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1. Introduction

In this paper, we are concerned with the existence and uniqueness of periodic solutions for
the first-order functional differential equation (cf., e.g., [1–5])

y′(t) = −a(t)y(t) + f1
(
t, y(t − τ(t))) + f2

(
t, y(t − τ(t))), (1.1)

x′(t) = a(t)x(t) − f1(t, x(t − τ(t))) − f2(t, x(t − τ(t))), (1.2)

where we will assume that a = a(t) and τ = τ(t) are continuous T -periodic functions, that
T > 0, that f1, f2 ∈ C(R2, R) and T -periodic with respect to the first variable, and that a(t) > 0
for t ∈ R.

Functional differential equations with periodic delays such as those stated above
appear in a number of ecological, economical, control and physiological, and other models.
One important question is whether these equations can support periodic solutions, and
whether they are unique. The existence question has been studied extensively by many
authors (see, e.g., [1–5]). The uniqueness problem seems to be more difficult, and less studies
are known.
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We will tackle the existence and uniqueness question by fixed point theorems for
mixed monotone operators. We choose this approach because such fixed point methods,
besides providing the usual existence and uniqueness results, sometimes may also provide
additional numerical schemes for the computation of solutions.

We first recall some useful terminologies (see [6, 7]). Let E be a real Banach space
with zero element θ. A nonempty closed convex set P ⊂ E is called a cone if it satisfies the
following two conditions: (i) x ∈ P and λ ≥ 0 ⇒ λx ∈ P ; (ii) x ∈ P and −x ∈ P ⇒ x = θ.

Every cone P ⊂ E induces an ordering in E given by x ≤ y, if and only if y − x ∈ P. A
cone P is called normal if there isM > 0 such that x, y ∈ E and θ ≤ x ≤ y ⇒ ‖x‖ ≤ M‖y‖. P
is said to be solid if the interior P 0 of P is nonempty.

Assume that u0, v0 ∈ E and u0 ≤ v0. The set {x ∈ E : u0 ≤ x ≤ v0} is denoted by [u0, v0].
Assume that h > θ. Let Ph = {x ∈ E : ∃λ, μ > 0 such that λh ≤ x ≤ μh}. Obviously if P is a
solid cone and h ∈ P 0, then Ph = P 0.

Definition 1.1. Let E be an ordered Banach space, and let D ⊂ E. An operator is called mixed
monotone on D ×D if A : D ×D → E and A(x1, y1) ≤ A(x2, y2) for any x1, x2, y1, y2 ∈ D that
satisfy x1 ≤ x2 and y2 ≤ y1.Also, x∗ ∈ D is called a fixed point of A if A(x∗, x∗) = x∗.

A function f : I ⊂ R → R is said to be convex in I if f(tx+(1− t)y) ≤ tf(x)+(1− t)f(y)
for any t ∈ [0, 1] and any x, y ∈ I. We say that the function f is a concave function if −f is a
convex function.

Definition 1.2. Assume f : I ⊂ R → R and 0 ≤ α < 1.Then, f is said to be an α-concave or
−α-convex function if f(tx) ≥ tαf(x) or, respectively, f(tx) ≤ t−αf(x) for x ∈ I and t ∈ (0, 1).

Definition 1.3. Let D ⊂ E, and let A : D ×D → E. The operator A is called (φ-concave)-(−ψ-
convex) if there exist functions φ : (0, 1] × D → (0,∞) and ψ : (0, 1] × D → (0,∞) such
that

(H0) t < φ(t, x)ψ(t, x) ≤ 1 for x ∈ D and t ∈ (0, 1),

(H1) A(tx, y) ≥ φ(t, x)A(x, y) for any t ∈ (0, 1) and (x, y) ∈ D ×D,

(H2) A(x, ty) ≤ A(x, y)/ψ(t, y) for any t ∈ (0, 1) and (x, y) ∈ D ×D.

Assume that I ⊂ R and x0 ∈ I. Recall that a function f : I → R is said to be left lower
semicontinuous at x0 if lim infn→∞f(xn) ≥ f(x0) for any monotonically increasing sequence
{xn} ⊂ I that converges to x0.

The proof of the following theorem can be found in [7].

Theorem 1.4. Let P be a normal cone of E. Let u0, v0 ∈ E such that u0 ≤ v0, and let A : [u0, v0] ×
[u0, v0] → E be a mixed monotone operator. IfA is a (φ-concave)-(−ψ-convex) operator and satisfies
the following three conditions:

(A1) there exists r0 > 0 such that u0 ≥ r0v0;
(A2) u0 ≤ A(u0, v0) and A(v0, u0) ≤ v0;
(A3) there exists ω0 ∈ [u0, v0] such that minx∈[u0,v0]φ(t, x)ψ(t, x) = φ(t, ω0)ψ(t, ω0) for each

t ∈ (0, 1), and φ(t, ω0)ψ(t, ω0) is left lower semicontinuous at any t ∈ (0, 1),

thenA has a unique fixed point x∗ ∈ [u0, v0], that is, x∗ = A(x∗, x∗), and for any x0, y0 ∈ [u0, v0], if
we set xn = A(xn−1, yn−1) and yn = A(yn−1, xn−1) for n ∈N, then limn→∞xn = x∗ and limn→∞yn =
x∗.
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Remark 1.5. Condition (A3) in Theorem 1.4 can be replaced by (A3’) φ(t, x)ψ(t, x) is
monotone in x and left lower semicontinuous at any t ∈ (0, 1).

2. Main Results

A real T -periodic continuous function y : R → R is said to be a T -periodic solution of (1.1) if
substitution of it into (1.1) yields an identity for all t ∈ R.

It is well known (see, e.g., [1, 2]) that (1.1) has a T -periodic solution y(t) if, and only
if, y(t) is a T -periodic solution of the equation

y(t) =
∫ t+T

t

G(t, s)f1
(
s, y(s − τ(s)))ds +

∫ t+T

t

G(t, s)f2
(
s, y(s − τ(s)))ds, (2.1)

where

G(t, s) =
exp

(∫s
t a(u)du

)

exp
(∫T

0a(u)du
)
− 1

, (2.2)

and (1.2) has a T -periodic solution x(t) if, and only if, x(t) is a T -periodic solution of the
equation

x(t) =
∫ t

t−T
H(t, s)f1(s, x(s − τ(s)))ds +

∫ t

t−T
H(t, s)f2(s, x(s − τ(s)))ds, (2.3)

where

H(t, s) =
exp

(∫ t
sa(u)du

)

exp
(∫T

0a(u)du
)
− 1

. (2.4)

Furthermore, the Cauchy function G(t, s) satisfies

0 < m ≡ lim
0≤t,s≤T

G(t, s) ≤ G(t, s) ≤ max
0≤t,s≤T

G(t, s) ≡M <∞. (2.5)

Now let CT (R) be the Banach space of all real T -periodic continuous functions y : R →
R endowed with the usual linear structure as well as the norm

∥∥y
∥∥ = sup

t∈[0,T]

∣∣y(t)
∣∣. (2.6)

Then P = {φ ∈ CT (R) : φ(x) ≥ 0, x ∈ R} is a normal cone of CT (R).
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Definition 2.1. The functions v0, ω0 ∈ C1
T (R) are said to form a pair of lower and upper

quasisolutions of (1.1) if v0(t) ≤ ω0(t) and

v′
0(t) ≤ −a(t)v0(t) + f1(t, v0(t − τ(t))) + f2(t, ω0(t − τ(t))), (2.7)

as well as

ω′
0(t) ≥ −a(t)ω0(t) + f1(t, ω0(t − τ(t))) + f2(t, v0(t − τ(t))). (2.8)

We remark that the term quasi is used in the above definition to remind us that they
are different from the traditional concept of lower and upper solutions (cf. (2.7) with v′

0(t) ≤
−a(t)v0(t) + f1(t, v0(t − τ(t))) + f2(t, v0(t − τ(t)))).

Let A : P × P → CT (R) be defined by

A(u, v)(t) =
∫ t+T

t

G(t, s)f1(s, u(s − τ(s)))ds +
∫ t+T

t

G(t, s)f2(s, v(s − τ(s)))ds. (2.9)

We need two basic assumptions in the main results:

(B1) for any s ∈ R, f1(s, x) is an increasing function of x, and f2(s, x) is a decreasing
function of x;

(B2) there exist u0, v0 ∈ P such that u0 and v0 form a respective pair of lower and upper
quasisolutions for (1.1).

Theorem 2.2. Suppose that conditions (B1) and (B2) hold, and

(C1) for any s ∈ R, f1(s, ·) is an α-concave function, f2(s, ·) is a convex function;
(C2) there exist ε ≥ 1/(2 − α) such that A(u0, v0) � εA(v0, θ).

Then (1.1) has a unique solution x∗ ∈ [u0, v0], and for any x0, y0 ∈ [u0, v0], if we set xn =
A(xn−1, yn−1) and yn = A(yn−1, xn−1), then limn→∞xn = x∗ and limn→∞yn = x∗.

Proof. The mapping A : P × P → CT (R) is a mixed monotone operator in view of (B1). Let

u1(z) =
∫z+T

z

G(z, s)f1(s, u0(s − τ(s)))ds +
∫z+T

z

G(z, s)f2(s, v0(s − τ(s)))ds. (2.10)

Then

u′1(z) = −a(z)u1(z) +G(z, z + T)f1(z + T, u0(z + T − τ(z + T)))
−G(z, z)f1(z, u0(z − τ(z)))
+G(z, z + T)f2(z + T, v0(z + T − τ(z + T))) −G(z, z)f2(z, v0(z − τ(z)))

= −a(z)u1(z) +G(z, z + T)f1(z, u0(z − τ(z))) −G(z, z)f1(z, u0(z − τ(z)))
+G(z, z + T)f2(z, v0(z − τ(z))) −G(z, z)f2(z, v0(z − τ(z)))

= −a(z)u1(z) + f1(z, u0(z − τ(z))) + f2(z, v0(z − τ(z))).

(2.11)
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Setm(z) = u1(z) − u0(z). Then

m′(z) = u′1(z) − u′0(z) � −a(z)m(z). (2.12)

Next, we will prove thatm(z) � 0. Suppose to the contrary that there exists z0 ∈ R such that

m(z0) = min
z∈R

m(z) < 0. (2.13)

Then m′(z0) ≥ −a(z0)m(z0) > 0, which is a contradiction since m(z0) = min
z∈R

m(z). Thus

u0 ≤ A(u0, v0). Similarly, we can prove A(v0, u0) ≤ v0. Then we have

u1 ≤ A(u1, v1), A(v1, u1) ≤ v1,

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0.
(2.14)

From condition (C2), we know that u1 ≥ εv1. Since u1 ≤ v1, we must have 0 < ε ≤ 1.
We will prove that A : [u1, v1] × [u1, v1] → CT (R) is a (φ-concave)-(−ψ-convex)

operator, where

φ(t, u) = tα, ψ(t, v) =
ε

1 − (1 − ε)t , t ∈ (0, 1), u, v ∈ [u0, v0]. (2.15)

In fact, for any u, v ∈ [u0, v0], t ∈ (0, 1), and z ∈ G, we have

A(u, tv)(z) = A(u, tv + (1 − t)θ)(z)

=
∫z+T

z

G(z, s)f1(s, u(s − τ(s)))ds

+
∫z+T

z

G(z, s)f2(s, (tv + (1 − t)θ)(s − τ(s)))ds

≤
∫z+T

z

G(z, s)f1(s, u(s − τ(s)))ds + t
∫z+T

z

G(z, s)f2(s, v(s − τ(s)))ds

+ (1 − t)
∫z+T

z

G(z, s)f2(s, θ(s − τ(s)))ds

= tA(u, v)(z) + (1 − t)A(u, θ)(z)

≤ tA(u, v)(z) + (1 − t)A(v0, θ)(z) ≤ tA(u, v)(z) +
1 − t
ε

A(u0, v0)(z)

≤ tA(u, v)(z) +
1 − t
ε

A(u, v)(z)

=
1

ψ(t, v)
A(u, v)(z),

(2.16)
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thus

A(u, tv) ≤ 1
ψ(t, v)

A(u, v),

A(tu, v)(z) =
∫z+T

z

G(z, s)f1(s, tu(s − τ(s)))ds +
∫z+T

z

G(z, s)f2(s, v(s − τ(s)))ds

≥ tα
∫z+T

z

G(z, s)f1(s, u(s − τ(s)))ds +
∫z+T

z

G(z, s)f2(s, v(s − τ(s)))ds

≥ tαA(u, v)(z)

= φ(t, u)A(u, v)(z),

(2.17)

so that

A(tu, v) ≥ φ(t, u)A(u, v). (2.18)

Further we can prove

t < φ(t, u)ψ(t, u) ≤ 1 (2.19)

for any t ∈ (0, 1) and u ∈ [u0, v0]. Indeed, since

φ(t, u)ψ(t, u) =
εtα

1 − t + εt , t ∈ (0, 1), u ∈ [u0, v0], (2.20)

hence, we only need to prove

t <
εtα

1 − t + εt ≤ 1, t ∈ (0, 1). (2.21)

From 0 < ε ≤ 1, we know that εtα − εt + t ≤ tα ≤ 1 for any 0 < t < 1, therefore

εtα

1 − t + εt ≤ 1, t ∈ (0, 1). (2.22)

On the other hand, the function

g(t) = εtα−1 + (1 − ε)t − 1, t ∈ [0, 1] (2.23)

satisfies g(1) = 0 and g ′(t) = ε(α−1)tα−2+1−ε. From ε ≥ 1/(2−α),we have ε(1−α)/(1−ε) ≥ 1.
Then t2−α < ε(1−α)/(1−ε) for 0 < t < 1. Thus ε(α−1)tα−2+1−ε < 0, that is, g ′(t) < 0. Therefore,
g(t) > 0 for any 0 < t < 1. Finally,

t <
εtα

1 − t + εt , t ∈ (0, 1). (2.24)
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Therefore,A : [u1, v1]×[u1, v1] → CT (R) is a (φ-concave)-(−ψ-convex) operator. From (2.20),
φ(t, u)ψ(t, u) is monotone in u and is left lower semicontinuous at t. By Theorem 1.4, we know
that A has a unique fixed point x∗ ∈ [u1, v1] ⊂ [u0, v0]. Hence (1.1) has a unique solution
x∗ ∈ [u0, v0], and for any x0, y0 ∈ [u0, v0], if we set xn = A(xn−1, yn−1) and yn = A(yn−1, xn−1),
then limn→∞xn = x∗ and limn→∞yn = x∗. The proof is complete.

Theorem 2.3. Suppose that conditions (B1) and (B2) hold, and

(D1) there exist r0 > 0 such that u0 ≥ r0v0;
(D2) for any s ∈ R, f1(s, ·) is an α-concave function and f2(s, ty) ≤ [(1 + η)t]−1f2(s, y) for any

y ∈ P and t ∈ [0, 1], where η = η(t, y) satisfies the following conditions:

(DH1) η(t, y) is monotone in y and left lower semicontinuous in t;
(DH2) for any (t, y) ∈ (0, 1) × [u0, v0],

1
tα

− 1 < η
(
t, y

) ≤ 1
t
− 1 <

1
t1+α

− 1. (2.25)

Then (1.1) has a unique solution x∗ ∈ [u0, v0], and for any x0, y0 ∈ [u0, v0], if we set xn =
A(xn−1, yn−1) and yn = A(yn−1, xn−1) for n ∈N, then limn→∞xn and limn→∞yn = x∗.

Proof. We assert that A : [u0, v0] × [u0, v0] → CT (R) is a (φ-concave)-(−ψ-convex) mixed
monotone operator, where

φ(t, u) = tα, ψ(t, v) =
[
1 + η(t, v)

]
t for t ∈ (0, 1), u, v ∈ [u0, v0]. (2.26)

In fact,

A(tu, v) ≥ tαA(u, v) = φ(t, u)A(u, v),

A(u, tv) ≤ 1
t
[
1 + η(t, v)

]A(u, v) =
1

ψ(t, v)
A(u, v)

(2.27)

for any u, v ∈ [u0, v0] and t ∈ (0, 1). From (2.25), we know that t < φ(t, u)ψ(t, u) ≤ 1. Thus
A : [u0, v0] × [u0, v0] → CT (R) is a (φ-concave)-(−ψ-convex) mixed monotone operator. We
may now complete our proof by Theorem 1.4.

Theorem 2.4. Suppose that conditions (B1) and (B2) hold, and

(E1) for any s ∈ R, f1(s, ·) is a concave function; f2(s, ty) ≤ [(1 + η)t]−1f2(s, y) for any y ∈ P
and t ∈ [0, 1], and η = η(t, y) satisfies the following conditions:

(EH1) there exists ε ∈ (0, 1] such that A(θ, v0) ≥ εA(v0, u0);
(EH2) for any (t, y) ∈ (0, 1) × [u0, v0],

1
t + ε(1 − t) − 1 < η

(
t, y

) ≤ 1
t
− 1 ≤ 1

t2 + εt(1 − t) − 1. (2.28)
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Then (1.1) has unique solution x∗ ∈ [u0, v0], and for any x0, y0 ∈ [u0, v0], if we set xn =
A(xn−1, yn−1) and yn = A(yn−1, xn−1) for n ∈N, then limn→∞xn = x∗ and limn→∞yn = x∗.

Proof. Set un = A(un−1, vn−1) and vn = A(vn−1, un−1) for n ∈N. Then we know that

u1 ≤ A(u1, v1), A(v1, u1) ≤ v1 ,

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0.
(2.29)

From (EH2) we have u1 ≥ εv1. Next we will prove that A : [u1, v1] × [u1, v1] → CT (R) is a
(φ-concave)-(−ψ-convex) operator, where

φ(t, u) = t + ε(1 − t), ψ(t, v) =
[
1 + η(t, v)

]
t for t ∈ (0, 1), u, v ∈ [u0, v0]. (2.30)

In fact, for any u, v ∈ [u0, v0] and t ∈ (0, 1),

A(tu, v) = A(tu + (1 − t)θ, v) ≥ tA(u, v) + (1 − t)A(θ, v)

≥ tA(u, v) + (1 − t)A(θ, v0) ≥ tA(u, v) + ε(1 − t)A(v0, u0)

≥ tA(u, v) + ε(1 − t)A(u, v) = φ(t, u)A(u, v),

A(u, tv) ≤ 1
[
1 + η(t, v)

]
t
A(u, v) =

1
ψ(t, v)

A(u, v).

(2.31)

From (2.28), we know that t < φ(t, u)ψ(t, u) ≤ 1. Thus A : [u1, v1] × [u1, v1] → CT (R) is
a (φ-concave)-(−ψ-convex) mixed monotone operator. We may now complete our proof by
Theorem 1.4.

Theorem 2.5. Suppose that conditions (B1) and (B2) hold, and

(F1) there exists r0 > 0 such that u0 ≥ r0v0;
(F2) f1(s, x) > 0 and f2(s, x) > 0 for any s, x ∈ R, and there exist e > 0, f1(s, tx) ≥ (1 +

η)tf1(s, x) for any x ∈ Pe and t ∈ (0, 1),where Pe = {x ∈ E : ∃λ, μ > 0 such that λe ≤ x ≤
μe}, f2(s, tx) ≤ [(1 + ζ)t]−1f2(s, x) for any x ∈ P and t ∈ [0, 1];η = η(t, x), ζ = ζ(t, x)
satisfies the following conditions:

(FH1) (1 + η(t, x))(1 + ζ(t, x)) is monotone in x and left lower semicontinuous in t;

(FH2) for any (t, x) ∈ (0, 1) × [u0, v0],

1 + η(t, x) ≤ 1
t
, 1 + ζ(t, x) ≤ 1

t
,

1
t
− 1 < η(t, x) + ζ(t, x) + η(t, x)ζ(t, x) ≤ 1

t2
− 1.

(2.32)
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Then (1.1) has a unique solution x∗ ∈ [u0, v0], and for any x0, y0 ∈ [u0, v0], if we set xn =
A(xn−1, yn−1) and yn = A(yn−1, xn−1) for n ∈N, then limn→∞xn = x∗ and limn→∞yn = x∗.

Proof. Wemay easily prove thatA : [u0, v0] × [u0, v0] → CT (R) is a (φ-concave)-(−ψ-convex)
mixed monotone operator, where

φ(t, u) =
[
1 + η(t, u)

]
t, ψ(t, v) = [1 + ζ(t, v)]t for t ∈ (0, 1), u, v ∈ [u0, v0]. (2.33)

And from (FH2)we know that

t < φ(t, u)ψ(t, u) ≤ 1 (2.34)

for any t ∈ (0, 1) and u ∈ [u0, v0]. Now the proof can be completed by means of Theorem 1.4.

Theorem 2.6. Suppose that conditions (B1) and (B2) hold, and

(G1) if u0 ≤ v0, there exists r0 such that u0 ≥ r0v0;
(G2) f1(s, x) > 0 and f2(s, x) > 0 for any s, x ∈ R; there exist e > 0 and η = η(t, x) such that

f1(s, tx) ≥ (1 + η)tf1(s, x) for any x ∈ Pe and t ∈ (0, 1), where Pe = {x ∈ E : ∃λ, μ > 0
such that λe ≤ x ≤ μe}; for any s ∈ R, f2(s, ·) is a (−α)-convex function, and η = η(t, x)
satisfies the following conditions:

(GH1) η(t, x) is monotone in x and left lower semicontinuous in t;
(GH2) for any (t, x) ∈ (0, 1) × [u0, v0],

1 + η(t, x) ≤ 1
t
,

1
tα

− 1 < η(t, x) ≤ 1
t
− 1 <

1
t1+α

− 1.

(2.35)

Then (1.1) has a unique solution x∗ ∈ [u0, v0], and for any x0, y0 ∈ [u0, v0], if we set xn =
A(xn−1, yn−1) and yn = A(yn−1, xn−1) for n ∈N, then limn→∞xn = x∗ and limn→∞yn = x∗.

Proof. It is easily seen thatA : [u0, v0]×[u0, v0] → CT (R) is a (φ-concave)-(−ψ-convex)mixed
monotone operator, where

φ(t, u) =
[
1 + η(t, u)

]
t, ψ(t, v) = tα for t ∈ (0, 1), u, v ∈ [u0, v0]. (2.36)

From (GH2), we know that t < φ(t, u)ψ(t, u) ≤ 1. Then A : [u0, v0] × [u0, v0] → CT (R) is
a (φ-concave)-(−ψ-convex) mixed monotone operator. The proof may now be completed by
means of Theorem 1.4.

Theorem 2.7. Suppose that conditions (B1) and (B2) hold, and

(J1) f1(s, x) > 0 and f2(s, x) > 0 for any s, x ∈ R; f1(s, tx) ≥ (1 + η)tf1(s, x) for any
x ∈ Pe and t ∈ (0, 1), where Pe = {x ∈ E : ∃λ, μ > 0 such that λe ≤ x ≤ μe}; for any
s ∈ R, f2(s, ·) is a convex function; η = η(t, x) satisfies the following conditions:
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(JH1) η(t, x) is monotone in x and left lower semicontinuous in t;
(JH2) there exists ε ∈ (1/2, 1) such that A(u0, v0) ≥ εA(v0, θ) and

(1 − t)(1 − ε)
ε

< η(t, x) ≤ 1
t
− 1 <

1 − t
εt

(2.37)

for any (t, x) ∈ (0, 1) × [u0, v0].

Then (1.1) has unique solution x∗ ∈ [u0, v0], and for any x0, y0 ∈ [u0, v0], if we set xn =
A(xn−1, yn−1) and yn = A(yn−1, xn−1) for n ∈N, then limn→∞xn = x∗ and limn→∞yn = x∗.

Proof. Set un = A(un−1, vn−1) and vn = A(vn−1, un−1) for n ∈ N. Then we have u1 ≤
A(u1, v1), A(v1, u1) ≤ v1, and

u0 ≤ u1 ≤ u2 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v2 ≤ v1 ≤ v0. (2.38)

From (JH2) we can see that u1 ≥ εv1.
Next we will prove that A : [u1, v1] × [u1, v1] → CT (R) is a (φ-concave)-(−ψ-convex)

operator. We need only to verify that A : [u0, v0] × [u0, v0] → CT (R) is a (φ-concave)-(−ψ-
convex) operator, where

φ(t, u) =
[
1 + η(t, u)

]
t, ψ(t, v) =

ε

1 − (1 − εt) t for t ∈ (0, 1), u, v ∈ [u0, v0]. (2.39)

In fact, for any u, v ∈ [u0, v0] and t ∈ (0, 1), we have

A(tu, v) ≥ [
1 + η(t, u)

]
tA(u, v) = φ(t, u)A(u, v),

A(u, tv) = A(u, tv + (1 − t)θ) ≤ tA(u, v) + (1 − t)A(u, θ)

≤ tA(u, v) + (1 − t)A(v0, θ) ≤ tA(u, v) +
1 − t
ε

A(u0, v0)

≤ tA(u, v) +
1 − t
ε

A(u, v) =
1

ψ(t, v)
A(u, v).

(2.40)

From (JH2), we have t < φ(t, u)ψ(t, u) ≤ 1. Then A : [u1, v1] × [u1, v1] → CT (R) is
a (φ-concave)-(−ψ-convex) mixed monotone operator. The rest of the proof follows from
Theorem 1.4.

Theorem 2.8. Suppose that conditions (B1) and (B2) hold, and

(K1) for any s ∈ R, f1(s, ·) is an α1-concave function, f2(s, ·) is a (−α2)-convex function; where
0 ≤ α1 + α2 < 1;

(K2) there exist r0 > 0 such that u0 ≥ r0v0.

Then (1.1) has unique solution x∗ ∈ [u0, v0], and for any x0, y0 ∈ [u0, v0], if we set xn =
A(xn−1, yn−1) and yn = A(yn−1, xn−1) for n ∈N, then limn→∞xn = x∗ and limn→∞yn = x∗.
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Indeed, it is easily seen that A : [u0, v0] × [u0, v0] → CT (R) is a (φ-concave)-(−ψ-
convex) mixed monotone operator, where

φ(t, u) = tα1 , ψ(t, v) = tα2 for t ∈ (0, 1), u, v ∈ [u0, v0]. (2.41)

The rest of the proof now follows from Theorem 1.4.
If P is a solid cone, we have the following result.

Theorem 2.9. Suppose that P is a solid cone of E, that condition (B1) holds, and that

(L1) for any s ∈ R, f1(s, ·) is a α1-concave function, f2(s, ·) is a (−α2)-convex function, where
0 ≤ α1 + α2 < 1;

(L2) there exist u0, v0 ∈ P 0 such that u0(t) and v0(t) form a pair of lower and upper
quasisolutions for (1.1).

Then (1.1) has unique solution x∗ ∈ [u0, v0], and for any x0, y0 ∈ [u0, v0], if we set xn =
A(xn−1, yn−1) and yn = A(yn−1, xn−1), then xn → x∗, yn → x∗(n → ∞).

Indeed, from u0, v0 ∈ P 0, we know that there exists r0 > 0 such that u0 ≥ r0v0. The rest
of the proof is similar to that of Theorem 2.7.

3. An Example

As an example, consider the equation

y′(t) = −a(t)y(t) +
[
p(t)y1/3(t − τ(t)) + q(t)y−1/2(t − τ(t))

]
, (3.1)

where p(t) and q(t) are nonnegative continuous T -periodic functions; a(t) and τ(t) are
continuous T -periodic functions and satisfy

pmax + 103/2qmax ≤ a(t) ≤ 102pmin + 103qmin, (3.2)

where pmax = maxt∈[0,T]p(t), pmin = mint∈[0,T]p(t), qmax = maxt∈[0,T]q(t), qmin = mint∈[0,T]q(t),
and pmax +

√
1000qmax ≤ 100pmin + 1000qmin. Then (3.1) will have a unique solution y = y∗(t)

that satisfies 10−3 ≤ y∗(t) ≤ 1. Furthermore, if we set v0(t) = 10−3, ω0(t) = 1,

vn(t) =
∫ t+T

t

G(t, s)
[
p(s)v1/3

n−1(s − τ(s)) + q(s)ω−1/2
n−1 (s − τ(s))

]
ds n ∈N,

ωn(t) =
∫ t+T

t

G(t, s)
[
p(s)ω1/3

n−1(s − τ(s)) + q(s)v−1/2
n−1 (s − τ(s))

]
ds n ∈N,

(3.3)

then {vn} and {ωn} converge uniformly to y∗.
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Indeed, let CT (R) be the Banach space of all real T -periodic continuous functions
defined on R and endowed with the usual linear structure as well as the norm

∥
∥y

∥
∥ = sup

t∈[0,1]

∣
∣y(t)

∣
∣. (3.4)

The set P = {φ ∈ CT (R) : φ(x) ≥ 0, x ∈ R} is a normal cone of CT (R). Equation (3.1) has a
T -periodic solution y(t), if and only if, y(t) is a T -periodic solution of the equation

y(t) =
∫ t+T

t

G(t, s)
[
p(s)y1/3(s − τ(s)) + q(s)y−1/2(s − τ(s))

]
ds, (3.5)

where

G(t, s) =
exp

(∫s
t a(u)du

)

exp
(∫T

0a(u)du
)
− 1

. (3.6)

Set

A
(
x, y

)
=
∫ t+T

t

G(t, s)
[
p(s)x1/3(s − τ(s)) + q(s)y−1/2(s − τ(s))

]
ds, (3.7)

v0(t) = 10−3, ω0(t) = 1, α1 = 1/3, and α2 = 1/2. Then v0(t) andω0(t) form a pair of lower and
upper quasisolutions for (3.1). By Theorem 2.8, we know that (3.1) has a unique solution y∗ ∈
[10−3, 1], and if we set vn = A(vn−1, ωn−1), ωn = A(ωn−1, vn−1) for n ∈ N, then limn→∞vn = y∗

and limn→∞ωn = y∗.
Other examples can be constructed to illustrate the other results in the previous

section.
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