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1. Introduction and the Main Results

In this paper, we consider the existence of homoclinic orbits for the following Hamiltonian
system:

ż = JHz(t, z), (1.1)

whereH(t, z) = (1/2)z · Lz +W(t, z), L is a 2N × 2N symmetric matrix-valued function, and
W ∈ C1(R × R

2N,R) is superquadratic both around 0 and at infinity in z ∈ R
2N .

A solution of (1.1) is called to be homoclinic to 0 if z(t)/≡ 0 and z(t) → 0 as |t| → ∞.
In recent years, the existence and multiplicity of homoclinic orbits for Hamiltonian

systems have been investigated in many papers via variational methods. See, for example,
[1–7] for the second-order systems and [8–12] for the first-order systems. We note that in
most of the papers on the first order system (1.1) it was assumed that

(♦) L is constant such that sp(JL) ∩ iR = ∅, where sp(JL) denotes the set of all
eigenvalues of JL.
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Thus, if we let σ(A) denote the spectrum ofA, (♦)means that L is independent of t and
there is α > 0 such that (−α, α) ∩ σ(A) = ∅. Consequently, the operator A := −(J(d/dt) + L) :
W1,p(R,R2N) → Lp(R,R2N) is a homeomorphism for all p > 1. This is important for the
variational arguments. Later in [13], Ding considered the case that L depends periodically
on t. He made assumptions on L such that 0 lies in a gap of σ(A). If additionally W(t, z) is
periodic in t and satisfies some superquadratic or asymptotically quadratic conditions in z at
infinity, then infinitely many homoclinic orbits were obtained.

If 0 ∈ σc(A), then the problem is quite different in nature since the operator A cannot
lead the behavior at 0 of the equation. Ding and Willem considered this case in [14]. They
assumed that

(A0) L(t) ∈ C(R,R4N2
) is 1-periodic. There exists α > 0 such that (0, α) ∩ σ(A) = ∅.

Under (A0), 0 may belong to continuous spectrum of A. The authors managed to construct
an appropriate Banach space, on which some embedding results necessary for variational
arguments were obtained. Using a generalized linking theorem developed by Kryszewski
and Szulkin in [15], they got one homoclinic orbit of (1.1). Later, Ding and Girardi obtained
infinitely many homoclinic orbits in [16] under the conditions of [14] with an additional
evenness assumption on W . Note that in both papers W satisfies a condition of the type of
Ambrosetti-Rabinowitz (see [17]), that is,

∃μ > 2 such that 0 < μW(t, z) ≤ Wz(t, z)z, t ∈ R, z ∈ R
2N \ {0}. (A-R)

The (A-R) condition is essential to prove the Palais-Smale condition since the variational
functional Φ is strongly indefinite and 0 ∈ σc(−J(d/dt) + L). The argument of Palais-Smale
condition is rather technical and not standard without the (A-R) condition. In this paper, we
consider the existence of solutions of (1.1) under (A0) without the (A-R) condition on W .

We observed that just recently some abstract linking theorems were developed by
Bartsch andDing in [18]. These theorems are impactful to study the existence andmultiplicity
of solutions for the strongly indefinite problem. Many new results have been obtained by
these theorems based on the use of (C)c sequence. See [19–21] for applications of these ideas.
Note that in [19–21] 0 either is not a spectral point or is at most an isolated eigenvalue
of finite multiplicity. Thus (C)c condition was checked by virtue of some very technical
analysis. However, if 0 ∈ σc(A), then we can find a sequence {zn} ⊂ H1 with |zn|L2 = 1 and
|Azn|L2 → 0. Thus the operatorA cannot lead the behavior at 0 of the equation. Consequently,
besides (C)c condition, it seems also hard to check the following condition necessary for the
linking theorems in [19–21]:

(Φ1) for any c > 0, there exists ζ > 0 such that ‖z‖ < ζ‖PYz‖ for all z ∈ Φc.

Our work benefits from [14] and some weak linking theorem recently developed by
Schechter and Zou in [22]. This theorem permits us first to study a sequence of approximating
problems Φλ for λ ∈ [1, 2] (the initial problem corresponds to λ = 1) for which a bounded
Palais-Smale sequence of Φλ is given for almost each λ ∈ [1, 2]. Then by monotonicity, we
find a sequence of {λn} and {wn} such that λn → 1, Φ′

λn
(wn) = 0, and Φλn(wn) ≤ d. Since

the sequence {wn} consists of critical points of Φλn , then its boundedness can be checked.
Consequently one solution of (1.1) is obtained. The idea of first studying approximating
problems for which the existence of a bounded Palais-Smale sequence is given freely and
then proving that the sequence of approximated critical points is bounded was originally
introduced in [23]. See also [24].
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We make the following assumptions.

(A1) W(t, z) ∈ C1(R × R
2N,R) is 1-periodic in t. W(t, 0) = 0 for all t ∈ R. There exist

constants c1 > 0 and μ > 2 such that Wz(t, z)z ≥ c1|z|μ for (t, z) ∈ R × R
2N.

(A2) there exist c2, r > 0 such that |Wz(t, z)| ≤ c2|z|μ−1 for t ∈ R and |z| ≤ r.

(A3) there exist c3, R ≥ r and p ≥ μ such that |Wz(t, z)| ≤ c3|z|p−1 for t ∈ R and |z| ≥ R.

(A4) there exists b0 > 2 such that lim infz→ 0(Wz(t, z)z/W(t, z)) ≥ b0 uniformly for t ∈ R;

(A5) ˜W(t, z) := (1/2)Wz(t, z)z − W(t, z) > 0 for all t ∈ R, z ∈ R
2N \ {0}. There exist

constants b∞ > 0 and β > p(p − 2)/(p − 1) such that lim inf|z|→∞˜W(t, z)/|z|β ≥ b∞
uniformly for t ∈ R.

Theorem 1.1. Let (A0), (A1)–(A5) be satisfied, then (1.1) has at least one homoclinic orbit.

Remark 1.2. We can easily check that the (A-R) condition implies (A4) and (A5). But the
converse proposition is not true. See the following example:

W(t, z) = |z|μ + (μ − 2
)|z|μ−εsin2

( |z|ε
ε

)

, (1.2)

where 2 < μ < ∞, 0 < ε < min{μ − 2, μ/(μ − 1)} (see [25] or [26] for details).

IfWz(t, z) = a|z|μ−2z + Rz(t, z), a > 0, μ ∈ (2,∞)with R satisfying

(B1) R ∈ C1(R × R
2N,R) is 1-periodic in t and

Rz(t, z) = o
(

|z|μ−1
)

as |z| −→ 0,

Rz(t, z) = o
(

|z|μ−1
)

as |z| −→ ∞,

(1.3)

uniformly in t ∈ R, then

(B2) 0 < Rz(t, z)z ≤ (a(μ − 2)/2)|z|μ for all t ∈ R, z ∈ R
2N \ {0}.

Theorem 1.3. Let (A0), (B1), and (B2) be satisfied, then (1.1) has at least one homoclinic orbit.

This paper is organized as follows. In Section 2 we will construct some appropriate
variational space and obtain some embedding results necessary for our variational
arguments. In Section 3 we will recall a weak linking theorem, by which we will give the
proof of Theorems 1.1 and 1.3 in Section 4.

2. Some Embedding Results

In what follows, by | · |p we denote the usual Lp-norm and by (·)2 the usual L2-inner product.
A standard Floquet reduction argument shows that σ(A) = σc(A) (see [14]).
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Let {E(λ); λ ∈ R} be the spectral family of A. A possesses the polar decomposition
A = U|A|withU = I −E(0) −E(−0). By (A0), 0 is at most a continuous spectrum of A. L2 has
an orthogonal decomposition

L2 = L2− ⊕ L2+, (2.1)

where L2± := {u ∈ L2; Uu = ±u}.
Let D(|A|1/2) denote the domain of |A|1/2 and let E be the space of the completion of

D(|A|1/2) under the norm

‖u‖E :=
∣

∣

∣|A|1/2u
∣

∣

∣

2
. (2.2)

E becomes a Hilbert space under the inner product

(u, v)E :=
(

|A|1/2u, |A|1/2v
)

2
. (2.3)

E possesses an orthogonal decomposition

E = E− ⊕ E+, (2.4)

where E± ⊇ L2± ∩ D(|A|1/2).
Under (A0), it is easy to check

E+ = L2+ ∩ D
(

|A|1/2
)

, ‖·‖E ∼ ‖·‖H1/2 on E+. (2.5)

Therefore, E+ can be embedded continuously into Lp(R,R2N) for any p ≥ 2 and compactly
into L

p

loc(R,R2N) for any p ∈ [1,∞).
For any ε > 0, set L2−

ε := E(−ε)L2 and E−
ε := L2−

ε ∩ D(|A|1/2) = L2−
ε ∩ E−. Then on E−

ε , we
also have ‖ · ‖E ∼ ‖ · ‖H1/2 and the same embedding conclusion as that of E+.

Let ˜L2−
ε := L2− ∩ (clL2(

⋃

λ<−ε E(λ)L
2))⊥ where clL2(·) stands for the closure of · in L2.

For μ > 2, let E−
ε,μ be the completion of ˜L2−

ε under the norm

‖u‖μ :=
(

∣

∣

∣|A|1/2u
∣

∣

∣

2

2
+ |u|2μ

)1/2
, (2.6)

and let E−
μ denote the completion of D(A) ∩ L2− with respect to the norm ‖ · ‖μ. Then E−

ε is a
closed subspace of E−

μ, and E−
μ possesses the following decomposition:

E−
μ = E−

ε ⊕ E−
ε,μ. (2.7)

Moreover, E−
ε is orthogonal to E−

ε,μ with respect to (·)E.
Let Eμ be the completion of D(A) under the norm ‖ · ‖μ. The following result holds

true.
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Lemma 2.1 (see [14]). Under (A0), Eμ has the direct sum decomposition

Eμ = E−
μ ⊕ E+, (2.8)

and Eμ is embedded continuously in Lν for any ν ∈ [μ,∞) and compactly in Lν
loc for any ν ∈ [2,∞).

3. A Weak Linking Theorem

In this section we state some weak linking theorem due to [22] which was first built in a
Hilbert space. This theorem is still true in a reflexive Banach space (cf. Willem and Zou [25]).

Let E be a reflexive Banach space with norm ‖ · ‖ and possess a direct sum
decomposition E = N ⊕ M, where N ⊂ E is a closed and separable subspace. Since N is
separable, we can define a new norm |z|w satisfying |z|w ≤ ‖z‖, for all z ∈ N such that the
topology induced by this norm is equivalent to the weak topology of N on bounded subsets
ofN. For z = v +w ∈ Ewith v ∈ N andw ∈ M, we define |z|2w = |v|2w + ‖w‖2, then |z|w ≤ ‖z‖,
for all z ∈ E. In particular, if zn = vn +wn is | · |w-bounded and zn → z under the norm | · |w
in E, then vn ⇀ v weakly in N, wn → w strongly in M, and zn ⇀ v + w weakly in E. Let
Q ⊂ N be a ‖ · ‖-bounded open convex subset and let p0 ∈ Q be a fixed point. Let F be a
| · |w-continuous map from E ontoN satisfying the following.

(i) F|Q =id; F maps bounded sets to bounded sets.

(ii) there exists a fixed finite-dimensional subspace E0 of E such that F(u − v) − (F(u) −
F(v)) ⊂ E0, for all u, v ∈ E.

(iii) F maps finite-dimensional subspaces of E into finite-dimensional subspaces of E.

SetA := ∂Q, B := F−1(p0), where ∂Q denotes the ‖ · ‖-boundary ofQ. ForΦ ∈ C1(E,R),
we introduce the class Γ of mappings h : [0, 1] ×Q → E with the following properties.

(a) h : [0, 1] ×Q → E is | · |w-continuous.
(b) for any (s0, u0) ∈ [0, 1]×Q, there is a |·|w-neighborhoodU(s0,u0) such that {u−h(t, u) :

(t, u) ∈ U(s0,u0) ∩ ([0, 1] × Q)} ⊂ Efin, where Efin denotes some finite-dimensional
subspaces of E.

(c) h(0, u) = u,Φ(h(s, u)) ≤ Φ(u), for all u ∈ Q.

The following is a variant weak linking theorem in [22].

Theorem 3.1. Let the family of C1-functionals (Φλ) have the form

Φλ(u) := I(u) − λJ(u), ∀λ ∈ [1, 2]. (3.1)

Assume that the following conditions hold.

(1) J(u) ≥ 0, for all u ∈ E; Φ1 := Φ.

(2) I(u) → ∞ or J(u) → ∞ as ‖u‖ → ∞.

(3) Φλ is | · |w-upper semicontinuous; Φ′
λ
is weakly sequentially continuous on E. Moreover,

Φλ maps bounded sets into bounded sets.

(4) supAΦλ < infBΦλ, for all λ ∈ [1, 2].
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Then for almost all λ ∈ [1, 2], there exists a sequence {un} such that

sup
n

‖un‖ < ∞, Φ′
λ(un) −→ 0, Φλ(un) −→ Cλ, (3.2)

where Cλ := infh∈Γsupu∈QΦλ(h(1, u)) ∈ [infBΦλ, supQΦλ].

Remark 3.2. Consider Eμ = E−
μ ⊕ E+ defined as in Section 2. Obviously, Eμ is reflexive. For

z0 ∈ E+ with ‖z0‖μ = 1, E+ = Rz0 ⊕ E+
1 . Let N = E−

μ ⊕ Rz0 and M = E+
1 , then Eμ = N ⊕ M.

It is easy to see that N is a closed and separable subspace of Eμ. For any u ∈ Eμ, u can
be written as u = u− + sz0 + w+ with u− ∈ E−

μ and w+ ∈ E+
1 . For R > 0, let Q := {u :=

u− + sz0, s > 0, u− ∈ E−
μ, ‖u‖μ < R}, then p0 := s0z0 ∈ Q for 0 < s0 < R. Define F : Eμ → N as

Fu := u− + ‖sz0 +w+‖μz0. Then it is easy to check that F, Q, and p0 satisfy (i), (ii), and (iii). If
we let A := ∂Q and B := F−1(s0z0) = {u := sz0 +w+, s ≥ 0, w+ ∈ E+

1 , ‖sz0 +w+‖μ = s0}, then
A links B (see Lemmas 4.2 and 4.3 in Section 4).

4. The Proof of the Main Results

Consider the functional

Φ(z) :=
1
2
‖z+‖2E − 1

2
∥

∥z−
∥

∥

2
E −
∫

R

W(t, z), (4.1)

for z = z+ + z− ∈ Eμ. Then by assumptions (A1)–(A3) and Lemma 2.1, Φ ∈ C1(Eμ,R). A
standard argument shows that any critical point of Φ is a homoclinic orbit of (1.1) (cf. [14]).

Set

Φλ(z) :=
1
2
‖z+‖2E − λ

(

1
2
∥

∥z−
∥

∥

2
E +
∫

R

W(t, z)
)

= I(z) − λJ(z), λ ∈ [1, 2]. (4.2)

Then Φ1 = Φ and J(z) ≥ 0. By (A2) and (A3),

|Wz(t, z)| ≤ C
(

|z|μ−1 + |z|p−1
)

, (4.3)

where, as below, C stands for some generic positive constant.
Together with (A1), one has

c1
μ
|z|μ ≤ W(t, z) ≤ C

(|z|μ + |z|p). (4.4)

Thus I(z) → ∞ or J(z) → ∞ if ‖z‖2μ = ‖z+‖2E + ‖z−‖2E + |z|2μ → ∞.

Lemma 4.1. Φλ is | · |w-upper semicontinuous and Φ′
λ
is weakly sequentially continuous.

Proof. For any c ∈ R, assume that zn ∈ {z ∈ Eμ,Φλ(z) ≥ c} with zn ⇀ z. Let zn = z+n + z−n with
z+n ∈ E+ and z−n ∈ E−

μ. Then z+n → z+ in Eμ and hence sup ‖z+n‖ < ∞. Since Φλ(zn) ≥ c and
W(t, zn) ≥ 0, we have sup ‖z−n‖ < ∞.
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By (4.4),

C|zn|μμ ≤
∫

R

W(t, zn)dt ≤ 1
λ

(

1
2
‖z+n‖2E − λ

2
∥

∥z−n
∥

∥

2
E − c

)

< ∞. (4.5)

Then sup ‖zn‖μ < ∞. By Lemma 2.1, zn ⇀ z in Eμ, zn → z in L
μ

loc, and zn(t) → z(t) a.e. for
t ∈ R. By Fatou’s Lemma, Φλ(z) ≥ c. Therefore, Φλ is | · |w-upper semicontinuous.

Let zn ⇀ z in Eμ, then zn → z in L
p

loc, 2 ≤ p < ∞. By (4.3), Wz(t, zn) → Wz(t, z) in

L
μ/(μ−1)
loc and

∫

R
Wz(t, zn)v → ∫

R
Wz(t, z)v for any v ∈ Eμ. Therefore, Φ′

λ(zn) → Φ′
λ(z).

Lemma 4.2. There exist b > 0, r > 0 such that Φλ(z) ≥ b > 0, for all z ∈ E+ with ‖z‖μ = r,
for all λ ∈ [1, 2].

Proof. By (4.4) and Lemma 2.1,

∫

R

W(t, z) ≤ C
(

|z|μμ + |z|pp
)

≤ C
(

‖z‖μμ + ‖z‖pμ
)

. (4.6)

The conclusion is obvious.

Lemma 4.3. There exists R > r > 0 such that Φλ|∂M = 0 and supMΦλ < d < ∞ for all λ ∈ [1, 2],
whereM := {z = x + sz0, x ∈ E−

μ, ‖z‖μ ≤ R, s > 0} and z0 ∈ E+, ‖z0‖μ = 1.

Proof. For z = x + sz0, by (4.4),

Φλ(z) ≤ s2

2
‖z0‖2E − 1

2
‖x‖2E − C

∫

R

|x + sz0|μ. (4.7)

Since Eμ is continuously embedded in Lt for μ ≤ t < ∞, there exists a continuous
projection from E−

μ ⊕ Rz0 in Lμ to Rz0. Thus, |sz0|μ ≤ C|x + sz0|μ for some C > 0 and then

Φλ(z) ≤ Cs2 − C‖x‖2E − Csμ, (4.8)

and thus the lemma follows easily.

Combining Lemmas 4.1–4.3 and Theorem 3.1, we get the following.

Lemma 4.4. Under (A0) and (A1)–(A3), for almost every λ ∈ [1, 2], there exist {zn} ⊆ Eμ such that

sup ‖zn‖μ < ∞, Φ′
λ(zn) −→ 0, Φλ(zn) −→ Cλ ∈ [b, d]. (4.9)

We need the following lemma which is a special case of a more general result due to
Lions [27, 28].
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Lemma 4.5. Let a > 0 and 2 ≤ p < ∞. If {zn} ⊂ H1 is bounded and if

sup
s∈R

∫

B(s,a)
|un|p −→ 0, n −→ ∞, (4.10)

where B(s, a) := (s − a, s + a), then un → 0 in Lt for 2 < t < ∞.

Lemma 4.6. Under (A0)–(A3), let λ ∈ [1, 2] be fixed. For the sequence {zn} in Lemma 4.4, there
exist {kn} ⊂ Z such that, up to a subsequence, un(t) := zn(t + kn) satisfies un ⇀ uλ /= 0, Φ′

λ
(uλ) = 0

and Φλ(uλ) ≤ d.

Proof. Write zn = z+n + z−n with z+n ∈ E+ and z−n ∈ E−
μ. Since sup ‖zn‖μ < ∞, sup ‖z+n‖E < ∞, let

A+ denote the part of A in D(A) ∩ L2+ = H1 ∩ L2+ := H1
+. Then by (A0),

A+ =
∫∞

α

λdE(λ). (4.11)

Obviously, A+ : H1
+ ⊂ L2+ → L2+ has a bounded inverse A−1

+ . Since

|A+z|22 =
∫∞

α

λ|dE(λ)z|22 ≥ α|z|22,

|ż|2 = |Az + Lz|2 ≤ |A+z|2 + |Lz|2 for z ∈ H1
+,

(4.12)

then we have

‖z‖H1 ≤ C|A+z|2 for z ∈ H1
+. (4.13)

Set vn = A−1
+ z+n ∈ H1

+, then

‖vn‖H1 ≤ C|z+n|2 ≤ C‖z+n‖E < ∞. (4.14)

We claim that vn is nonvanishing, that is, there exist M > 0, a > 0, and yn ∈ R such that

lim inf
n→∞

∫

B(yn,a)
|vn|2dt ≥ M. (4.15)

Indeed, if not, by (4.14), {vn} is bounded in H1. Lemma 4.5 shows that vn → 0 in Lt for
2 < t < ∞. By (4.3),

∣

∣

∣

∣

∫

R

Wz(t, zn)vn

∣

∣

∣

∣

≤ C

∫

R

(

|zn|μ−1 + |zn|p−1
)

|vn|

≤ C
(

|zn|μ−1μ |vn|μ + |zn|p−1p |vn|p
)

−→ 0.

(4.16)
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Hence

(z+n, vn)E = Φ′
λ(zn)vn + λ

∫

R

Wz(t, zn)vn −→ 0. (4.17)

Thus,

|z+n|22 = (z+n,A+vn)L2 = (z+n, vn)E −→ 0. (4.18)

Therefore, for any 2 ≤ t < ∞,

|z+n|t ≤ |z+n|1/t2 |z+n|1−1/t2(t−1) ≤ C‖z+n‖1−1/tE |z+n|1/t2 −→ 0. (4.19)

Thus we obtain

‖z+n‖2E = Φ′
λ(zn)z

+
n + λ

∫

R

Wz(t, zn)z+n −→ 0, (4.20)

and then

Φλ(zn) ≤ 1
2
‖z+n‖2E −→ 0, (4.21)

a contradiction. Choose kn ∈ Z such that |kn −yn| = min{|s−yn|, s ∈ Z} and let un := kn ∗zn =
zn(t + kn) := u+

n + u−
n. In view of the invariance of E+ under the action ∗, u+

n = kn ∗ z+n ∈ E+.
Since A commutes with ∗, then A−1

+ also does. Therefore vn := kn ∗ vn = A−1
+ u+

n. By (4.15),

|vn|2L2(B(0,a+1)) ≥
M

2
. (4.22)

Clearly,

‖un‖μ = ‖zn‖μ < ∞. (4.23)

Thus, up to a subsequence, we assume that

un ⇀ uλ in Eμ, un −→ uλ in Lt
loc for t ≥ 2. (4.24)

We now establish that uλ /= 0. If not, u+
n ⇀ 0 in L2, and then

(vn, z)E = (u+
n, z)L2 −→ 0 for all z ∈ H1/2, (4.25)

which implies that

vn ⇀ 0 in H1/2, vn −→ 0 in Lt
loc for t ≥ 2, (4.26)



10 Abstract and Applied Analysis

contradicting (4.22). By Lemma 4.1, Φ′
λ is weakly continuous, hence we have

Φ′
λ(uλ) = lim

n→∞
Φ′

λ(un) = 0. (4.27)

By Fatou’s Lemma, we obtain

Φλ(uλ) = Φλ(uλ) − 1
2
Φ′

λ(uλ)uλ

≤ lim
n→∞

(

Φλ(un) − 1
2
Φ′

λ(un)un

)

= lim
n→∞

Φλ(un) = lim
n→∞

Φλ(zn)

≤ d.

(4.28)

As a straightforward consequence of Lemmas 4.4 and 4.6, we have the following.

Lemma 4.7. Under (A0)–(A3), there exist {λn} ⊂ [1, 2], {wn} ⊂ Eμ \ {0} such that λn →
1,Φ′

λn
(wn) = 0, and Φλn(wn) ≤ d.

Lemma 4.8. {wn} is bounded in Eμ.

Proof. Our argument is motivated by [26]. Write wn = w+
n + w−

n with w+
n ∈ E+ and w−

n ∈
E−
μ.Since Φ

′
λn
(wn)wn = 0, by (A1), then

‖w+
n‖2E − λn

∥

∥w−
n

∥

∥

2
E = λn

∫

R

Wz(t,wn)wn ≥ C|wn|μμ. (4.29)

Hence,

|wn|μμ ≤ C‖w+
n‖2E,

∥

∥w−
n

∥

∥

E ≤ C‖w+
n‖E,

∣

∣w−
n

∣

∣

μ ≤ C‖w+
n‖E + C‖w+

n‖2/μE . (4.30)

In the following, we show that ‖w+
n‖E is bounded. Choose ε0 > 0 small enough such that

b0 − ε0 > 2. By (A4), there exists 0 < r0 ≤ 1 such that

Wz(t, z)z ≥ (b0 − ε0)W(t, z) (4.31)

for all t ∈ R and |z| ≤ r0. By (A3) and (A5), for all t ∈ R and |z| ≥ r0, we can choose C,C′ > 0
such that

|Wz(t, z)| ≤ C|z|p−1, (4.32)

Wz(t, z)z − 2W(t, z) ≥ C′|z|β. (4.33)
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Since Φλn(wn) ≤ d and Φ′
λn
(wn) = 0, then we have

(

1
2
− 1
b0 − ε0

)

(

‖w+
n‖2E − λn

∥

∥w−
n

∥

∥

2
E

)

+ λn

∫

R

(

1
b0 − ε0

Wz(t,wn)wn −W(t,wn)
)

≤ d. (4.34)

Thus, by (4.31), (4.32), and (A5), we obtain

‖w+
n‖2E − λn

∥

∥w−
n

∥

∥

2
E ≤ C

(

∫

|wn|<r0
+
∫

|wn|≥r0

)

(

W(t,wn) − 1
b0 − ε0

Wz(t,wn)wn

)

dt + C

≤ C

∫

|wn|≥r0

(

W(t,wn) − 1
b0 − ε0

Wz(t,wn)wn

)

dt + C

≤ C

∫

|wn|≥r0
Wz(t,wn)wndt + C

≤ C

∫

|wn|≥r0
|wn|pdt + C.

(4.35)

By (4.33) and (A5),

C ≥ Φλn(wn) − 1
2
Φ′

λn
(wn)wn

=
∫

R

(

1
2
Wz(t,wn)wn −W(t,wn)

)

dt

≥ C

∫

|wn|≥r0
|wn|βdt.

(4.36)

Choose ν > p sufficiently large such that (νp(p − 2))/(ν(p − 1) − p) < β. Let t := ν(p − β)/(ν −
β)p, then by (A5), 0 < t < 1/(p − 1) for ν being large enough. By Hölder’s inequality and
Lemma 2.1, we have

∫

|wn|≥r0
|wn|pdt ≤

(

∫

|wn|≥r0
|wn|β

)(1−t)p/β(∫

R

|wn|ν
)tp/ν

≤ C|wn|tpν

≤ C
(

‖w+
n‖E +

∥

∥w−
n

∥

∥

E + |wn|μ
)tp

≤ C
(

‖w+
n‖E + ‖w+

n‖2/μE

)tp

≤ C
(

‖w+
n‖tpE + ‖w+

n‖2tp/μE

)

.

(4.37)
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By (4.29), (4.35), and (4.37),

∫

R

|wn|μ ≤ C
(

‖w+
n‖tpE + ‖w+

n‖2tp/μE + 1
)

, (4.38)

and then

|wn|μ ≤ C
(

‖w+
n‖tp/μE + ‖w+

n‖2tp/μ
2

E + 1
)

. (4.39)

Using (4.3), (4.37), and (4.39), from Φ′
λn
(wn)w+

n = 0, we obtain

‖w+
n‖2E ≤ C

∫

R

(

|wn|μ−1|w+
n | + |wn|p−1|w+

n |
)

dt

≤ C

(

|wn|μ−1μ +
(∫

R

|wn|p
)(p−1)/p)

‖w+
n‖E

≤ C

⎛

⎝|wn|μ−1μ +

(

∫

{t||wn(t)|≤r0}
|wn|p +

∫

{t||wn(t)|≥r0}
|wn|p

)(p−1)/p⎞

⎠‖w+
n‖E

≤ C

⎛

⎝|wn|μ−1μ +
(∫

R

|wn|μ
)(p−1)/p

+

(

∫

{t||wn(t)|≥r0}
|wn|p

)(p−1)/p⎞

⎠‖w+
n‖E

≤ C
(

|wn|μ−1μ + |wn|μ(p−1)/pμ + ‖w+
n‖t(p−1)E + ‖w+

n‖2t(p−1)/μE

)

‖w+
n‖E

≤ C
(

‖w+
n‖tp(μ−1)/μE + ‖w+

n‖2tp(μ−1)/μ
2

E + ‖w+
n‖t(p−1)E + ‖w+

n‖2t(p−1)/μE + 1
)

‖w+
n‖E,

(4.40)

which implies sup ‖w+
n‖E < ∞ since t(p − 1) < 1.

Proof of Theorem 1.1. Since {wn} is bounded,wn ⇀ w in Eμ andwn → w in Lt
loc for 2 ≤ t < ∞.

We show that w/= 0.
In fact, by (4.3) and (4.30),

∣

∣

∣

∣

∫

R

Wz(t,wn)w+
n

∣

∣

∣

∣

≤ C

∫

R

(

|wn|μ−1 + |wn|p−1
)

|w+
n |

≤ C
(

|wn|μ−1μ + |wn|p−1p

)

‖w+
n‖E

≤ C
(

‖wn‖μ−1μ + ‖wn‖p−1μ

)

‖w+
n‖E

≤ C
(

‖w+
n‖μE + ‖w+

n‖2(μ−1)/μ+1E + ‖w+
n‖pE + ‖w+

n‖2(p−1)/μ+1E

)

.

(4.41)
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It follows from Φ′
λn
(wn)w+

n = 0 that

‖w+
n‖2E = λn

∫

R

Wz(t,wn)w+
n

≤ C
(

‖w+
n‖μE + ‖w+

n‖2(μ−1)/μ+1E + ‖w+
n‖pE + ‖w+

n‖2(p−1)/μ+1E

)

,

(4.42)

which implies that there exists C0 > 0 such that ‖w+
n‖E ≥ C0.

If {w+
n} is vanishing, then

‖w+
n‖2E = λn

∫

R

Wz(t,wn)w+
n −→ 0, (4.43)

a contradiction. Hence {w+
n} is nonvanishing.

Just along the proof of Lemma 4.6, we can see that there exist M > 0 and a > 0 such
that

∫

B(0,a+1)

∣

∣w+
n

∣

∣dt ≥ M

2
, (4.44)

where w +
n := w+

n(t + yn).
Set w −

n := w−
n(t + yn) and wn = w +

n + w −
n . Then sup ‖wn‖μ < ∞ and then wn ⇀ w,

w +
n ⇀ w +, and w −

n ⇀ w −. By Lemma 2.1, w +
n → w + in L2

loc, and hence

∫

B(0,a+1)

∣

∣w +∣
∣

2 ≥ M

2
> 0. (4.45)

It follows that w/= 0.
Since Φ′

λn
(wn) = 0, using Lebesgue’s theorem, then we obtain

−Φ′(w)φ = Φ′
λn
(wn)φ −Φ′

λn
(w)φ + Φ′

λn
(w)φ −Φ′(w)φ

=
〈

w +
n −w +, φ

〉

E − λn
〈

w −
n −w −, φ

〉

E − λn

∫

R

(Wz(t,wn) −Wz(t,w))φ

+ (1 − λn)
〈

w,φ
〉

E + (1 − λn)
∫

R

Wz(t,w)φ −→ 0,

(4.46)

for any φ ∈ C∞
0 , that is, Φ′(w) = 0.

Proof of Theorem 1.3. It is easy to check that Wz(t, z) = a|z|μ−2z + Rz(t, z) satisfies all the
assumptions of Theorem 1.1 with b0 = β = μ.
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