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1. Introduction

The problem of studying spectral characteristics of the differential equation

�αβ[y]≡ − y′′ + q(x)y +

(
α

m∑
n=−∞

δ(x−n) +β
∞∑

n=m+1

δ′(x−n)

)
y = λy, −∞ < x <∞

(1.1)

arises in many model problems of quantum mechanics. In this formula, q(x) is a real
periodic locally square integrable function (q(x+ 1)= q(x)), δ(x) is Dirac’s function, and
δ′(x) is its derivative function, α,β �= 0 are real numbers.

Since in the formula (1.1) there is a series composed of δ and δ′ functions, it is nec-
essary to indicate mathematically correct description of this formula. For this purpose,
following the paper [1], we include the problem (1.1) into the general scheme of the the-
ory of self-adjoint extensions of symmetric operators in Hilbert space (see [2]).

We denote by D∞0 a totality of finite infinitely differentiable functions y(x) on
the whole of the axis, such that y(n) = 0 (n = m,m − 1,m − 2, . . .) and y′(n)
= 0(n = m + 1,m + 2, . . .). On the set D∞0 , by means of the differential expression
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�00[y] ≡ − y′′ + q(x)y, we define the operator L00(q) in the space L2(−∞,∞). The op-
erator L00(q) is symmetric, nonclosed operator. The closure of the operator L00(q) in
the metric L2(−∞,∞) is denoted by L. The operator L has same deficiency number, and
therefore, by Neumann theorem it admits self-adjoint extension L̃, where L⊂ L̃⊂ L∗ (see
[3]). Notice that the definition domain D(L∗) of the operator L∗ consists of all continu-
ous functions f (x) ∈ L2(−∞,∞) (x �= n = 0,±1,±2, . . .), for which �00[ f ] ∈ L2(−∞,∞).
On the functions from D(L∗) for x �= n = 0,±1,±2, . . . , the operator L∗ is given by the
formula L∗ f =− f ′′ + q(x) f . On the functions from D(L∗) subjected to the conditions

y(n)= y(n− 0)= y(n+ 0), y′(n+ 0)− y′(n− 0)= αy(n) (n=m,m− 1, . . .),

y(n+ 0)− y(n− 0)= βy′(n), y′(n)= y′(n− 0)= y′(n+ 0) (n=m+ 1,m+ 2, . . .)
(1.2)

by means of differential expression �00[y], we define the operator Lαβ(q). From results of
[4, 5], it holds the following.

Theorem 1.1. The operator Lαβ(q) is a self-adjoint extension of the operator L in L2(−∞,
∞).

Notice that the problem on studying spectral characteristics of (1.1) is equivalent to
studying spectral properties of the operator Lαβ(q) in the Hilbert space L2(−∞,∞) (see
[6, 7]).

We formulate the main results of the paper.
We denote by θ(x,λ) and ϕ(x,λ) the solutions of the equation

�00[y]≡ − y′′ + q(x)y = λy (1.3)

defined by the following boundary conditions at x = 0:

θ(0,λ)= ϕ′(0,λ)= 1, θ′(0,λ)= ϕ(0,λ)= 0. (1.4)

Let us consider the functions Fα(λ) = θ(1,λ) + ϕ′(1,λ) + αϕ(1,λ) and Fβ(λ) = θ(1,λ) +
ϕ′(1,λ) + βθ′(1,λ). In Section 2 it is proved that the functions Φα

±(λ) = Fα(λ)± 2 and

Φ
β
±(λ) = Fβ(λ)± 2 have only real zeros whose multiplicity does not exceed two. De-

note by kj ( j = 0,±1,±2, . . .), the roots of the equations Fα(λ) = 2 and Fβ(λ) = 2 enu-
merated in nondecreasing order, and by μj− the roots of the equations Fα(λ) = −2 and
Fβ(λ)=−2 ( j = 0,±1,±2, . . .). Besides, let σ j ( j =m,m− 1,m− 2, . . .) be the zeros of the
functions ϕ(1,λ) and σ j ( j =m+ 1,m+ 2, . . .) be the zeros of the function θ′(1,λ).

In Sections 2 and 3, we prove the following main theorem.

Theorem 1.2. (a) The sequence of numbers kj , μj , and σ j satisfies the inequalities for j > 0:

··· < k− j < μ− j ≤ σ− j+1 ≤ μ− j+1 < ··· ≤ kj ≤ σ j+1 ≤ kj+1 < μj+1 ≤ ··· ; (1.5)
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(b) the spectrum of the operator Lαβ(q) is absolutely continuous set S= S1∪ S2 and neg-
ative eigenvalue that number is not exceeding two, where

S1 =
∞⋃

j=−∞

[
k2 j ,μ2 j

]
, S2 =

∞⋃
j=−∞

[
μ2 j+1,k2 j+1

]
. (1.6)

In sequel, the segments of the real axis [k2 j ,μ2 j], [μ2 j+1,k2 j+1] ( j = 0,±1,±2, . . .) will
be said to be the bands of the spectrum of the operator Lα(q), and the intervals [μ2 j ,μ2 j+1],
[k2 j+1,k2 j+2] ( j = 0,±1,±2, . . .) will be called the gaps.

Alongside with the operator Lαβ(q), we consider the operator L00(q). A is known (see
[8]), the spectrum of this operator also consists of the segments of a real axis separated
by gaps, and it is possible the case when the number of the spectrum zones is finite (e.g.,
if q(x) = 0). But if the number of the zones is infinite, then the lengths of gaps in the
spectrum tend to zero. However, for the operator Lαβ(q), the number of spectrum zones
is always infinite and the lengths of gaps tend to nonzero constant in some place and to
infinity in other place. Notice that for m=−∞, it is investigated in [9]. By m=±∞, it is
studied the asymptotic case of the bands of the spectrum and gaps in [10].

2. Distribution of zeros of functions Φα
±(λ) and Φ

β
±(λ)

By investigating the spectrum of the operator Lαβ(q) formulated in introduction, we will

need general properties of functions Φα
±(λ) and Φ

β
±(λ). In sequel, for reduction of writing

we will use the following notation:

ϕ≡ ϕ(1,λ); ϕ′ ≡ ϕ′(1,λ); θ ≡ θ(1,λ); θ′ ≡ θ′(1,λ). (2.1)

It holds the following.

Lemma 2.1. The functions Φ±(λ) have only real zeros and these zeros form a denumerable
set with concentration point λ= +∞.

Proof. Let in the Hilbert space L2(0,1) consider the problem:

−y′′ + q(x)y = λy, 0 < x < 1,

y(0)=∓y(1); y′(0)=∓(y′(1) +αy(1)
)
.

(2.2)

It is easy to check that this spectral problem is self-adjoint and its spectrum coincides
with the zeros of the entire function Φα

±(λ). Whence, the existence of zeros of the function
Φα
±(λ) follows.
Similarly, consider in the space L2(0,1) the self-adjoint spectral problem

−y′′ + q(x)y = λy, 0 < x < 1,

y(0)=∓(y(1) +βy′(1)
)
, y′(0)=∓y′(1).

(2.3)

It is not hard to be convinced that its spectrum coincides, with zero of the entire function

Φ
β
±(λ). Whence, the existence of zeros follows.
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Since Φα
±(λ) and Φ

β
±(λ) are fractional orders, then they have infinite number of zeros.

Consequently, these zeros form a denumerable set with concentration points λ = +∞.
�

Lemma 2.2. Let λ be a real number. Assume that Fα(λ)= 2, F′α(λ)= 0. Then, at this value
of λ,

θ = 1, ϕ= 0, θ +αθ′ = 0, ϕ′ = 1, F′′α (λ) < 0. (2.4)

Lemma 2.3. Let λ be a real number. Assume that Fα(λ)=−2, F′α(λ)= 0. Then, at this value
of λ,

θ =−1, ϕ= 0, θ +αθ′ = 0, ϕ′ = −1, F′′α (λ) > 0. (2.5)

Lemma 2.4. Let λ be a real number. Assume that Fβ(λ)= 2, F′β(λ)= 0. Then, at this value
of λ,

θ = 1, θ′ = 0, ϕ+βϕ′ = 0, ϕ′ = 1, F′′β (λ) < 0. (2.6)

Lemma 2.5. Let λ be a real number. Assume that Fβ(λ)=−2, F′β(λ)= 0. Then, at this value
of λ,

θ =−1, θ′ = 0, ϕ+βϕ′ = 0, ϕ′ = −1, F′′β (λ) > 0. (2.7)

Lemmas 2.2, 2.3, 2.4, and 2.5 are proved similarly. Therefore, we prove Lemma 2.5.

Proof. Assume that θ′ �= 0. Then, taking into account that θϕ′ − 1 = θ′ϕ, using the for-
mula for derivatives ∂θ(ξ,λ)/∂λ, ∂θ′(ξ,λ)/∂λ, and ∂ϕ′(ξ,λ)/∂λ (see [8, Part 2, page 351]),
we find

dFβ(λ)

dλ
= θ′

∫ 1

0

[
ϕ(ξ,λ) +

θ +βθ′ −ϕ′

2θ′
θ(ξ,λ)

]2

dξ

+
4− (θ +βθ′ −ϕ′)2

4θ′

∫ 1

0
θ2(ξ,λ)dξ.

(2.8)

Since Fβ(λ) = −2, then the coefficient at the second integral equals zero. And the first
addend differs from zero, since by assumption θ′ �= 0 and under the integral sign there is
a nonnegative function not identically equal to zero.

Consequently, F′β(λ) �= 0, that contradicts the assumption F′β(λ)= 0. Hence, it follows

that θ′ = 0.
Arguing as in the previous case, hence we find that the assumption ϕ+ αϕ′ �= 0 con-

tradicts the condition F′β(λ)= 0. Consequently, ϕ+αϕ′ = 0.

In sequel, since θ′ = 0, then ϕ′ + θ = −2 and θϕ′ = 1. Therefore θ + 1/θ + 2 = 0 and
θ =−1, ϕ′ = −1.

At last, we prove that F′′β (λ) > 0.
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Under the conditions θ =−1, ϕ′ = −1, θ′ = 0, ϕ= α, using the formula for derivatives
∂θ(ξ,λ)/∂λ and ∂ϕ(ξ,λ)/∂λ, we find that

d2Fβ(λ)

dλ2 = 2
∫ 1

0
dξ
∫ ξ

0

[
ϕ(ξ,λ)θ(t,λ)−ϕ(t,λ)θ(ξ,λ)

]2
dt. (2.9)

We find that F′′β (λ) > 0. �

The following theorem immediately follows from Lemmas 2.2–2.5.

Theorem 2.6. (1) Multiplicity of zeros of functions Φα
±(λ) and Φ

β
±(λ) does not exceed two;

(2) at the points λ, where ϕ′ + αϕ+ θ = 2, F′α(λ) = 0, the function Fα(λ) has a maxi-
mum;

(3) at the points λ, where ϕ′ +αϕ+ θ =−2, F′α(λ)= 0, the function Fα(λ) has a mini-
mum;

(4) at the points λ, where ϕ′ + βθ′ + θ = 2, F′β(λ) = 0, the function Fβ(λ) has a maxi-
mum;

(5) at the points λ, where ϕ′ +βθ′ + θ =−2, F′β(λ)= 0, the function Fβ(λ) has a mini-
mum.

3. Nature of the spectrum of the operator Lαβ(q)

We denote by H the Hilbert space �2(−∞,∞) and consider the H-valued functions f̂ =
(. . . , fn(x), . . .) (0≤ x ≤ 1), for which there exists the integral

∫ 1

0

(
f̂ , f̂

)
Hdx =

∞∑
n=−∞

∫ 1

0

∣∣ fn(x)
∣∣2
dx. (3.1)

Let us introduce the shift operator T in H . For this, on the vector Un whose nth com-
ponent equals unit, and the other components equal zero, we assume TUn = Un−1, n =
0,±1,±2, . . . , and at the remaining vectors x ∈H , the operator T is determined by linear-
ity. The operator T is unitary, therefore, there exists an operator T−1 = T∗.

Partition the whole number axis into segments Δk = [k,k + 1] (k = 0,±1,±2, . . .). For
x ∈ Δn, put x = n + t (0 ≤ t ≤ 1) and yn(t) = y(n + t) = y(x). From periodicity of the
function q(x), the assignment of the operator Lαβ(q) in L2(−∞,∞) is equivalent in H1 =
L2([0,1],H) to the assignment of the expression

�00
[
ŷ(t)

]≡ − ŷ′′(t) + q(t)Eŷ(t) (3.2)

with following boundary conditions. For δ point interactions,

(
ŷ′(0)
ŷ′(1)

)
= α

(
E T−1

T E

)(
ŷ(0)
− ŷ(1)

)
, (3.3)
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but for δ′ point interactions,

(
ŷ(0)
− ŷ(1)

)
= β−1

(
E T−1

T E

)(
ŷ′(0)
ŷ′(1)

)
. (3.4)

In this formula, E is a unit operator in H. The following theorem is true.

Theorem 3.1. Let ys(x,λ)th component of the vector function ŷ(x,λ) be the solution of the
equation

�00[ ŷ]= λŷ + f̂
(
f ∈H1

)
(3.5)

with boundary conditions (3.3) and (3.4). Then

ys(x,λ)= ω1(x,λ)
W(λ)

∞∑
p=s

[
ρ2(λ)

]p−s∫ 1

0
ω2(t,λ) fp(t)dt

+
ω2(x,λ)
W(λ)

s∑
p=−∞

[
ρ1(λ)

]p−s∫ 1

0
ω1(t,λ) fp(t)dt

− 1
W(λ)

[
ω1(x,λ)

∫ x

0
ω2(t,λ) fs(t)dt+ω2(x,λ)

∫ 1

x
ω1(t,λ) fs(t)dt

]
,

(3.6)

where ωj(x,λ)= θ(x,λ) +mj(λ)ϕ(x,λ), W(λ)=m1(λ)−m2(λ), mi(λ) (i= 1,2) are the so-
lutions of the equations

ϕm2 + (θ−αϕ−ϕ′)m− [θ +αθ′]= 0 for s≤m,

θ′m2 + (ϕ− θ−βθ′)m− [ϕ+βϕ′]= 0 for s > m,
(3.7)

ρj(λ)=
⎧⎪⎨
⎪⎩
ϕ′ +αϕ−mj(λ)ϕ ( j = 1,2) if s≤m,

θ +βθ′ −mj(λ)θ′ ( j = 1,2) if s > m.
(3.8)

By formula (3.6), the spectrum of the operator Lαβ(q) coincides with singularities of
the analytic function W−1(λ)= (m1(λ)−m2(λ))−1. Since

W(λ)=

⎧⎪⎪⎨
⎪⎪⎩
[
ϕ(λ)

]−1
√
Φα

+(λ).Φα
−(λ) if s≤m,

.
[
θ′(λ)

]−1
√
Φ

β
+(λ).Φ

β
−(λ) if s > m,

(3.9)

then it follows from the results of Section 2 that the function W−1(λ) has branching
points of the second order at the points kn and μn, if they are simple zeros of the func-

tions Φα
±(λ) and Φ

β
±(λ). At the multiple zeros of functions, Φα

±(λ)ϕ(λ)(
√
Φα

+(λ).Φα
−(λ))−1

and Φ
β
±(λ)θ′(λ)(

√
Φ

β
+(λ).Φ

β
−(λ))−1 are regular, since at these points ϕ(λ)= 0 and θ′(λ)=

0, respectively. Consequently, the spectrum of the operator Lαβ(q) coincides with seg-
ments of the real axis [k2 j ,μ2 j], [μ2 j+1,k2 j+1], j = 0,±1,±2, . . . . Intervals of the real axis
(μj ,μj+1), (kj ,kj+1), j = 0,±1,±2, . . . , are the gaps in the spectrum.
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Assume that q(x) = 0. Then λ < 0 is eigenvalues of the operator Lαβ(q) if and only if
z = i

√|λ| is the solution of the equation

(
2z−β−αz2 +αβz

)
e−2z +

(
2z+β+αz2 +αβz

)
e2z = 4z. (3.10)

The number of solutions of (3.10) can determinate with graphic. Then it is easily shown
that following expressions are true:

(1) if α > 0, β > 0, then the operator Lαβ(0) has no eigenvalue;
(2) if αβ < 0, then the operator Lαβ(0) has only one eigenvalue;
(3) if α < 0, β < 0, then the operator Lαβ(0) has only two eigenvalues.

As is known for Sturm-Liouville operator with periodic continuous potential q(x),
the length of gaps in the spectrum, if they are infinite number, tends to zero for unlimited
increase of numbers of gaps (see [8]). In our case, the following theorem is valid.

Theorem 3.2. The number of gaps in the spectrum of the operator Lαβ(q) is infinite, and for
unlimited increase of numbers of gaps, the lengths of gaps tend to nonzero constant in some
place and to infinity in another place.

Proof. Estimate asymptotic behavior of numbers kj and μj for large values of j. Conduct
this estimation for kj (μj estimated similarly) in detail.

If we apply arguments stated in [8, Part 2, pages 353-354] to the functions Φα
−(λ) =

ϕ′ +αϕ+ θ− 2 and Φ
β
−(λ)= ϕ′ +βθ′ + θ− 2, then we arrive to the following result:

k2
n

(
k2

2n−1

)=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4π2n2 +
a0 + 2

2
± 1

2

√
4α2 + a2

2n + b2
2n + 4a2n +O

(
1
n

)
if 2n≤m,

4π2n2 +
a0

2
± 1

2

√
a2

2n + b2
2n + 16β2π2n2− 8αnb2n +O

(
1
n

)
, if 2n >m,

(3.11)

and since
∫ 1

0q(x)dx <∞, then

k2
2n− k2

2n−1 =
⎧⎨
⎩2|α|+O(1) if 2n≤m,

4|β|πn+O(1) if 2n >m,
(3.12)

where

an = 2
∫ 1

0
q(y)cos2πny dy, bn = 2

∫ 1

0
q(y)sin2πny dy. (3.13)

�
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