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1. Introduction

In 1940, S. M. Ulam gave a wide ranging talk before the Mathematics Club of the Univer-
sity of Wisconsin in which he discussed a number of important unsolved problems [1].
Among those was the question concerning the stability of homomorphisms. Let G1 be a
group and let G2 be a metric group with a metric d(·,·). Given any δ > 0, does there exist
an ε > 0 such that if a function h : G1→G2 satisfies the inequality d(h(xy),h(x)h(y)) < ε
for all x, y ∈ G1, then there exists a homomorphism H : G1→G2 with d(h(x),H(x)) < δ
for all x ∈G1?

In the following year, Hyers [2] partially solved the Ulam’s problem for the case where
G1 and G2 are Banach spaces. Furthermore, the result of Hyers has been generalized by
Rassias [3]. Since then, the stability problems of various functional equations have been
investigated by many authors (see [4–7]).

We will now consider the Hyers-Ulam stability problem for the differential equations.
Assume that X is a normed space over a scalar field K and that I is an open interval,
where K denotes either R or C. Let a0,a1, . . . ,an : I→K be given continuous functions,
let g : I→X be a given continuous function, and let y : I→X be an n times continuously
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differentiable function satisfying the inequality

∥
∥an(t)y(n)(t) + an−1(t)y(n−1)(t) + ··· + a1(t)y′(t) + a0(t)y(t) + g(t)

∥
∥≤ ε (1.1)

for all t ∈ I and for a given ε > 0. If there exists an n times continuously differentiable
function y0 : I→X satisfying

an(t)y(n)
0 (t) + an−1(t)y(n−1)

0 (t) + ··· + a1(t)y′0(t) + a0(t)y0(t) + g(t)= 0 (1.2)

and ‖y(t)−y0(t)‖≤K(ε) for any t∈I , where K(ε) is an expression of ε with lim ε→0K(ε)=
0, then we say that the above differential equation has the Hyers-Ulam stability. For more
detailed definitions of the Hyers-Ulam stability, we refer the reader to [4–6].

Alsina and Ger were the first authors who investigated the Hyers-Ulam stability of
differential equations. They proved in [8] that if a differentiable function f : I→R is a
solution of the differential inequality |y′(t)− y(t)| ≤ ε, where I is an open subinterval of
R, then there exists a solution f0 : I→R of the differential equation y′(t)= y(t) such that
| f (t)− f0(t)| ≤ 3ε for any t ∈ I .

This result of Alsina and Ger has been generalized by Takahasi et al. They proved in [9]
that the Hyers-Ulam stability holds true for the Banach space valued differential equation
y′(t)= λy(t) (see also [10, 11]).

Moreover, Miura et al. [12] investigated the Hyers-Ulam stability of the nth order
linear differential equation with complex coefficients. They [13] also proved the Hyers-
Ulam stability of linear differential equations of first order, y′(t) + g(t)y(t) = 0, where
g(t) is a continuous function. Indeed, they dealt with the differential inequality ‖y′(t) +
g(t)y(t)‖ ≤ ε for some ε > 0. Recently, the author proved the Hyers-Ulam stability of var-
ious linear differential equations of the first order (see [14–17]).

In Section 2 of this paper, we will investigate the general solution of the nonhomoge-
neous Legendre’s differential equation of the form

(

1− x2)y′′(x)− 2xy′(x) + p(p+ 1)y(x)=
∞
∑

m=0

amx
m, (1.3)

where the parameter p is a given real number and the coefficients am’s of the power series
are given such that the radius of convergence is positive.

In Section 3, we will give a partial solution to the Hyers-Ulam stability problem for the
Legendre’s differential equation (2.1) in the class of analytic functions.

2. Nonhomogeneous Legendre’s equation

A function is called a Legendre function if it satisfies the Legendre’s differential equation

(

1− x2)y′′(x)− 2xy′(x) + p(p+ 1)y(x)= 0. (2.1)
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The Legendre’s equation plays a great role in physics and engineering. In particular,
this equation is most useful for treating the boundary value problems exhibiting spherical
symmetry.

In this section, we define

cm = 1
m!

[m/2]
∑

i=1

(m− 2i)!am−2i

i−1
∏

j=1

(m− 2 j− p)(m− 2 j + p+ 1) (2.2)

for each m ∈ {2,3, . . .}, where [m/2] denotes the largest integer not exceeding m/2 and
we refer to (1.3) for the am’s. By some manipulations, we get

cm+2 = 1
(m+ 2)(m+ 1)

am +
(m− p)(m+ p+ 1)

(m+ 2)(m+ 1)
cm (2.3)

for any m∈ {2,3, . . .}.
Using these definitions and relations above, we will solve the nonhomogeneous Le-

gendre’s equation (1.3).

Theorem 2.1. Assume that p is a given real number and the radius of convergence of the
power series

∑∞
m=0amx

m is ρ0 > 0. Moreover, suppose that there exist real numbers σ1 and
σ2 with

σ1 =

⎧

⎪⎪⎨

⎪⎪⎩

lim
k→∞

∣
∣
∣
∣

1
(2k+ 2)(2k+ 1)

a2k

c2k

∣
∣
∣
∣ if the limit exists

−1 if c2k = 0 for all sufficiently large k,

σ2 =

⎧

⎪⎪⎨

⎪⎪⎩

lim
k→∞

∣
∣
∣
∣

1
(2k+ 3)(2k+ 2)

a2k+1

c2k+1

∣
∣
∣
∣ if the limit exists

−1 if c2k+1 = 0 for all sufficiently large k.

(2.4)

A positive number ρ is defined by

ρ=min
{

1√
1 + σ1

,
1√

1 + σ2
,ρ0,1

}

(2.5)

with the convention 1/0=∞. Then, every solution y : (−ρ,ρ)→C of the differential equation
(1.3) can be expressed by

y(x)= yh(x) +
∞
∑

m=2

cmx
m, (2.6)

where yh(x) is a Legendre function.
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Remark 2.2. If c2k = 0 for all sufficiently large k, then
∑∞

k=1c2kx2k is indeed a polynomial
which can obviously be defined on the whole real numbers and this fact is not contrary
to our definition σ1 =−1, since in this case we have

ρ=min
{

1√
1 + σ1

,
1√

1 + σ2
,ρ0,1

}

=min
{

1√
1 + σ2

,ρ0,1
}

.

(2.7)

A similar argument is applicable to σ2.

Proof. Since each coefficient of (1.3) is analytic at x = 0, every solution of (1.3) can be
expressed as a power series of the form

y(x)=
∞
∑

m=0

bmx
m. (2.8)

(0 is an ordinary point of (1.3) and ±1 are the nearest singular points of the equation.
So, the radius of convergence of the above power series is at least 1. This fact is consistent
with the domain of y).

Substituting (2.8) into (1.3) and collecting like powers together, we have

(

1− x2
)

y′′(x)− 2xy′(x) + p(p+ 1)y(x)

=
∞
∑

m=0

{

(m+ 2)(m+ 1)bm+2− (m− p)(m+ p+ 1)bm
}

xm =
∞
∑

m=0

amxm
(2.9)

for all x ∈ (−ρ,ρ). Comparing the coefficients of like powers of two power series, we get

bm+2 = 1
(m+ 2)(m+ 1)

am +
(m− p)(m+ p+ 1)

(m+ 2)(m+ 1)
bm (2.10)

for any m∈ {0,1,2, . . .}.
We now assert that

bm = cm +
bm−2[m/2]

m!

[m/2]
∏

j=1

(m− 2 j− p)(m− 2 j + p+ 1) (2.11)

for any m∈ {2,3, . . .}.
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By the mathematical induction on m, we will prove the formula (2.11) for all even
integers m. If we put m= 2 in (2.11) and recall the definition (2.2), then we obtain

b2 = c2− p(p+ 1)
2!

b0 = 1
2!
a0− p(p+ 1)

2!
b0 (2.12)

which is identical with the formula induced from (2.10) for m = 0. Assume now that
formula (2.11) is true for some even m. It then follows from (2.10), (2.11), and (2.2)
that

bm+2 = m!
(m+ 2)!

am

+
1

(m+ 2)!

[m/2]
∑

i=1

(m− 2i)!am−2i

i−1
∏

j=0

(m− 2 j− p)(m− 2 j + p+ 1)

+
b0

(m+ 2)!

[m/2]
∏

j=0

(m− 2 j− p)(m− 2 j + p+ 1)

= 1
(m+ 2)!

[m/2]
∑

i=0

(m− 2i)!am−2i

i−1
∏

j=0

(m− 2 j− p)(m− 2 j + p+ 1)

+
b0

(m+ 2)!

[m/2]
∏

j=0

(m− 2 j− p)(m− 2 j + p+ 1)

= 1
(m+ 2)!

[m/2]+1
∑

i=1

(m+ 2− 2i)!am+2−2i

·
i−1
∏

j=1

(m+ 2− 2 j− p)(m+ 2− 2 j + p+ 1)

+
b0

(m+ 2)!

[m/2]+1
∏

j=1

(m+ 2− 2 j− p)(m+ 2− 2 j + p+ 1)

= cm+2 +
b0

(m+ 2)!

[m/2]+1
∏

j=1

(m+ 2− 2 j− p)(m+ 2− 2 j + p+ 1),

(2.13)

which is identical with formula (2.11) when m is replaced by m + 2. (We assume that
∏ i−1

j=1(···)(···) = 1 for i ≤ 1.) Hence, (2.11) is valid for any even m. Similarly, we can
verify that (2.11) is true for all odd m.
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Consequently, it follows from (2.8) and (2.11) that

y(x)= b0 + b1x+
∞
∑

k=1

b2kx
2k +

∞
∑

k=1

b2k+1x
2k+1

=
∞
∑

k=1

c2kx
2k +

∞
∑

k=1

c2k+1x
2k+1

+ b0

[

1 +
∞
∑

k=1

x2k

(2k)!

k
∏

j=1

(2k− 2 j− p)(2k− 2 j + p+ 1)

]

+ b1

[

x+
∞
∑

k=1

x2k+1

(2k+ 1)!

k
∏

j=1

(2k− 2 j− p+ 1)(2k− 2 j + p+ 2)

]

= yh(x) +
∞
∑

m=2

cmx
m,

(2.14)

where yh stands for the last two power series, that is,

yh(x)= b0

[

1 +
∞
∑

k=1

···
]

+ b1

[

x+
∞
∑

k=1

···
]

. (2.15)

Using the ratio test, we can easily show that the power series in the brackets converge for
each x ∈ (−1,1). For any real numbers b0 and b1, yh(x) is a Legendre function, that is, it
is a solution of the Legendre’s equation (2.1) (see [18]).

Furthermore, in view of (2.3) and (2.4), we can apply the ratio test and show that
power series

∞
∑

k=1

c2kx
2k,

∞
∑

k=1

c2k+1x
2k+1 converge for all x ∈ (−ρ,ρ). (2.16)

We will now show that each function y : (−ρ,ρ)→C defined by

y(x)= yh(x) +
∞
∑

m=2

cmx
m (2.17)

is a solution of the nonhomogeneous Legendre differential equation (1.3), where yh(x) is
a Legendre funcion and cm is given by (2.2). For this purpose, it only needs to show that

yp(x)=
∞
∑

m=2

cmx
m (2.18)
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satisfies (1.3). It is not difficult to see
(

1− x2
)

y′′p (x)− 2xy′p(x) + p(p+ 1)yp(x)

= 2c2 + 6c3x+
∞
∑

m=2

{

(m+ 2)(m+ 1)cm+2− (m− p)(m+ p+ 1)cm
}

xm

= a0 + a1x+
∞
∑

m=2

amxm,

(2.19)

since we obtain a0 = 2c2 and a1 = 6c3 by putting m= 2 and m = 3 in (2.2), respectively,
and since it follows from (2.3) that

(m+ 2)(m+ 1)cm+2− (m− p)(m+ p+ 1)cm = am (2.20)

for all m∈ {2,3, . . .}. �

Corollary 2.3. Under the same notations and conditions of Theorem 2.1, it holds that

∞
∑

m=2

cmx
m =

∞
∑

i=1

x2i
∞
∑

m=0

amxm

(m+ 2i)(m+ 1)

i−1
∏

j=1

{

1− p(p+ 1)
(m+ 2i− 2 j + 1)(m+ 2i− 2 j)

}

(2.21)

for any x ∈ (−ρ,ρ).

Proof. Since

(m− 2i)!
m!

= 1
m(m− 2i+ 1)

i−1
∏

j=1

1
(m− 2 j + 1)(m− 2 j)

, (2.22)

it follows from (2.2) that

∞
∑

m=2

cmx
m =

∞
∑

m=2

xm

m!

[m/2]
∑

i=1

(m− 2i)!am−2i

i−1
∏

j=1

(m− 2 j− p)(m− 2 j + p+ 1)

=
∞
∑

m=2

[m/2]
∑

i=1

xm
am−2i

m(m− 2i+ 1)

i−1
∏

j=1

(m− 2 j− p)(m− 2 j + p+ 1)
(m− 2 j + 1)(m− 2 j)

.

(2.23)

Thus, we further obtain

∞
∑

m=2

cmx
m =

∞
∑

m=2

[m/2]
∑

i=1

xm
am−2i

m(m− 2i+ 1)

i−1
∏

j=1

{

1− p(p+ 1)
(m− 2 j + 1)(m− 2 j)

}

=
∞
∑

m=2

[m/2]
∑

i=1

αmix
m,

(2.24)

where we set

αmi = am−2i

m(m− 2i+ 1)

i−1
∏

j=1

{

1− p(p+ 1)
(m− 2 j + 1)(m− 2 j)

}

. (2.25)
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As we already stated in (2.16), it follows from (2.3) and (2.4) that the power series
∑∞

m=2cmx
m is absolutely convergent for all x ∈ (−ρ,ρ) (recall the Cauchy-Hadamard for-

mula or the root test). Hence, we can rearrange the terms of the power series without
changing its sum as follows:

∞
∑

m=2

[m/2]
∑

i=1

αmix
m =α21x

2 + α31x
3

+ α41x
4 +α42x

4

+ α51x
5 +α52x

5

+ α61x
6 +α62x

6 +α63x
6

+ α71x
7 +α72x

7 +α73x
7

+ α81x
8 +α82x

8 +α83x
8 +α84x

8

...
...

...
...

=
∞
∑

m=2

αm1x
m +

∞
∑

m=4

αm2x
m +

∞
∑

m=6

αm3x
m + ···

=
∞
∑

i=1

∞
∑

m=2i

αmix
m.

(2.26)

So, we further obtain

∞
∑

m=2

cmx
m =

∞
∑

i=1

∞
∑

m=2i

am−2ixm

m(m− 2i+ 1)

i−1
∏

j=1

{

1− p(p+ 1)
(m− 2 j + 1)(m− 2 j)

}

=
∞
∑

i=1

x2i
∞
∑

m=2i

am−2ixm−2i

m(m− 2i+ 1)

i−1
∏

j=1

{

1− p(p+ 1)
(m− 2 j + 1)(m− 2 j)

}

.

(2.27)

Finally, if we substitute m for (m− 2i) in the above equality, then we get the desired
equality. �

3. Partial solution to Hyers-Ulam stability problem

In this section, we will investigate a property of the Legendre’s differential equation (2.1)
concerning the Hyers-Ulam stability problem. That is, we will try to answer the question,
whether there exists a Legendre function near any approximate Legendre function.
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If a function y(x) can be expressed as a power series of the form (2.8), then we follow
the first part of the proof of Theorem 2.1 to get

(

1− x2
)

y′′(x)− 2xy′(x) + p(p+ 1)y(x)

=
∞
∑

m=0

{

(m+ 2)(m+ 1)bm+2− (m− p)(m+ p+ 1
)

bm
}

xm.
(3.1)

Let us define

am = (m+ 2)(m+ 1)bm+2− (m− p)(m+ p+ 1)bm (3.2)

for all m∈ {0,1,2, . . .}. By some tedious calculations, we can now express the cm’s defined
in (2.2) in terms of the bm’s:

cm = 1
m!

[m/2]
∑

i=1

(m− 2i)!am−2i

i−1
∏

j=1

(m− 2 j− p)(m− 2 j + p+ 1)

= bm− bm−2[m/2]

m!

[m/2]
∏

j=1

(m− 2 j− p)(m− 2 j + p+ 1)

(3.3)

for any m∈ {2,3, . . .} (cf. (2.11) in Section 2).

Theorem 3.1. Assume that ρ and ρ0 are positive constants with ρ < min{1,ρ0}. Let y :
(−ρ,ρ)→C be a function which can be represented by a power series of the form (2.8) whose
radius of convergence is ρ0. Assume moreover that the conditions in (2.4) are satisfied with
am’s and cm’s given in (3.2) and (3.3). If there exists a constant ε > 0 such that

∣
∣
(

1− x2)y′′(x)− 2xy′(x) + p(p+ 1)y(x)
∣
∣≤ ε (3.4)

for all x ∈ (−ρ,ρ) and for some real number p, then there exists a Legendre function yh :
(−ρ,ρ)→C and a constant C > 0 such that

∣
∣y(x)− yh(x)

∣
∣≤ C

x2

1− x2
(3.5)

for all x ∈ (−ρ,ρ).

Proof. We assumed that y(x) can be represented by a power series (2.8) whose radius of
convergence is ρ0 > ρ, so

(

1− x2)
∞
∑

m=2

m(m− 1)bmxm−2− 2x
∞
∑

m=1

mbmx
m−1 + p(p+ 1)

∞
∑

m=0

bmx
m (3.6)

is also a power series whose radius of convergence is ρ0. More precisely, in view of (3.1)
and (3.2), we have

(

1− x2)
∞
∑

m=2

m(m− 1)bmxm−2− 2x
∞
∑

m=1

mbmx
m−1 + p(p+ 1)

∞
∑

m=0

bmx
m =

∞
∑

m=0

amx
m (3.7)
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for all x ∈ (−ρ0,ρ0).
Since

y(x)=
∞
∑

m=0

bmx
m, y′(x)=

∞
∑

m=1

mbmx
m−1, y′′(x)=

∞
∑

m=2

m(m− 1)bmxm−2 (3.8)

for any x ∈ (−ρ,ρ), we get

(

1− x2)y′′(x)− 2xy′(x) + p(p+ 1)y(x)=
∞
∑

m=0

amx
m (3.9)

for all x ∈ (−ρ,ρ), where the radius of convergence of
∑∞

m=0amx
m is ρ0. Thus, it follows

from (3.4) that

∣
∣
∣
∣
∣

∞
∑

m=0

amx
m

∣
∣
∣
∣
∣
≤ ε (3.10)

for all x ∈ (−ρ,ρ).
Since the power series

∑∞
m=0amx

m is absolutely convergent on its interval of conver-
gence, which includes the interval [−ρ,ρ], and the power series

∑∞
m=0|amxm| is continu-

ous on [−ρ,ρ] (a power series is differentiable on its interval of convergence), there exists
a constant C1 > 0 with

n
∑

m=0

∣
∣amx

m
∣
∣≤ C1 (3.11)

for all integers n≥ 0 and for any x ∈ (−ρ,ρ).
Moreover, we know that {1/(m+ 2i)(m+ 1)}m=0,1,... is a decreasing sequence of positive

numbers. According to [19, Theorem 3.3], it holds that

∞
∑

m=0

∣
∣amxm

∣
∣

(m+ 2i)(m+ 1)
≤ C1

2i
(3.12)

for any x ∈ (−ρ,ρ) and all i∈ {1,2, . . .}.
On the other hand, since

∞
∑

k=1

∣
∣
∣
∣

p(p+ 1)
(m+ 2k+ 1)(m+ 2k)

∣
∣
∣
∣=

∣
∣p(p+ 1)

∣
∣

(m+ 3)(m+ 2)
+

∣
∣p(p+ 1)

∣
∣

(m+ 5)(m+ 4)
+ ···

≤
∣
∣p(p+ 1)

∣
∣

4

∞
∑

k=1

1
k2

<∞
(3.13)

for any integer m≥ 0, we may conclude that the infinite product

∞
∏

k=1

{

1− p(p+ 1)
(m+ 2k+ 1)(m+ 2k)

}

(3.14)
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converges. (According to [20, Theorem 6.6.2], the above infinite product converges for
p(p + 1) < 0. The same argument can be applied for the case of p(p + 1) ≥ 0.) Hence,
substituting i− j for k in the above infinite product, there exists a constant C2 > 0 with

∣
∣
∣
∣
∣

i−1
∏

j=1

{

1− p(p+ 1)
(m+ 2i− 2 j + 1)(m+ 2i− 2 j)

}
∣
∣
∣
∣
∣
≤ C2 (3.15)

for all integers i≥ 1 and m≥ 0. Therefore, it follows from Corollary 2.3 that

∣
∣
∣
∣
∣

∞
∑

m=2

cmx
m

∣
∣
∣
∣
∣
≤ C2

∞
∑

i=1

|x|2i
∞
∑

m=0

∣
∣amxm

∣
∣

(m+ 2i)(m+ 1)
(3.16)

for every x ∈ (−ρ,ρ).
By (3.12) and (3.16), we get

∣
∣
∣
∣
∣

∞
∑

m=2

cmx
m

∣
∣
∣
∣
∣
≤ C1C2

∞
∑

i=1

|x|2i
2i

≤ C1C2

2
x2

1− x2
(3.17)

for all x ∈ (−ρ,ρ). This completes the proof of our theorem. �

John M. Rassias’ open problems. (1) It is an open problem whether Theorem 3.1 also
holds for the function y(x) which cannot be represented by a power series of the form
(2.8).

(2) It seems to be interesting to investigate the stability problem for the case where the
inequality (3.4) is controlled by a power of the absolute value of x.

4. Example

In this section, our task is to show that there certainly exist functions y(x) which satisfy
all the conditions given in Theorem 3.1.

Example 4.1. Let p be neither an odd number nor of the form, −2k, for some k ∈N, let
ρ be a positive constant less than 1, and let q be given with

0 < q ≤ ε

p2 + |p|+ 3
. (4.1)
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We define a function y : (−ρ,ρ)→R by

y(x)=
∞
∑

m=0

bmx
m = yh(x) + q sin x

= 1 +
∞
∑

k=1

x2k

(2k)!

k
∏

j=1

(2k− 2 j− p)(2k− 2 j + p+ 1)

+ x+
∞
∑

k=1

x2k+1

(2k+ 1)!

k
∏

j=1

(2k− 2 j− p+ 1)(2k− 2 j + p+ 2) + q sin x

= 1 +
∞
∑

k=1

x2k

(2k)!

k
∏

j=1

(2k− 2 j− p)(2k− 2 j + p+ 1) + (1 + q)x

+
∞
∑

k=1

x2k+1

(2k+ 1)!

{

(−1)kq+
k
∏

j=1

(2k− 2 j− p+ 1)(2k− 2 j + p+ 2)

}

,

(4.2)

which is a sum of a Legendre function and a sine function. Obviously, the radius of con-
vergence of y(x) is ρ0 = 1 and we have

b0 = 1, b2k = 1
(2k)!

k
∏

j=1

(2k− 2 j− p)(2k− 2 j + p+ 1),

b1 = 1 + q, b2k+1 = 1
(2k+ 1)!

{

(−1)kq+
k
∏

j=1

(2k− 2 j− p+ 1)(2k− 2 j + p+ 2)

}

(4.3)

for all k ∈N.
It follows from (3.3) and (3.2) that

c2k = 0, a2k = 0 (4.4)

for any k ∈N. In this case, according to (2.4), we have σ1 =−1. Similarly, using (3.3) and
(3.2), we get

c2k+1 = q

(2k+ 1)!

{

(−1)k −
k
∏

j=1

(2k− 2 j− p+ 1)(2k− 2 j + p+ 2)

}

,

a2k+1 = (−1)k+1q

(2k+ 1)!

{

1 + (2k− p+ 1)(2k+ p+ 2)
}

(4.5)

for any k ∈N. Thus, we get

σ2 = lim
k→∞

∣
∣
∣
∣

1
(2k+ 3)(2k+ 2)

a2k+1

c2k+1

∣
∣
∣
∣= 0. (4.6)

Hence, both conditions in (2.4) are satisfied with σ1 =−1 and σ2 = 0.
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Obviously, we get

lim
k→∞

∣
∣
∣
∣

a2k+3

a2k+1

∣
∣
∣
∣= 0 (4.7)

and we can show, by applying the ratio test, that the power series

∞
∑

m=0

amx
m = a0 + a1x+

∞
∑

k=1

a2k+1x
2k+1 (4.8)

converges for every real number x. (Notice that a2k = 0 for all k ∈N.)
Since yh(x) is a Legendre function, we now have

∣
∣
(

1− x2
)

y′′(x)− 2xy′(x) + p(p+ 1)y(x)
∣
∣

= ∣∣− (1− x2
)

q sin x− 2qx cos x+ p(p+ 1)q sin x
∣
∣

≤ (∣∣1− x2
∣
∣+ 2|x|+

∣
∣p(p+ 1)

∣
∣
)

q ≤ (p2 + |p|+ 3
)

q ≤ ε

(4.9)

for all x with |x| < ρ < 1. Hence, y(x) satisfies inequality (3.4).
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