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1. Introduction

Lotka-Volterra predator-prey models have been extensively and deeply investigated (see
monographs [1–5]). If we let x(t) denote the density of prey and let y(t) be the density of
predator, then the classical Lotka-Volterra predator-prey model is given by the following
system:

dx

dt
=
(
r1 − c1y − b1x

)
x,

dy

dt
=
(−ε2 + ρ2x

)
y.

(1.1)

The equations in system (1.1) set no upper limit on the per-capita growth rate of the predator
(the second term of model (1.1)) which is unrealistic. For example, for mammals, such a
limit will be determined in part by physiological factors (length of the gestation period, the
shortest interval between litters, the maximum average number of daughters per-litter, the
age at which breeding first starts, and so on [6]). Leslie modeled the effect of such limitations
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via a predator-prey model where the “carrying capacity” of the predator’s environment was
assumed to be proportional to the number of prey. Hence, if x(t) and y(t) denote the prey
and predator density, respectively, then Leslie’s model is given by the following system:

dx

dt
=
(
r1 − c1y − b1x

)
x,

dy

dt
=
(
r2 − c2

y

x

)
y,

(1.2)

where ri, ci, i = 1, 2, and b1 are positive constants. The first equation of system (1.2) is
standard but the second is not because it contains the “so-called” Leslie-Gower term, namely,
c2(y/x). The rationale behind this term is based on the view that as the prey becomes
numerous (x → ∞) then the per-capita growth rate of the predator achieves its maximum
((1/y)(dy/dt) → r2). Conversely as the prey becomes scarce x → 0, we have that
(1/y)(dy/dt) → −∞. That is, the predator must go extinct. Recently, the use of a Holling-
type II functional for the prey has led various researchers [7, 8] to the consideration of the
following model (a modification of system (1.2)):

dx

dt
=
(
r1 −

c1y

x + k1
− b1x

)
x,

dy

dt
=
(
r2 −

c2y

x + k2

)
y,

(1.3)

where r1 is the per-capita growth rate of the prey x; b1 is a measure of the strength of prey
(on prey) interference competition; c1 is the maximum value of the per-capita reduction rate
of x due to y; k1 measures the extent to which the environment provides protection to prey x
(k2 for y); r2 gives the maximal per-capita growth rate of y; c2 has a similar meaning to that
of c1.

In [9], the global stability of the unique coexisting interior equilibrium of system
(1.2) is established. In [7], the existence and boundedness of solutions (including that of
an attracting set) are established as well as the global stability of the coexisting interior
equilibrium for model (1.3). There have been additional extensions, for example, in [10, 11] a
Leslie-Gower type model with impulse was introduced and investigated.

The study of the role of dispersal in continuous-time metapopulation models is
extensive (see [12–16] and the references cited therein). They show that dispersal can have a
stabilizing influence on the system (see [12, 13]) and also can have a destabilizing influence
on the system (see [14, 15]).

On the other hand, most prey species have a life history that includes multiple stages
(juvenile and adults or immature and mature). In Aiello and Freedman [17], the population
dynamics of a single species with two identifiable stages was modeled by the following
system:

x′
1(t) = αx2(t) − γx1(t) − αe−γτx2(t − τ),

x′
2(t) = αe

−γτx2(t − τ) − βx2
2(t),

(1.4)
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where x1(t), x2(t) denote the immature and mature population densities, respectively. Here,
α > 0 represents the per-capita birth rate; γ > 0 is the per-capita immature death rate;
β > 0 is the death rate due to overcrowding, and τ is the “fixed” time to maturity; the
term αe−γτx2(t − τ) models the immature individuals who were born at time t − τ (i.e.,
αx2(t − τ)) and survive and mature at time t. The derivation and analysis of system (1.4)
can be found in [17]. More and More researchers (see [16–22] and the references cited
therein) have investigated many kinds of predator-prey model under various stage-structure
assumptions. In Xu et al. [16], they discussed a Lotka-Volterra-type predator-prey model with
stage structure for predator and prey dispersal in two-patch environments. They obtained
sufficient conditions of permanence and impermanence and global asymptotic stability of the
positive equilibrium; they also discussed the local stability of the positive equilibrium. In [22],
they studied a generalized version of the Leslie-Gower predator-prey model that incorporates
the prey structure and obtained sufficient conditions of permanence and stability of the
nonnegative equilibrium.

Motivated by the above works, in this paper we study the effects of stage structure for
prey and predator dispersal on the global dynamics of modified version of the Leslie-Gower
and Holling-type II predator-prey system. Following [16, 23], we assumethe following.

(A1) The prey population: the prey only lives in patch 1. For immature prey, α is birth
rate, r1 is death rate, and the term αe−r1τx2(t − τ) represents the number of immature prey
that was born at time t−τ , which still survive at time t and are transferred from the immature
stage to the mature stage at time t. For mature prey, r2 is death rate, r3 is the intraspecific
competition rate of mature prey, a1 is the maximum value of the per-capita reduction rate of
x2 due to y1, and k1 (resp., k2) measures the extent to which environment provides protection
to prey x2 (resp., to the predator y1).

(A2) The predator population: βi are the birth rate of predator in patch i, i = 1, 2; Di is the
dispersion rate of predator between two patches; r4 is death rate of predator in patch 2; a2

has a similar meaning to a1. It is assumed that predators in patch 1 do not capture immature
prey, then we have the following delayed differential system:

ẋ1(t) = αx2(t) − r1x1(t) − αe−r1τx2(t − τ),

ẋ2(t) = αe−r1τx2(t − τ) − r2x2(t) − r3x
2
2(t) −

a1y1(t)x2(t)
x2(t) + k1

,

ẏ1(t) =
(
β1 −

a2y1(t)
x2(t) + k2

)
y1(t) +D1

(
y2(t) − y1(t)

)
,

ẏ2(t) =
(
β2 − r4y2(t)

)
y2(t) +D2

(
y1(t) − y2(t)

)
,

(1.5)

where x1(t) and x2(t) represent the densities of immature and mature individual prey in
patch 1 at time t, yi(t) denote the density of predator species in patch i, i = 1, 2 at time t, all
parameters of (1.5) are positive constants.

The initial conditions for system (1.5) take the form of

xi(θ) = Φi(θ), yi(θ) = Ψi(θ), xi(0) > 0, yi(0) > 0, i = 1, 2, (1.6)

where (Φ1(θ),Φ2(θ),Ψ1(θ),Ψ2(θ)) ∈ C([−τ, 0], R4
+0), the Banach space of continuous function

mapping the interval [−τ, 0] into R4
+0, where R4

+0 = {(x1, x2, x3, x4) : xi ≥ 0, i = 1, 2, 3, 4}.
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For continuity of the initial conditions, we further require

x1(0) =
∫0

−τ
αer1sΦ2(s)ds. (1.7)

The paper is organized as follows. In Section 2, we will discuss the uniform persistence
of system (1.5). In Section 3, we are concerned with the global stability of a positive
equilibrium of system (1.5) by constructing Lyapunov functional and also present two
numerical simulations to illustrate our main results.

2. Uniform Persistence

In this section, we will discuss the uniform persistence of system (1.5) with initial conditions
(1.6) and (1.7).

Definition 2.1. System (1.5) is said to be uniformly persistent if there exists a compact region
D ⊂ IntR4

+0 such that every solution of system (1.5) with initial conditions (1.6) and (1.7)
eventually enters and remains in the region D.

Lemma 2.2. Solutions of system (1.5) with initial conditions (1.6) and (1.7) are positive for all t ≥ 0.

Proof. Let (x1(t), x2(t), y1(t), y2(t)) be a solution of system (1.5) with initial conditions (1.6)
and (1.7); we first consider y1(t) and y2(t) for t ∈ [0, τ],

ẏ1(t)
∣∣
y1=0 = D1y2(t) > 0 for y2 > 0,

ẏ2(t)
∣∣
y2=0 = D2y1(t) > 0 for y1 > 0.

(2.1)

Thus, it follows that y1(t) > 0, y2(t) > 0 for t ∈ [0, τ].
For t ∈ [0, τ], it follows from the second equation of system (1.5) that

ẋ2(t) ≥
[
−r2 − r3x2(t) −

a1y1(t)
x2(t) + k1

]
x2(t). (2.2)

Consider the following auxiliary equation:

u̇(t) ≥
[
−r2 − r3u(t) −

a1y1(t)
u(t) + k1

]
u(t),

u(t) = u(0) exp

(

−
∫ t

0

(
r2 + r3u(s) +

a1y1(s)
u(s) + k1

)
ds

)

> 0.

(2.3)

For t ∈ [0, τ], u(0) = x2(0) > 0; thus, x2(t) ≥ u(t) > 0.
In a similar way, we consider the intervals [τ, 2τ] · · · [nτ, (n + 1)τ], n ∈ N. Thus,

x2(t) > 0, y1(t) > 0, y2(t) > 0 for all t ≥ 0.
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By (1.7) and the first equation of (1.5) we can obtain that

x1(t) = α
∫ t

t−τ
e−r1(t−s)x2(s)ds. (2.4)

Therefore the positivity of x1(t) for t ≥ 0 follows, this completes the proof.

In order to discuss the uniform persistence, we need the following result from [24].

Lemma 2.3. Consider the following equation:

ẋ(t) = ax(t − τ) − bx(t) − cx2(t), (2.5)

where a, b, c, and τ are positive constants, x(t) > 0 for t ∈ [−τ, 0].We have the following:

(i) if a > b, then limt→+∞x(t) = (a − b)/c;

(ii) if a < b, then limt→+∞x(t) = 0.

Lemma 2.4. Let (x1(t), x2(t), y1(t), y2(t)) be a solution of system (1.5) with initial conditions (1.6)
and (1.7). Then there exists a T3 > 0 such that

xi(t) ≤N, yi(t) ≤N, (i = 1, 2) for t ≥ T3, (2.6)

whereN is a constant and

N > max{N1,N2,N
∗},

N1 =
αN2

r1

(
1 − e−r1τ

)
,

N2 =
αe−r1τ

r3
+ ε,

N∗ =
α2

4Ar3
+

(
A +D2 + β1

)2(N2 + k2)
4Aa2

+

(
A +D1 + β2

)2

4Ar1
,

A = min{r1,r2}.

(2.7)

Proof. SupposeX(t) = (x1(t), x2(t), y1(t), y2(t))to be any positive solution of system (1.5) with
initial conditions (1.6) and (1.7). It follows from the second equation of system (1.5) that for
t ≥ τ,

ẋ2(t) ≤ αe−r1τx2(t − τ) − r3x
2
2(t). (2.8)

Consider the following auxiliary equation:

u̇(t) = αe−r1τu(t − τ) − r3u
2(t). (2.9)
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By Lemma 2.3 we obtain that

lim
t→+∞

u(t) =
αe−r1τ

r3
. (2.10)

Using comparison principle, it follows that

lim
t→+∞

supx2(t) ≤ αe−r1τ

r3
. (2.11)

Therefore, for sufficiently small ε > 0 there is a T1 > τ such that if t ≥ T1,

x2(t) ≤ αe−r1τ

r3
+ ε :=N2. (2.12)

Setting T2 = T1 + τ, it then follows (2.4) and (2.12) that, for t ≥ T2,

x1(t) ≤ αN2

r1

(
1 − e−r1τ

)
:=N1. (2.13)

We define

ρ(t) = x1(t) + x2(t) + y1(t) + y2(t),

ρ̇(t) ≤ −Aρ(t) + α2

4r3
+

(
A +D2 + β1

)2(N2 + k2)
4a2

+

(
A +D1 + β2

)2

4r1
,

(2.14)

where A = min{r1,r2}.
It follows from (2.14) that

lim
t→+∞

sup ρ(t) ≤ α2

4Ar3
+

(
A +D2 + β1

)2(N2 + k2)
4Aa2

+

(
A +D1 + β2

)2

4Ar1
:=N∗. (2.15)

Therefore, there exists a T3 = T2 + τ and

N > max{N1,N2,N
∗}. (2.16)

Such that if t ≥ T3, xi(t) ≤N, yi(t) ≤N (i = 1, 2). This completes the proof.

Theorem 2.5. System (1.5) with initial conditions (1.6) and (1.7) is uniformly persistent provided
that

(H1) αe−r1τ > r2 + a1N/k1, whereN is defined by(2.7).
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Proof. SupposeX(t) = (x1(t), x2(t), y1(t), y2(t))to be any positive solution of system (1.5) with
initial conditions (1.6) and (1.7). It follows from the second equation of system (1.5) that for
t ≥ T3 + τ,

ẋ2(t) ≥ αe−r1τx2(t − τ) −
(
r2 +

a1N

k1

)
x2(t) − r3x

2
2(t). (2.17)

Consider the following auxiliary equation:

u̇(t) = αe−r1τu(t − τ) −
(
r2 +

a1N

k1

)
u(t) − r3u

2(t). (2.18)

By Lemma 2.3, we obtain that

lim
t→+∞

u(t) =
αe−r1τ − r2 − a1N/k1

r3
. (2.19)

According to comparison principle it follows that

lim
t→+∞

infx2(t) ≥ αe−r1τ − r2 − a1N/k1

r3
. (2.20)

Therefore, for sufficiently small ε > 0 there is a T4 = T3 + τ such that if t ≥ T4,

x2(t) ≥ αe−r1τ − r2 − a1N/k1

r3
− ε := n2. (2.21)

By the third and forth equation of system (1.5), we have

ẏ1(t) ≥
(
β1 −

a2y1(t)
n2 + k2

)
y1(t) +D1

(
y2(t) − y1(t)

)
,

ẏ2(t) =
(
β2 − r4y2(t)

)
y2(t) +D2

(
y1(t) − y2(t)

)
, t ≥ T4 + τ.

(2.22)

Consider the following auxiliary equation:

u̇1(t) =
(
β1 − a2u1(t)

n2 + k2

)
u1(t) +D1(u2(t) − u1(t)),

u̇2(t) =
(
β2 − r4u2(t)

)
u2(t) +D2(u1(t) − u2(t)).

(2.23)

Define

V11(t) = min{u1(t), u2(t)}. (2.24)
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Using a similar argument in the proof of [25, Lemma 2.1] we obtain

lim
t→+∞

infV11(t) ≥ min
{
β1(n2 + k2)

a2
,
β2

r4

}
:= n∗3. (2.25)

Therefore, for sufficiently small ε > 0 there is a T5 = T4 + τ such that if t ≥ T5,

y1(t) ≥ n∗3 − ε := n3, y2(t) ≥ n∗3 − ε := n3. (2.26)

Setting T6 = T5 + τ, then by (2.4), we have

x1(t) ≥ αn2(1 − e−r1τ)
r1

:= n1, t ≥ T6. (2.27)

This completes the proof.

We now state a result on the extinction of the mature and immature prey.

Theorem 2.6. The mature and immature prey population will go to extinction if (H2) holds

(H2) αe−r1τ < r2.

Remark 2.7. From the (H2), we know that if the death rate of mature prey r2 is more than the
product of birth rate of immature prey α and the surviving probability of each immature prey
becomes mature e−r1τ , then the mature and immature prey population will go to extinction.

Proof. SupposeX(t) = (x1(t), x2(t), y1(t), y2(t))to be any positive solution of system (1.5) with
initial conditions (1.6) and (1.7). It follows from the second equation of system (1.5) that there
is a T11 > 0,

ẋ2(t) ≤ αe−r1τx2(t − τ) − r2x2(t) − r3x
2
2(t). (2.28)

Consider the following auxiliary equation:

u̇(t) = αe−r1τu(t − τ) − r2u(t) − r3u
2(t). (2.29)

By Lemma 2.3, we derived from (2.29) and (H2) that

lim
t→+∞

u(t) = 0. (2.30)

A standard comparison argument shows that

lim
t→+∞

x2(t) = 0. (2.31)
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Therefore, ∀ε > 0, there is a T7 > T6 such that if t ≥ T7, 0 < x2(t) < r1ε/2α(1 − e−r1τ). Thus, we
derive from (2.4) that for t ≥ T7 + τ,

x1(t) ≤ α
∫ t

t−τ
e−r1(t−s) r1ε

2α(1 − e−r1τ)
ds < ε. (2.32)

We therefore obtain that

lim
t→+∞

x1(t) = 0. (2.33)

This completes the proof.

3. Global Stability

In this section, we study the global asymptotic stability of a positive equilibrium of system
(1.5). By Theorem 2.5 we see that if (H1) satisfies, system (1.5) is uniformly persistent, which
implies that system (1.5) must have at least one positive equilibrium. So in the following we
assume that a positive equilibrium exists and denote it by E∗(x∗

1, x
∗
2, y

∗
1, y

∗
2).

Theorem 3.1. Let (H1) hold. Assume further that

(H3) Ai > 0, i = 1, 3, where

A1 =
a2

N + k2
+

a1x
∗
2

4
(
x∗

2 + k1
) − a2y

∗
1

4(n2 + k2)
(
x∗

2 + k2
) ,

A3 = r3n2 +
a1k1n3

(N + k1)
(
x∗

2 + k1
) +

a1
(
x∗

2 − y∗
1

)

x∗
2 + k1

− a2y
∗
1

(n2 + k2)
(
x∗

2 + k2
) ,

(3.1)

where n2 = ((αe−r1τ − r2) − a1N/k1)/r3 − ε, n3 = min{β1(n2 + k2)/a2, β2/r4} − ε, ε > 0 is a
sufficient small constant, andN is defined by (2.7).

Then the positive equilibrium E∗(x∗
1, x

∗
2, y

∗
1, y

∗
2) of system (1.5) is globally asymptotically

stable.

Remark 3.2. Theorem 3.1 shows that if the time delay due to maturity is sufficiently small, the
positive equilibrium of system (1.5) is globally asymptotically stable.

Proof. We first consider the following subsystem:

ẋ2(t) = αe−r1τx2(t − τ) − r2x2(t) − r3x
2
2(t) −

a1y1(t)x2(t)
x2(t) + k1

,

ẏ1(t) =
(
β1 −

a2y1(t)
x2(t) + k2

)
y1(t) +D1

(
y2(t) − y1(t)

)
,

ẏ2(t) =
(
β2 − r4y2(t)

)
y2(t) +D2

(
y1(t) − y2(t)

)
.

(3.2)
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Noting that E∗(x∗
2, y

∗
1, y

∗
2) is a positive equilibrium of system (3.2), we can rewrite system (3.2)

as

ẋ2(t) = αe−r1τ
(
x2(t − τ) − x∗

2
) − r2

(
x2(t) − x∗

2
) − r3

(
x2(t) + x∗

2
)(
x2(t) − x∗

2
)

− a1k1y1(t)
(
x2(t) − x∗

2

)

(x2(t) + k1)
(
x∗

2 + k1
) − a1x

∗
2

(
y1(t) − y∗

1

)

x∗
2 + k1

,

ẏ1(t) =

(

−a2
(
y1(t) − y∗

1

)

x2(t) + k2
+

a2
(
y1(t) − y∗

1

)

(x2(t) + k2)
(
x∗

2 + k2
)

)

y1(t)

− D1

y∗
1
y2(t)

(
y1(t) − y∗

1

)
+
D1

y∗
1
y1(t)

(
y2(t) − y∗

2
)
,

ẏ2(t) =
(−r4

(
y2(t) − y∗

2
))
y2(t) − D2

y∗
2
y1(t)

(
y2(t) − y∗

2
)
+
D2

y∗
2
y2(t)

(
y1(t) − y∗

1

)
.

(3.3)

Define

V1(t) =
2∑

i=1

ci

(

yi(t) − y∗
i − y∗

i ln
yi(t)
y∗
i

)

+
1
2
c3
(
x2(t) − x∗

2
)2
. (3.4)

Calculating the derivative of V1(t) along solution of system (1.5), we have

dV1(t)
dt

=
2∑

i=1

ci
(
yi(t) − y∗

i

) ẏi(t)
yi(t)

+ c3
(
x2(t) − x∗

2
)
ẋ2(t)

= −c1
a2
(
y1(t) − y∗

1

)2

x2(t) + k2
+ c1

a2y
∗
1

(
x2(t) − x∗

2

)(
y1(t) − y∗

1

)

(x2(t) + k2)
(
x∗

2 + k2
) − c1D1

y∗
1y1(t)

y2(t)
(
y1(t) − y∗

1

)2

+
c1D1

y∗
1

(
y1(t) − y∗

1

)(
y2(t) − y∗

2
) − c2r4

(
y2(t) − y∗

2
)2 − c2D2

y∗
2y2(t)

y1(t)
(
y2(t) − y∗

2
)2

+
c2D2

y∗
2

(
y1(t) − y∗

1

)(
y2(t) − y∗

2
)
+ c3αe

−r1τ
(
x2(t − τ) − x∗

2
)(
x2(t) − x∗

2
)

− c3r2
(
x2(t) − x∗

2
)2 − c3r3

(
x2(t) + x∗

2
)(
x2(t) − x∗

2
)2

− c3a1k1y1(t)
(
x2(t) − x∗

2

)2

(x2(t) + k1)
(
x∗

2 + k1
) − c3a1x

∗
2

(
x2(t) − x∗

2

)(
y1(t) − y∗

1

)

x∗
2 + k1

.

(3.5)
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Setting c1 = 1, c2 = D1y
∗
2/D2y

∗
1. By (3.5) we obtain

dV1(t)
dt

= −a2
(
y1(t) − y∗

1

)2

x2(t) + k2
− D1y

∗
2

D2y
∗
1
r4
(
y2(t) − y∗

2
)2

− D1

y∗
1

⎡

⎣

√
y2(t)
y1(t)

(
y1(t) − y∗

1

) −
√
y1(t)
y2(t)

(
y2(t) − y∗

2
)
⎤

⎦

2

+
a2y

∗
1

(
x2(t) − x∗

2

)(
y1(t) − y∗

1

)

(x2(t) + k2)
(
x∗

2 + k2
) − c3a1x

∗
2

(
x2(t) − x∗

2

)(
y1(t) − y∗

1

)

x∗
2 + k1

+ c3αe
−r1τ
(
x2(t − τ) − x∗

2
)(
x2(t) − x∗

2
) − c3r2

(
x2(t) − x∗

2
)2

− c3r3
(
x2(t) + x∗

2
)(
x2(t) − x∗

2
)2 − c3a1k1y1(t)

(
x2(t) − x∗

2

)2

(x2(t) + k1)
(
x∗

2 + k1
) .

(3.6)

Using the inequality ab ≤ (1/2)ka2 + (1/2k)b2, it follows from (3.6) that

dV1(t)
dt

≤ − a2

x2(t) + k2

(
y1(t) − y∗

1

)2 − D1y
∗
2

D2y
∗
1
r4
(
y2(t) − y∗

2
)2

+

(
a2y

∗
1

(x2(t) + k2)
(
x∗

2 + k2
) − c3a1x

∗
2

x∗
2 + k1

)(
A
(
x2(t) − x∗

2

)2

2
+

(
y1(t) − y∗

1

)2

2A

)

+ c3αe
−r1τ

(
B
(
x2(t) − x∗

2

)2

2
+

(
x2(t − τ) − x∗

2

)2

2B

)

− c3r2
(
x2(t) − x∗

2
)2

− c3r3
(
x2(t) + x∗

2
)(
x2(t) − x∗

2
)2 − c3a1k1y1(t)

(x2(t) + k1)
(
x∗

2 + k1
)
(
x2(t) − x∗

2
)2
,

(3.7)

where parameters A, B are positive constants to be determined.
Define

V (t) = V1(t) +
1

2B
c3αe

−r1τ

∫ t

t−τ

(
x2(s) − x∗

2
)2
ds. (3.8)
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Setting A = 2, B = 1, c3 = 1, then it follows from (3.7) and (3.8) that

dV1(t)
dt

≤ −
{

a2

x2(t)+k2
+

a1x
∗
2

4
(
x∗

2+k1
) − a2y

∗
1

4(x2(t)+k2)
(
x∗

2+k2
)

}
(
y1(t)−y∗

1

)2−D1y
∗
2

D2y
∗
1
r4
(
y2(t)−y∗

2
)2

−
{

r3x2(t)+
a1k1y1(t)

(x2(t)+ k1)
(
x∗

2+ k1
)+

a1
(
x∗

2 − y∗
1

)

x∗
2+ k1

− a2y
∗
1

(x2(t)+ k2)
(
x∗

2+ k2
)

}
(
x2(t) − x∗

2
)2

≤ −
{

a2

N + k2
+

a1x
∗
2

4
(
x∗

2 + k1
) − a2y

∗
1

4(n2 + k2)
(
x∗

2 + k2
)

}
(
y1(t) − y∗

1

)2 − D1y
∗
2

D2y
∗
1
r4
(
y2(t) − y∗

2
)2

−
{

r3n2 +
a1k1n3

(N + k1)
(
x∗

2 + k1
) +

a1
(
x∗

2 − y∗
1

)

x∗
2 + k1

− a2y
∗
1

(n2 + k2)
(
x∗

2 + k2
)

}
(
x2(t) − x∗

2
)2

:= −A1
(
y1(t) − y∗

1

)2 −A2
(
y2(t) − y∗

2
)2 −A3

(
x2(t) − x∗

2
)2
,

(3.9)

where

A1 =
a2

N + k2
+

a1x
∗
2

4
(
x∗

2 + k1
) − a2y

∗
1

4(n2 + k2)
(
x∗

2 + k2
) ,

A2 =
D1y

∗
2

D2y
∗
1
r4,

A3 = r3n2 +
a1k1n3

(N + k1)
(
x∗

2 + k1
) +

a1
(
x∗

2 − y∗
1

)

x∗
2 + k1

− a2y
∗
1

(n2 + k2)
(
x∗

2 + k2
) .

(3.10)

N, n2, and n3 are defined in (2.16), (2.21), and (2.26), respectively.
If (H1) and (H3) hold and ε > 0 is sufficiently small, we have Ai > 0, i = 1, 3. In view

of Lyapunov theorem [26], we conclude that the positive equilibrium E∗(x∗
2, y

∗
1, y

∗
2) of system

(3.2) is globally asymptotically stable. Thus, we have

lim
t→+∞

x2(t) = x∗
2, lim

t→+∞
y1(t) = y∗

1, lim
t→+∞

y2(t) = y∗
2. (3.11)

Using L’Hospital’s rule, it follows from (2.4) and (3.11) that

lim
t→+∞

x1(t) = lim
t→+∞

α

∫ t

t−τ
e−r1(t−s)x2(s)ds

= lim
t→+∞

α

r1
x2(t) − e−r1τx2(t − τ)

=
αx∗

2

r1

(
1 − e−r1τ

)
= x∗

1.

(3.12)

This completes the proof.
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It is interesting to discuss the local stability of the positive equilibrium E∗(x∗
1, x

∗
2, y

∗
1, y

∗
2)

of system (1.5).
The characteristic equation of the positive equilibrium E∗ of system (1.5) is of the form

(λ + r1)
[
P(λ) +Q(λ)e−λτ

]
= 0, (3.13)

where

P(λ) = λ3 + a2λ
2 + a1λ + a0,

Q(λ) = b2λ
2 + b1λ + b0,

(3.14)

here

a0 =

(

r2 + 2r3 +
a1k1y

∗
1

(
x∗

2 + k1
)2

)[(
a2y

∗
1

x∗
2 + k2

+D1
y∗

2

y∗
1

)(
r4y

∗
2 +D2

y∗
1

y∗
2

)
−D1D2

]

+
a1a2x

∗
2y

∗2
1

(
x∗

2 + k1
)(
x∗

2 + k2
)2

(
r4y

∗
2 +D2

y∗
1

y∗
2

)
,

a1 =

(

r2 + 2r3 +
a1k1y

∗
1

(
x∗

2 + k1
)2

)(
a2y

∗
1

x∗
2 + k2

+D1
y∗

2

y∗
1
+ r4y

∗
2 +D2

y∗
1

y∗
2

)

+

[(
a2y

∗
1

x∗
2 + k2

+D1
y∗

2

y∗
1

)(
r4y

∗
2 +D2

y∗
1

y∗
2

)
−D1D2

]

+
a1a2x

∗
2y

∗2
1

(
x∗

2 + k1
)(
x∗

2 + k2
)2
,

a2 = r2 + 2r3 +
a1k1y

∗
1

(
x∗

2 + k1
)2

+
a2y

∗
1

x∗
2 + k2

+D1
y∗

2

y∗
1
+ r4y

∗
2 +D2

y∗
1

y∗
2
,

b0 = −αe−r1τ

[(
a2y

∗
1

x∗
2 + k2

+D1
y∗

2

y∗
1

)(
r4y

∗
2 +D2

y∗
1

y∗
2

)
−D1D2

]

,

b1 = −αe−r1τ

(
a2y

∗
1

x∗
2 + k2

+D1
y∗

2

y∗
1
+ r4y

∗
2 +D2

y∗
1

y∗
2

)

,

b2 = −αe−r1τ .

(3.15)

Clearly, λ = −r1 is a negative eigenvalue. If r3x
∗
2 − a1x

∗
2y

∗
1/(x

∗
2 + k1)

2 > 0, which implies that
ai + bi > 0 (i = 1, 2, 3), and (a1 + b1)(a2 + b2) − (a0 + b0) > 0, then by Routh-Hurwitz Theorem
the positive equilibrium E∗ of system (1.5) is locally asymptotically stable when τ = 0.

Let

F
(
y
)
=
∣∣P
(
iy
)∣∣2 − ∣∣Q(iy)∣∣2 = y6 + ly4 +my2 + n = 0, (3.16)
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where

l = a2
2 − 2a1 − b2

2,

m = a2
1 − 2a0a2 + 2b0b2 − b2

1,

n = a2
0 − b2

0.

(3.17)

Let z = y2, and then (3.16) becomes

z3 + lz2 +mz + nz = 0. (3.18)

By applying the results on the distribution of roots of (3.16) and (3.18) in [27] and [26,
Theorem 4.1, page 83], we therefore derive the following results on the stability of the positive
equilibrium E∗.

Theorem 3.3. Suppose that system (1.5) admits a positive equilibrium E∗(x∗
1, x

∗
2, y

∗
1, y

∗
2) and r3x

∗
2 −

a1x
∗
2y

∗
1/(x

∗
2 + k1)

2 > 0.

(1) IfΔ = l2−3m ≤ 0, then the positive equilibrium E∗ of system (1.5) is locally asymptotically
stable.

(2) If Δ = l2 − 3m > 0 and h(z∗1) ≤ 0, then there exists a positive number τ0 such that the
positive equilibrium E∗ of system (1.5) is locally asymptotically stable if 0 < τ < τ0 and
is locally unstable if τ > τ0; further, as τ increases through τ0, E∗ bifurcates into small
amplitude periodic solutions, here, z∗1 = (−l +

√
Δ)/3, h(z) = z3 + lz2 +mz + nz.

4. Two Examples

In this section, we give two examples to illustrate our main results.

Example 4.1. Consider the following system:

ẋ1(t) = 5x2(t) − x1(t) − 5e−τx2(t − τ),

ẋ2(t) = 5e−τx2(t − τ) − 1.5x2(t) − 3x2
2(t) −

0.8y1(t)x2(t)
x2(t) + 8

,

ẏ1(t) =
(

0.2 − 1.5y1(t)
x2(t) + 1.5

)
y1(t) + 0.5

(
y2(t) − y1(t)

)
,

ẏ2(t) =
(
1.5 − y2(t)

)
y2(t) + 0.5

(
y1(t) − y2(t)

)
,

(4.1)

where the parameter τ is a positive constant.

System (4.1) has a unique positive equilibrium E∗(0.9589, 0.4874, 0.7466, 1.2895). It is
easy to show that if τ < 0.8973, then (H1) and (H3) hold for system (4.1). By Theorem 2.5 we
see that system (4.1) is uniformly persistent when τ < 0.8973. By Theorem 3.1 we see that the
positive equilibrium of system (4.1) is globally asymptotically stable when τ = 0.5. Numerical
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Figure 1: The temporal solution found by numerical integration of system (4.1) with τ = 0.5 and
(Φ1(θ),Φ2(θ),Ψ1(θ),Ψ2(θ)) = (5(1 − e−0.5), 1, 0.6, 0.6).

integration can be carried out using standard MATLAB algorithm. Numerical simulation also
confirms the fact (see Figure 1).

Example 4.2. Consider the following system:

ẋ1(t) = 5x2(t) − x1(t) − 5e−1x2(t − 1),

ẋ2(t) = 5e−1x2(t − 1) − 2x2(t) − 3x2
2(t) −

2y1(t)x2(t)
x2(t) + 8

,

ẏ1(t) =
(

1 − 2y1(t)
x2(t) + 2

)
y1(t) + y2(t) − y1(t),

ẏ2(t) =
(
1 − y2(t)

)
y2(t) + y1(t) − y2(t).

(4.2)

System (4.2) has a unique boundary equilibrium E∗(0, 0, 1, 1). It is easy to show
that (H2)holds for system (4.2). By Theorem 2.6 we see that mature and immature prey
population goes to extinction. Numerical integration can be carried out using standard
MATLAB algorithm. Numerical simulation also confirms the fact (see Figure 2).

5. Discussion

In this paper, we discussed a generalized Leslie-Gower-type predator-prey model with
stage structure for prey and predator dispersal in two-patch environments. By using
comparison arguments we established sufficient conditions for system (1.5) to be permanent.
By constructing Lyapunov functionals, sufficient conditions are derived for the global
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Figure 2: The temporal solution found by numerical integration of system (4.2) with
(Φ1(θ),Φ2(θ),Ψ1(θ),Ψ2(θ)) = (5(1 − e−1), 2, 2, 2).

asymptotic stability of the positive equilibrium of system (1.5). By Theorem 3.1 we see that
if the birth rate of immature prey and the extent to which environment provides protection
to mature prey and predator in patch 1, respectively, are high and the maximum value of
the per-capita reduction rate of mature prey due to predator in patch 1 is low satisfying
(H1) and (H3), the positive equilibrium of system (1.5) is globally asymptotically stable. By
Theorem 2.6 we see that if the death rate of mature prey is more than the transformation rate
of immatures to matures satisfying (H2), the immature and mature prey population will go
to extinction.

Acknowledgments

The first author was partially supported by the Key Project of Chinese Ministry of Education
(209131), the Project Sponsored by the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, State Education Ministry, the NSF of Bureau of Education of
Gansu Province of China for Postgraduate Tutors (0803-01), the Development Program
for Outstanding Young Teachers in Lanzhou University of Technology (Q200703), and the
Doctor’s Foundation of Lanzhou University of Technology. The second author was partially
supported by the Young Teacher’s Foundation of Dali University (2008X34).

References

[1] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University
Press, Cambridge, UK, 1998.

[2] J. D. Murray, Mathematical Biology, vol. 19 of Biomathematics, Springer, Heidelberg, Germany, 2nd
edition, 1993.

[3] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, vol. 57 of Monographs and
Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1980.



Abstract and Applied Analysis 17

[4] Y. Takeuchi, Global Dynamical Properties of Lotka-Volterra Systems, World Scientific, River Edge, NJ,
USA, 1996.
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