have constructed w on the space Rn−1.

For every point y ∈Rn−1− , we denote by Ly the straight line going through y and being
parallel to the axe Oxn. If xy lies outside Bn−2, set w = 1 on Ly .

Let y ∈ Bn−1. Define that w sends Ly isometrically into the union of two rays in Pxy
starting at the point xy ∈ Bn−2 with the angle α = ±(π/2− π/4 · sy) with respect to the
axe xys (sy < 0 is the coordinate of y in Pxy ).

Notice that α→ π/2, when sy → 0, that is, y→ xy .
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If xy ∈ Bn−2 and y ∈ Rn−1− \Bn−1, then w sends Ly isomorphically to the pair of rays
in Pxy starting at the point w(y) with the angles α = ±(π/2− π/4 · sy′), where y′ is an
intersection of the half-axe xys∩Rn− with the boundary of Bn−1.

Now w is well posed on the entireRn; it is continuous and identical onRn
+ and outside

∪x∈Bn−2Px. Also w retracts Bn−1− onto Bn−2 by the orthogonal projection and it is homeo-
morphic outside Bn−1− .

It remains to note that a sequence of points zn tends to a point y ∈ Bn−1− if and only
if w(yn) tends to xy , touching Πα ∪Π−α, where α is chosen according to the point y as
above, that is, αy =±(π/2−π/4 · sy).

Indeed, take a spherical neighborhood Vε with radius ε > 0 of a point xy in the plane
xn−1 = 0 and consider the set Wε of points z ∈Rn− that are projected to Vε. Let Uε(y) be
the intersection of Wε with the domain between two planes, being parallel to xn−1 = 0
and located on different sides of y in the distance ε. Let U ′

ε (xy) be the intersection of Wε

with Q(αy −π/2 · ε, αy +π/2 · ε)∪Q(−αy − π/2 · ε,−αy +π/2 · ε). Then for every ε′ > 0
one can find a ε > 0 such that w(Uε(y)) ⊂ U ′

ε′ , and, conversely, for every ε > 0 one can
find a ε′ such that w(Uε(y)) ⊃ U ′

ε′(xy). Hence the sequence of points zn ∈ Rn tends to
y ∈ IntBn−1− if and only if w(zn) tends to xy and touches Παy ∪Π−αy .

A sequence zn tends to y ∈ ∂Bn−1− \ Bn−2 if and only if wzn → xy and for every ε > 0
there exists n0 such that for n > n0 all zn are located outside Q(−π/2− π/4 + ε, +π/2 +
π/4− ε). It is clear that the same property is fulfilled for the sequence hw(zn).

This proves that the homeomorphism p̃1 =w−1p1w is extended identically to Bn−1− , as
what was in demand. The constructed homeomorphism p̃1 coincides with the given p1

on Bn−1
+ and is identical on Bn−1

+ . Thus, the union of cells Bn−1− ∪ p1Bn−1
+ = p̄1Bn is em-

bedded locally flat at least at the points of Bn−1 \ ∂Bn−2. But then one can easily construct
a homeomorphism of the whole space that sends Bn−1− ∪ p1Bn−1

+ into Bn−1− . It is a standard
construction (see [3]), which we leave as an exercise. So, the embedding of Bn−1− ∪ p1Bn−1

+

is topologically flat. �

Lemma 3.2. The assertion of Lemma 3.1 is true for the embedding p2 : Q[−π/2,π/2] →
Q[−π/2,π/2], for which p2Πα touches Πα with α∈ (−π/2,π/2), p2Bn−1

+ ⊂Q(−π/4,π/4).

Proof. Construct the arc homeomorphism ρ : Q[−π,π] → Q[−π/2,π/2], identical on
Q[−π/4,π/4], that sends linearly the arc of each circle Cx(r) between the points of its
intersections with Ππ and Ππ/4 to the arc between its intersections with Ππ/2, Ππ/4, and,
analogously, sends the arc between Π−π and Π−π/4 to the arc between Ππ/2 and Π−π/4.
It is clear that touching Πα is transformed into touching ρΠα. Then, the hypothesis of
Lemma 3.1 is satisfied for ρ−1p2ρ that coincides with p2 on Bn−2

+ . Thus, the embedding
of the cell Bn−1− ∪ p2Bn−2

+ is topologically flat. �

Lemma 3.3. Let an embedding p3 :Rn
+ →Rn

+ be given in some neighborhood of Bn−2, where
the images of Π−π/2, Ππ/2, and two more semiplanes Πα, −π/2 < α < π/2 (let them be for
definiteness Π−π/4 and Π0) touch their preimages: Π−π/2, Ππ/2, Π−π/4, Π0 at the points of
Bn−2.

Then there exists an isotopy φt : Rn → Rn, identical outside p3Rn
+ and outside a given

neighborhood of Bn−2, such that φ0=1 and p̄3Πα=φ1p3Πα touches Πα at the points of Bn−2

for all α∈[−π/2,π/2]. In particular, the condition of Lemma 3.2 for p2 is fulfilled for p̄3.
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Proof. At first note that if the hypothesis of touching is fulfilled for some dense set of
α∈ [−π/2,π/2], it will be fulfilled for all α from this interval. So, we will try to obtain its
fulfillment for a countable dense set of values, namely for the set {α= πd}, where d is a
dyadic rational and |d| ≤ 1/2.

Enumerate these numbers into a sequence αk (starting with the four given values of
α), and begin constructing a countable sequence of εk-isotopies φ(k), each of which is
identical on the εk-neighborhood of Bn−2 and achieves the touching condition for the
homeomorphism φ(k) ···φ(1)p3 at the points of Bn−2 for every next αk without loosing
this property for the preceding αi.

In this construction, independently from the preceding steps, one may take the num-

bers εk arbitrarily small. Hence the sequence of isotopies φ(k)
t ···φ(1)

t will tend to an iso-
topy, and in the limit the touching condition will be fulfilled for all α∈ [−π/2,π/2].

It is sufficient to describe one step of the construction, say, for values of α given in the
lemma. Next steps are absolutely analogous.

Let us show how to obtain this touching condition for α = π/4. The construction of
the isotopy in demand takes several steps. �

Step 1. Note that by applying the arcwise homeomorphisms one can get that the images
of Πα touch Πα on one side; for example, that p3Π0 touches Π0 and lies in Q(0,π/2),
and p3Π−π/4 touches Π−π/4 and lies in Q(−π/4,0). (Certainly, it is sufficient for each
touching condition to be fullfilled in a small neighborhood of Bn−2.) Let us show this for
p3Π0.

Note that Π3π/8 and Ππ/4 lie in a small neighborhood of Bn−2 between p3Ππ/2 and p3Π0

and do not intersect them except for Rn−2.
Construct an arcwise homeomorphism τ′, identical outside Q(0,3π/8), that sends

Ππ/4 to the fence S0 touching Π0. Replace p3 by p̃3 = τ′p3. All the hypotheses of the
lemma remain true, but now p̃3Π0 lies between the fence S0 and Π−π/16 (in a small neigh-
borhood of Bn−2), since p̃3Π0 touches Π0.

Construct now an arcwise homeomorphism τ′′, identical outside the domain in Rn
+

bounded by S0 and Π−π/8, that sends Ππ/16 to Π0. The lemma’s hypotheses remain true
after replacing p̃3 by p◦3 = τ′′ p̃3, but then p◦3Π0 lies between Π0 and S0, that is, on one
side of Π0.

Thus from the very beginning we may suppose that p3Π0 lies in Q(0,π/4) and touches
Π0 as well as, analogously, that p3Π−π/4 ⊂ Q(−π/4,0) and touches Π−π/2. Moreover,
p3Ππ/2 ⊂ Q(π/4,π/2) and touches Ππ/2 as well as p3Π−π/2 ⊂ Q(−π/2,−π/4) and
touches Π−π/2.

Step 2. Construct an arcwise homeomorphism τ1, identical outside Q(0,π/2), that sends
Ππ/4 to the fence S1 touching Π0, closely to Π0 so that p3S1 ⊂Q(0,π/4). Let t1 = p3τ1p

−1
3 .

Then t1 = 1 outside p3Q(0,π/2) and t1p3Ππ/4 ⊂Q(0,π/4). Let p′3 = t1p3.

Step 3. Construct now a fence S2 touching Π−π/4 closely so that p′3S2 lies in Q(−π/4,0).

Let τ2 be an arcwise homeomorphism identical outside Q(−π/4,π/4) that sends Π0

to S2. Let t2 = p′3τ2p
′−1
3 . Then t2 = 1 outside p′3Q(−π/4,π/4), t2p′3Π0 ⊂ Q(−π/4,0), and

t2p
′
3Ππ/4 ⊂Q(0,π/4). Let p′′3 = t2p′3.
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Step 4. Construct a fence S2 that touches Π0 and separates Π0 from p′′3 Ππ/4. Construct
also another fence S′2 touching Ππ/4 and lying in Q(0,π/4). Let τ3 be an arcwise homeo-
morphism, identical outside of Q(0,π/4), that sends S2 to S′2. Then p′′′3 = τ3p

′′
3 Ππ/4 lies

in the domain between Ππ/4 and S′2, that is, it touches Ππ/4 on one side.

Step 5. Consider now the homeomorphism p̄3 = t−1
2 π′′′3 = t−1

2 τ3t2t1p3. It is clear that
p̄3 = p3 on Π−π/2 ∪Ππ/2 ∪Π−π/4 ∪Π0 and that p̄3Ππ/4 touches Ππ/4 on one side. Since
p̄3 · p−1

3 is identical on Π−π/2∪Ππ/2, there is an isotopy φt, identical outsideQ(−π/2,π/2)
and such that φ0 = 1, φ1 = p̄3p

−1
3 , that is, p̄3 = φ1p3.

It is clear that one can make this isotopy ε-small and identical outside the ε-neighbor-
hood of Bn−2 for any given ε. All conditions of the lemma are satisfied.

Lemma 3.4. Let a homeomorphism p4 :Rn→Rn be identical onRn−2 such that p4Qk ⊂Qk,
0≤ k ≤ 3 where Q0 =Q[−π/8,π/8] and Qi, 1≤ i≤ 3 are obtained from Q0 by consecutive
turns by 90◦ counter-clockwise (from xn−1 to xn).

Then for every ε > 0 there exists a ε-isotopy ψt :Rn →Rn, identical on Rn−2 and outside
a given neighborhood of Bn−2, and such that in a smaller neighborhood of Bn−2 the homeo-
morphism p̄4 = ψ1p4, restricted to Rn

+, fulfills the conditions of Lemma 3.3 for p3.

The proof of this lemma follows form an evident construction with arcwise homeo-
morphisms.

First of all, one may assume, as in the proof of the preceding lemma, that in a neigh-
borhood of Bn−2 the images of Παk for αk = kπ/2, 0≤ k ≤ 3 touch Παk at points of Bn−2

and on the wishful side of Παk .
Indeed, letΠ±π/4 andΠ±3π/4 remain immovable. Move the semiplanesΠ+π/8 andΠ−π/8

by an arcwise homeomorphism σ0, that is identical outside Q[−π/4,π/4], to Π0 and to a
fence S0 that touches Π0, respectively.

By the same way, let an arcwise homeomorphism σ1, identical outside Q[π/4,3π/4],
move the semiplane Ππ/2+π/8 to Ππ/2 and Ππ/2−π/8 to a fence S1 touching Ππ/2. Let σ2 be
an arcwise homeomorphism, identical outside Q[3π/4,5π/4], that sends Π−π−π/8 to Π−π
and Π−π+π/8 to a fence S2 touching Π−π .

At last, let σ3 be an arcwise homeomorphism that is identical outside Q[−3π/4,−π/4]
and sends Π−π/2−π/8 and Π−π/2+π/8 to Π−π/2 and to a fence S3 touching Π−π/2, respectively.

Let σ be a homeomorphism that in each fourth-space, limited by semiplanes Π±π/4
and Π±3π/4, coincides with the corresponding σk, 0≤ k ≤ 3. Construct an arcwise home-
omorphism τ :Rn→Rn that sends the domain betweenΠπ and S2 to the domain between
Π−π/2 and S3 as well as the domain between Π−π/2 and S3 to the domain between Π−π/4
and a fence touching Π−π/4. Also, let τ = 1 in Q[−π/8,π −π/8] and on Π±π/4∪Π±3π/4.

It is clear that p̄4 = τσ p4 satisfies the hypothesis of Lemma 3.3 for p3. Namely, p̄4Rn
+ ⊂

Rn
+, p̄4Π±π/2 touches Π±π/2, p̄4Π0 touches Π0, and p̄4Π−π/4 touches Π−π/4; also, p̄4 is

isotopic to p4 by a small isotopy, since an arcwise homeomorphism is isotopic to the
identity and its mesh does not supersede diameters of circles Cx(r) and of their images
on which it is not identical.

It should be pointed out that the homeomorphism τ, constructed above, is identical
on Ππ/2+π/4.
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Lemma 3.5. Assume that there exists a homeomorphism p5 :Rn→Rn such that p5Q[−π/8,
π/8]⊂Q(−π/8,π/8).

There is an isotopy χt :Rn →Rn, identical on Rn−2 and outside a neighborhood of Bn−2,
such that χ0 = 1 and χ1p5 = p̄5 satisfies the hypothesis of Lemma 3.4 for p4 and coincides
with p5 on Bn−1− ∪ p5Bn−1

+ .

Proof. Consider the 4-sheeted covering ν :Rn
2 →Rn

1, branched over the subspace Rn−2
1 ⊂

Rn
1. (It is convenient to indicate distinction between the same objects in the domain and

in the image spaces of the covering ν by means of lower indices.) Denote by j :Rn
2 →Rn

1

the natural identification of both spaces. Let us concretize the covering by identifying
every plane Pkx ⊂ Rn

i , where x ∈ Rn−2
k , k = 1,2, with the complex line C1 (xs is the real

and xt is the imaginary axes), and by representing ν as the function z �→ ei·3ϕz z, where
z = ρzeiϕz . Here j = ν on Rn−1

2+ .
According to the hypothesis of Lemma 3.4 the homeomorphism p5 :Rn

1 →Rn
1 is given.

Consider the homeomorphism p̃5 :Rn
2 →Rn

2, covering p5 (ν p̃5 = p5ν). We have ν p̃5 = p5 j
on Rn−1

2+ .
Construct now a homeomorphism β : Rn

2 → Rn
2, patching up the covering p so that

νβ = j on Q2[−π/8,π/8]. Namely, β is an arcwise homeomorphism, identical on
Q2[−π/4,π/4], that sends Q2[−π/8,π/8] into Q2[−π/32,π/32]. (One may analogously
redefine β on other three quadrants, separated by planes xn =±xn−1, so that the mapping
would remain a covering, but it is not important for us.)

As a result, νβ−1 = j onQ2[−π/8,π/8]. The homeomorphism p̄5 :Rn
1 →Rn

1, defined by
equality p̄5 = jβ−1 p̃5β j−1, coincides on Q1[−π/8,π/8] with p5 = νββ−1ν−1p5νββ−1ν−1.
Moreover,

p̄5Q1[−kπ/8,kπ/8]⊂Q1[−kπ/8,kπ/8], 0≤ k ≤ 3. (3.1)

So, p̄5 satisfies the hypothesis of Lemma 3.4 for the homeomorphism p4, as what is re-
quired.

Besides, p̄5 is isotopic to the homeomorphism p5 under isotopy that is identical on
Rn−2

1 , since p̄5p
−1
5 is identical on Q1[−π/8,π/8]. �

4. Proof of the theorem

Since the embedding q− is topologically flat, it can be extended to a homeomorphism
of Rn and so we can assume that q is identical on Bn−1− . Construct two fences S−π and
Sπ on two different sides of Bn−1− , that are touching Rn−1 from above and from below
and separating Bn−1− from qBn−1

+ . Then move them by an arcwise homeomorphism τ,
identical on Bn−1− , onto Π−π/8 and onto Ππ/8, respectively, and replace q with q̃ = τq. We
obtain q̃Bn−1

+ ⊂Q(−π/8,π/8). Suppose that this is valid for q from the very beginning.
Since q+ is topologically flat, it can be extended to a homeomorphism h : Rn → Rn

(h|Bn−1
+
= q|Bn−1

+
⊂ Q(−π/8, +π/8) ⊂ Rn

+). As hBn−1
+ ∩ Bn−1− = Bn−2, applying as well as

above the arcwise homeomorphisms, identical on Bn−1− , one can wangle hQ[−π/2,π/2]⊂
Q(−π/2,π/2).
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Thus the assertion of our theorem now takes the following form.

Theorem 4.1. Suppose that there is a homeomorphism h : Rn → Rn, for which hBn−1
+ ⊂

Q(−π/8,π/8). Then the cell Bn−1− ∪ hBn−1
+ is topologically flat. More precisely: there exists a

homeomorphism h̄ :Rn→Rn, identical on Bn−1− , that coincides with h on Bn−1
+ .

The proof of this statement follows from the above sequence of lemmas as follows:
First, having constructed an arcwise homeomorphism γ, identical on Rn−, that sends

Π−π/8 and Ππ/8, respectively, to fences S− and S+, touching Π0 from below and from above
and separating Π0 from h−1Π−π/8 and h−1Ππ/8, we may replace h by a homeomorphism
hγ that coincides with h on Bn−1

+ and moves Q[−π/8,π/8] into Q(−π/8,π/8). Then we
obtain a homeomorphism satisfying the hypotheses of Lemma 3.5 for p5.

By Lemma 3.5 we obtain a homeomorphism that coincides with the given h on Bn−1
+

and satisfies the hypotheses of Lemma 3.4 for the homeomorphism p4. By Lemma 3.4 we
can construct a homeomorphism p̄4 that satisfies the condition for p3 from Lemma 3.3,
is isotopic to p4, and is identical on Π3π/4 by its construction.

Denote byD the semiball in Π3π/4, bounded by Bn−2, and by γ the arcwise homeomor-
phism, constructed in Lemma 3.4, that is identical on D. Evidently, the cell Bn−1− ∪hBn−1

+

is topologically flat if and only if the same is true for the cell D∪ hBn−1
+ , if and only if it

is so for D∪ γhBn−1
+ , and if and only if it is so for Bn−1− ∪ γhBn−1

+ , because these cells are
obtained one from another by the application of some (arcwise) homeomorphisms of the
space.

So, it is sufficient to prove that the cell Bn−1− ∪ p3Bn−1
+ is topologically flat, where p3 is

the embedding given in Lemma 3.3.
According to Lemma 3.3 we can replace p3 by an embedding, isotopic to p3 under the

isotopy, identical on Bn−1− , that satisfies the conditions of Lemma 3.2. This isotopy sends
the cell Bn−1− ∪ p3Bn−1

+ to the cell Bn−1− ∪ p̄3Bn−1
+ = Bn−1− ∪ p2Bn−1

+ and we have to prove
that the latter is locally flat. But this is the assertion of Lemma 3.2.

The theorem follows.
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