
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2009, Article ID 289596, 8 pages
doi:10.1155/2009/289596

Research Article
Spectral Singularities of Sturm-Liouville Problems
with Eigenvalue-Dependent Boundary Conditions

Elgiz Bairamov and Nihal Yokus

Department of Mathematics, Ankara University, 06100 Tandogan, Ankara, Turkey

Correspondence should be addressed to Elgiz Bairamov, bairamov@science.ankara.edu.tr

Received 25 June 2009; Accepted 20 August 2009

Recommended by Ağacik Zafer

Let L denote the operator generated in L2(R+) by Sturm-Liouville equation −y′′ + q(x)y = λ2y,
x ∈ R+ = [0,∞), y′(0)/y(0) = α0 + α1λ + α2λ

2, where q is a complex-valued function and αi ∈ C,
i = 0, 1, 2 with α2 /= 0. In this article, we investigate the eigenvalues and the spectral singularities of
L and obtain analogs of Naimark and Pavlov conditions for L.
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1. Introduction

Let L0 denote Sturm-Liouville operator generated in L2(R+) by the differential expression

l0
(
y
)
:= −y′′ + q(x)y, x ∈ R+, (1.1)

and the boundary condition y(0) = 0, where q : R+ → C. Sinceq is a complex-valued
function, the operator L0 is a non-selfadjoint. The spectral analysis of L0 has been investigated
byNaı̆mark [1]. He proved that some of the poles of the kernel of resolvent of L0 are not
the eigenvalues of the operator. He also showed that those poles (which are called spectral
singularities by Schwartz [2]) are on the continuous spectrum. Moreover, he has shown the
spectral singularities play an important role in the spectral analysis of L0 , and if

∫∞

0
eεx

∣∣q(x)
∣∣dx < ∞, ε > 0, (N)

then the eigenvalues and the spectral singularities are of a finite number and each of them is
of a finite multiplicity.
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One very important step in the spectral analysis of L0 was taken by Pavlov [3]. He
studied the dependence of the structure of the eigenvalues and the spectral singularities of
L0 on the behavior of potential function at infinity. He also proved that if

sup
x∈R+

[
eε

√
x
∣
∣q(x)

∣
∣
]
< ∞, ε > 0, (P)

then the eigenvalues and the spectral singularities are of a finite number and each of them is
of a finite multiplicity.

Conditions (N) and (P) are called Naimark and Pavlov conditions for L0, respectively.
Lyance showed that the spectral singularities play an important role in the spectral

analysis of L0 [4, 5]. He also investigated the effect of the spectral singularities in the spectral
expansion.

The spectral singularities of non-selfadjoint operator generated in L2(R+) by (1.1) and
the boundary condition

∫∞

0
K(x)y(x)dx + αy′(0) − βy(0) = 0 (1.2)

was investigated in detail by Krall [6, 7].
Some problems of spectral theory of differential operator and some other types of

operators with spectral singularities were studied by some authors [8–14]. Note that in all
papers the boundary conditions are not depending on the spectral parameter.

In a recent series of papers, Bindinget al. and Browne[15–18] have studied the spectral
theory of regular Sturm-Liouville operators with boundary conditions depending on the
spectral parameter.

Let L denote the operator generated in L2(R+) by

−y′′ + q(x)y = λ2y, x ∈ R+, (1.3)

y′(0)
y(0)

= α0 + α1λ + α2λ
2, (1.4)

whereq is a complex-valued function, αi ∈ C, i = 0, 1, 2, with α2 /= 0. In this paper, we
investigate the eigenvalues and the spectral singularities of L. In particular, we show that
the analogs of Naimark and Pavlov conditions for L are

q ∈ AC(R+), lim
x→∞

q(x) = 0,
∫∞

0
eεx

∣∣q′(x)
∣∣dx < ∞, ε > 0,

q ∈ AC(R+), lim
x→∞

q(x) = 0, sup
x∈R+

[
eε

√
x
∣∣q′(x)

∣∣
]
< ∞, ε > 0,

(1.5)

respectively, where AC(R+)denotes the class of complex-valued absolutely continuous
functions on R+.



Abstract and Applied Analysis 3

2. Jost Functions of (1.3)-(1.4)

Under the condition

∫∞

0
x
∣
∣q(x)

∣
∣dx < ∞, (2.1)

(1.3) has a solution e(x, λ)satisfying

lim
x→∞

e(x, λ)e−iλx = 1, λ ∈ C+, (2.2)

where C+ = {λ : λ ∈ C, Im λ ≥ 0}. The solution e(x, λ) is called Jost solution of (1.3). Note
that Jost solution has a representation [19]

e(x, λ) = eiλx +
∫∞

x

K(x, t)eiλtdt, λ ∈ C+, (2.3)

where K(x, t) is the solution of the integral equation

K(x, t)=
1
2

∫∞

(x+t)/2
q(s)ds+

1
2

∫ (x+t)/2

x

∫ t+s−x

t+x−s
q(s)K(s, u)duds+

1
2

∫∞

(x+t)/2

∫ t+s−x

s

q(s)K(s, u)duds,

(2.4)

and K(x, t) are continuously differentiable with respect to their arguments. We also have

|K(x, t)| � cw

(
x + t

2

)
,

|Kx(x, t)|, |Kt(x, t)| ≤ 1
4

∣∣∣∣q
(
x + t

2

)∣∣∣∣ + cw

(
x + t

2

)
,

(2.5)

where w(x) =
∫∞
x |q(s)|ds and c > 0 is a constant.

Let

E+(λ) := e′(0, λ) −
(
α0 + α1λ + α2λ

2
)
e(0, λ), λ ∈ C+,

E−(λ) := e′(0,−λ) − (
α0 + α1λ + α2λ

2)e(0,−λ), λ ∈ C−,
(2.6)

where C− = {λ : λ ∈ C, Im λ ≤ 0}. Therefore, E+and E− are analytic in C+ = {λ : λ ∈ C, Im λ >
0} and C− = {λ : λ ∈ C, Im λ < 0}, respectively, and continuous up to real axis. The functions
E+ and E− are called Jost functions of L.
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Let us denote the eigenvalues and the spectral singularities of L by σd(L) and σss(L),
respectively. It is evident that

σd(L) = {λ : λ ∈ C+, E
+(λ) = 0} ∪ {

λ : λ ∈ C−, E−(λ) = 0
}
,

σss(L) = {λ : λ ∈ R
∗, E+(λ) = 0} ∪ {λ : λ ∈ R

∗, E−(λ) = 0},
(2.7)

{λ : λ ∈ R
∗, E+(λ) = 0} ∩ {

λ : λ ∈ R
∗, E−(λ) = 0

}
= ∅, (2.8)

where R
∗ = R \ {0}.

Definition 2.1. The multiplicity of a zero E+(or E−) in C+ (or C−) is defined as the multiplicity
of the corresponding eigenvalue and spectral singularity of L.

In order to investigate the quantitative properties of the eigenvalues and the spectral
singularities of L, we need to discuss the quantitative properties of the zeros of E+ and E− in
C+ and C−, respectively.

Define

M±
1 =

{
λ : λ ∈ C±, E±(λ) = 0

}
, M±

2 =
{
λ : λ ∈ R

∗, E±(λ) = 0
}
, (2.9)

then by (2.7), we have

σd(L) = M+
1 ∪M−

1 , σss(L) = M+
2 ∪M−

2 . (2.10)

Now, let us assume that

q ∈ AC(R+), lim
x→∞

q(x) = 0,
∫∞

0
x3∣∣q′(x)

∣∣dx < ∞. (2.11)

Theorem 2.2. Under condition (2.11), the functions E+ and E− have the representations

E+(λ) = −α2λ
2 + β+λ + δ+ +

∫∞

0
f+(t)eiλtdt, λ ∈ C+, (2.12)

E−(λ) = −α2λ
2 + β−λ + δ− +

∫∞

0
f−(t)e−iλtdt, λ ∈ C−, (2.13)

where β±, δ± ∈ C, and f± ∈ L1(R+).

Proof. Using (2.3),(2.4), and (2.6), we get (2.12), where

β+ = i − α1 − iα2K(0, 0),

δ+ = −K(0, 0) − α0 − iα1K(0, 0) + α2Kt(0, 0),

f+(t) = Kx(0, t) − α0K(0, t) − iα1Kt(0, t) + α2Ktt(0, t).

(2.14)



Abstract and Applied Analysis 5

From (2.4), we see that

|Ktt(0, t)| ≤ c

[
t

∣
∣
∣
∣q
(
t

2

)∣
∣
∣
∣ +

∣
∣
∣
∣q

′
(
t

2

)∣
∣
∣
∣ + tw

(
t

2

)
+w1

(
t

2

)]
(2.15)

holds, wherew1(t) =
∫∞
t w(s)ds and c > 0 is a constant. It follows from (2.5), (2.14), and (2.15)

that f+ ∈ L1(R+). In a similar way, we obtain (2.13).

Theorem 2.3. Under condition (2.11), we have the following.

(i) The set of σd(L) is bounded and has at most a countable number of elements, and its limit
points can lie only in a bounded subinterval of the real axis.

(ii) The set of σss(L) is bounded and its linear Lebesgue measure is zero.

Proof. From (2.14) and (2.15), we see that

E+(λ) = −α2λ
2 + β+λ + δ+ + o(1), λ ∈ C+, |λ| −→ ∞,

E−(λ) = −α2λ
2 + β−λ + δ− + o(1), λ ∈ C−, |λ| −→ ∞.

(2.16)

Using (2.10), (2.16), and the uniqueness theorem of analytic functions [20], we get (i) and
(ii).

3. Naı̆mark and Pavlov Conditions for L

We will denote the set of all limit points of M+
1 and M−

1 by M+
3 and M−

3 , respectively, and
the set of all zeros of E+ and E− with infinity multiplicity in C+ and C−, by M+

4 and M−
4 ,

respectively. It is obvious that

M±
3 ⊂ M±

2 , M±
4 ⊂ M±

2 , M±
3 ⊂ M±

4 , (3.1)

and the linear Lebesgue measures of M±
3 and M±

4 are zero.

Theorem 3.1. If

q ∈ AC(R+), lim
x→∞

q(x) = 0,
∫∞

0
eεx

∣∣q′(x)
∣∣dx < ∞, ε > 0, (3.2)

then the operator L has a finite number of eigenvalues and spectral singularities, and each of them is
of a finite multiplicity.

Proof. From (2.5), (2.14), (2.15), and (3.2), we find that

∣∣f+(t)
∣∣ ≤ ce−(ε/2)t, (3.3)

where c > 0 is a constant. By (2.12) and (3.3), we observe that the function E+ has an anlytic
continuation to the half-plane Im λ > −ε/4. So we get that M+

4 = ∅. It follows from (3.1)
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that M+
3 = ∅. Therefore the sets M+

1 and M+
2 have a finite number of elements with a finite

multiplicity. We obtain similar results for the setsM−
1 andM−

2 . By (2.10)we have the proof of
the theorem.

Now let us assume that

q ∈ AC(R+), lim
x→∞

q(x) = 0, sup
x∈R+

[
eε

√
x
∣
∣q′(x)

∣
∣
]
< ∞, ε > 0. (3.4)

Hence, we have the following lemma.

Lemma 3.2. It holds that M+
4 = M−

4 = ∅.

Proof. From (2.12) and (3.4), we find that the function E+ is analytic in C+, and all of its
derivatives are continuous in C+. For a sufficiently large T > 0, we have

∣∣∣∣∣
dk

dλk
E+(λ)

∣∣∣∣∣
≤ Ak, λ ∈ C+, |λ| ≤ T, k = 0, 1, 2, . . . , (3.5)

where

Ak = 2kc
∫∞

0
tke−(ε/2)

√
tdt, k = 0, 1, 2, . . . , (3.6)

and c > 0 is a constant. Since the function E+ is not equal to zero identically, then by Pavlov’s
theorem, M+

4 satisfies

∫h

0
lnA(s)dμ

(
M+

4 , s
)
> −∞, (3.7)

where A(s) = infk (Aks
k/k!), μ(M+

4 , s) is the linear Lebesgue measure of s-neighborhood of
M+

4 ,[3]. Now, we obtain the following estimates for Ak :

Ak ≤ Bbkkkk!, (3.8)

where B and b are constants depending on c and ε. From (3.8), we get that

A(s) ≤ B inf
k

(
bkskkk

)
≤ B exp

(
−b−1e−1s−1

)
. (3.9)

Now, (3.7) yields that

∫h

0

1
s
dμ

(
M+

4 , s
)
< ∞. (3.10)
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However, (3.10) holds for an arbitrary s, if and only if μ(M+
4 , s) = 0 or M+

4 = ∅. In a similar
way we can prove that M−

4 = ∅.

Theorem 3.3. Under condition (3.4), the operator L has a finite number of eigenvalues and spectral
singularities, and each of them is of a finite multiplicity.

Proof. To be able to prove the theorem, we have to show that the functions E+ and E− have a
finite number of zeros with finite multiplicities in C+ and C−, respectively. We give the proof
for E+.

From Lemma 3.2 and (3.1), we find that M+
3 = ∅. So the bounded sets M+

1 and M+
2

have no limit points, that is, the function E+ has only a finite number of zeros in C+. Since
M+

4 = ∅, these zeros are of finite multiplicity.
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