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1. Introduction

Let B be the unit ball of C
n. Let z = (z1, . . . , zn) and let w = (w1, . . . , wn) be points in C

n, we
write

|z| =
√∣∣z1

∣∣2 + · · · + ∣∣zn
∣∣2, 〈z,w〉 = z1w1 + · · · + znwn. (1.1)

Thus B = {z ∈ C
n : |z| < 1}. Let dv be the normalized Lebesguemeasure of B, that is, v(B) = 1.

Let H(B) be the space of all holomorphic functions on B. For f ∈ H(B), let

Rf(z) =
n∑
j=1

zj
∂f

∂zj
(z) (1.2)

represent the radial derivative of f ∈ H(B). For a, z ∈ B, a/= 0, let ϕa denote the Möbius
transformation of B taking 0 to a, which is defined by

ϕa(z) =
a − Pa(z) −

√
1 − |z|2Qa(z)

1 − 〈z, a〉 , (1.3)
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where Pa(z) is the orthogonal projection of z onto the one dimensional subspace of C
n

spanned by a, and Qa(z) = z − Pa(z).
A positive continuous function μ on [0, 1) is called normal, if there exist positive

numbers s and t, 0 < s < t, and δ ∈ [0, 1) such that

μ(r)
(1 − r)s

is decreasing on [δ, 1), lim
r→ 1

μ(r)
(1 − r)s

= 0;

μ(r)

(1 − r)t
is increasing on [δ, 1), lim

r→ 1

μ(r)

(1 − r)t
= ∞

(1.4)

(see [1]).
Let μ be a normal function on [0, 1). An f ∈ H(B) is said to belong to the weighted-

type space H∞
μ = H∞

μ (B), if

‖f‖H∞
μ
= sup

z∈B
μ(|z|)|f(z)| < ∞, (1.5)

where μ is normal on [0, 1) (see, e.g., [2–4]). H∞
μ is a Banach space with the norm ‖·‖H∞

μ
. We

denote byH∞
μ,0 the subspace of H

∞
μ consisting of those f ∈ H∞

μ such that

lim
|z|→ 1

μ(|z|)|f(z)| = 0. (1.6)

When μ(r) = (1−r2)α, the induced spacesH∞
μ andH∞

μ,0 become the (classical)weighted space
H∞

α and H∞
α,0, respectively.

For α > 0, recall that the α-Bloch space Bα = Bα(B) is the space of all f ∈ H(B) for
which (see [5])

bα(f) = sup
z∈B

(
1 − |z|2)α|Rf(z)| < ∞. (1.7)

Under the norm ‖f‖Bα = |f(0)| + bα(f), Bα is a Banach space. When α = 1, we get the classical
Bloch space B. For more information of the Bloch space and the α-Bloch space (see, e.g., [5–8]
and the references therein).

For p ∈ (0,∞), the weighted Bergman space Ap(B) is the space of all holomorphic
functions f on B for which

‖f‖pAp =
∫

B

|f(z)|pdv(z) < ∞. (1.8)

The Hardy space Hp(B) (0 < p < ∞) on the unit ball is defined by

Hp(B) =
{
f | f ∈ H(B), ‖f‖Hp(B) = sup

0≤r<1
Mp(f, r) < ∞

}
, (1.9)
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where

Mp(f, r) =
(∫

∂B

|f(rζ)|pdσ(ζ)
)1/p

(1.10)

and dσ is the normalized surface measure on ∂B.
For 0 < p < ∞, the Qp space is defined by (see [9])

Qp(B) =

{
f ∈ H(B) : ‖f‖2Qp

= sup
a∈B

∫

B

∣∣∇̃f(z)
∣∣2Gp(z, a)

dv(z)
(
1 − |z|2)n+1

< ∞
}
. (1.11)

Here ∇̃f(z) = ∇(f ◦ ϕz)(0) denotes the invariant gradient of f , and G(z, a) is the invariant
Green function defined by G(z, a) = g(ϕa(z)), where

g(z) =
n + 1
2n

∫1

|z|

(
1 − t2

)n−1
t−2n+1dt. (1.12)

Let 0 < p, s < ∞, −n − 1 < q < ∞. A function f ∈ H(B) is said to belong to F(p, q, s) =
F(p, q, s)(B) (see [10–12]) if

‖f‖p
F(p,q,s) = |f(0)|p + sup

a∈B

∫

B

|∇f(z)|p(1 − |z|2)qGs(z, a)dv(z) < ∞. (1.13)

F(p, q, s) is called the general function space since we can get many function spaces, such as
Hardy space, Bergman space, Bloch space, Qp space, if we take special parameters of p, q, s.
For example, F(2, 1, 0) = H2, F(p, p, 0) = Ap, and F(2, 0, s) = Qs. If q + s ≤ −1, then F(p, q, s) is
the space of constant functions. For the setting of the unit disk, see [13].

Let u ∈ H(B) and ϕ be a holomorphic self-map of B. For f ∈ H(B), the weighted
composition operator uCϕ is defined by

(
uCϕf

)
(z) = u(z)f(ϕ(z)), z ∈ B. (1.14)

The weighted composition operator is the generalization of a multiplication operator and a
composition operator, which is defined by (Cϕf)(z) = f(ϕ(z)). The main subject in the study
of composition operators is to describe operator theoretic properties ofCϕ in terms of function
theoretic properties of ϕ. The book [14] is a good reference for the theory of composition
operators. Recall that a linear operator is said to be bounded if the image of a bounded set is
a bounded set, while a linear operator is compact if it takes bounded sets to sets with compact
closure.

In the setting of the unit ball, we studied the boundedness and compactness of the
weighted composition operator between Bergman-type spaces andH∞ in [15]. More general
results can be found in [16]. Some necessary and sufficient conditions for the weighted
composition operator to be bounded or compact between the Bloch space and H∞ are given
in [17]. In the setting of the unit polydisk Dn, some necessary and sufficient conditions for
a weighted composition operator to be bounded or compact between the Bloch space and
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H∞(Dn) are given in [18, 19] (see, also [20] for the case of composition operators). Some
related results can be found, for example, in [2, 3, 6, 21–31].

In the present paper, we are mainly concerned about the boundedness and
compactness of the weighted composition operator from F(p, q, s) to the space H∞

μ . Some
necessary and sufficient conditions for theweighted composition operator uCϕ to be bounded
and compact are given.

Constants are denoted by C in this paper, they are positive and may differ from one
occurrence to the other. a � b means that there is a positive constant C such that a ≤ Cb.
Moreover, if both a � b and b � a hold, then one says that a � b.

2. Main Results and Proofs

In order to prove our results, we need some auxiliary results which are incorporated in the
following lemmas.

Lemma 2.1 (see [12]). For 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, if f ∈ F(p, q, s), then
f ∈ B(n+1+q)/p and

‖f‖B(n+1+q)/p ≤ C‖f‖F(p,q,s). (2.1)

The following lemma can be found, for example, in [32].

Lemma 2.2. If f ∈ Bα, then

|f(z)| ≤ C

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖f‖Bα, 0 < α < 1,

‖f‖Bα ln
e

1 − |z|2 , α = 1,

‖f‖Bα

(
1 − |z|2)α−1

, α > 1,

(2.2)

for some C independent of f .

Lemma 2.3. Assume that μ is normal. A closed set K in H∞
μ,0 is compact if and only if it is bounded

and satisfies

lim
|z|→ 1

sup
f∈K

μ(|z|)|f(z)| = 0. (2.3)

The proof of Lemma 2.3 is similar to the proof of Lemma 1 of [33]. We omit the details.

Lemma 2.4. Assume that u ∈ H(B), ϕ is a holomorphic self-map of B, μ is a normal function on
[0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1. Then uCϕ : F(p, q, s) → H∞

μ is compact if
and only if uCϕ : F(p, q, s) → H∞

μ is bounded and for any bounded sequence (fk)k∈N
in F(p, q, s)

which converges to zero uniformly on compact subsets of B as k → ∞, one has ‖uCϕfk‖H∞
μ

→ 0 as
k → ∞.
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Lemma 2.4 follows by standard arguments similar to those outlined in [14, Proposition
3.11] (see, also, the corresponding lemmas in [20, 34, 35]). We omit the details.

Note that when p > n+1+q, the function in F(p, q, s) is indeed Lipschitz continuous by
Lemmas 2.1 and 2.2. By Arzela-Ascoli theorem, similarly to the proof of Lemma 3.6 of [26],
we have the following result.

Lemma 2.5. Let 0 < p, s < ∞, −n− 1 < q < ∞, q+ s > −1, and p > n+ 1+ q. Let (fk) be a bounded
sequence in F(p, q, s) which converges to 0 uniformly on compact subsets of B, then

lim
k→∞

sup
z∈B

∣∣fk(z)
∣∣ = 0. (2.4)

2.1. Case p < n + 1 + q

In this subsection, we consider the case p < n+ 1+ q. Our first result is the following theorem.

Theorem 2.6. Assume that u ∈ H(B), ϕ is a holomorphic self-map of B, μ is a normal function on
[0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, p < n + 1 + q . Then uCϕ : F(p, q, s) → H∞

μ is
bounded if and only if

sup
z∈B

μ(|z|)|u(z)|
(1 − |ϕ(z)|2)(n+1+q)/p−1

< ∞. (2.5)

Moreover, when uCϕ : F(p, q, s) → H∞
μ is bounded, the following relationship

∥∥uCϕ

∥∥
F(p,q,s)→H∞

μ
� sup

z∈B

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

(2.6)

holds.

Proof. Assume that (2.5) holds. For any f ∈ F(p, q, s), by Lemmas 2.1 and 2.2,

∥∥uCϕf
∥∥
H∞

μ
= sup

z∈B
μ(|z|)∣∣(uCϕf

)
(z)
∣∣

= sup
z∈B

μ(|z|)|f(ϕ(z))||u(z)|

≤ C‖f‖B(n+1+q)/p sup
z∈B

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

≤ C‖f‖F(p,q,s) sup
z∈B

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

.

(2.7)

Therefore, (2.5) implies that uCϕ : F(p, q, s) → H∞
μ is bounded.
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Conversely, suppose that uCϕ : F(p, q, s) → H∞
μ is bounded. For b ∈ B, let

fb(z) =
1 − |b|2

(1 − 〈z, b〉)(n+1+q)/p
. (2.8)

It is easy to see that

fϕ(w)(ϕ(w)) =
1

(
1 − |ϕ(w)|2)(n+1+q)/p−1

,
∣∣Rfϕ(w)(ϕ(w))

∣∣ = (n + 1 + q)|ϕ(w)|2

p
(
1 − |ϕ(w)|2)(n+1+q)/p

.

(2.9)

If ϕ(w) = 0, then fϕ(w) ≡ 1 obviously belongs to F(p, q, s). From [12], we know that fb ∈
F(p, q, s); moreover, there is a positive constant K such that supb∈B‖fb‖F(p,q,s) ≤ K. Therefore,

sup
z∈B

μ(|z|)∣∣fϕ(w)(ϕ(z))u(z)
∣∣ = sup

z∈B
μ(|z|)∣∣(uCϕfϕ(w)

)
(z)
∣∣

=
∥∥uCϕfϕ(w)

∥∥
H∞

μ
≤ K
∥∥uCϕ

∥∥
F(p,q,s)→H∞

μ
,

(2.10)

for every w ∈ B, from which we get

sup
w∈B

μ(|w|)|u(w)|
(
1 − |ϕ(w)|2)(n+1+q)/p−1

≤ K
∥∥uCϕ

∥∥
F(p,q,s)→H∞

μ
< ∞, (2.11)

that is, (2.5) follows. From (2.7) and (2.11), we see that (2.6) holds. The proof of this theorem
is finished.

Theorem 2.7. Assume that u ∈ H(B), ϕ is a holomorphic self-map of B, μ is a normal function on
[0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, p < n + 1 + q. Then uCϕ : F(p, q, s) → H∞

μ is
compact if and only if u ∈ H∞

μ and

lim
|ϕ(z)|→ 1

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

= 0. (2.12)

Proof. First assume that u ∈ H∞
μ and the condition in (2.12) hold. In order to prove that uCϕ

is compact, according to Lemma 2.4 it suffices to show that if (fk)k∈N
is bounded in F(p, q, s)

and converges to 0 uniformly on compact subsets of B as k → ∞, then ‖uCϕfk‖H∞
μ

→ 0 as
k → ∞.

Now assume that (fk)k∈N
is a sequence in F(p, q, s) such that supk∈N

‖fk‖F(p,q,s) ≤ L and
fk → 0 uniformly on compact subsets of B as k → ∞. From (2.12), we have that for every
ε > 0, there is a constant δ ∈ (0, 1) such that

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

< ε, (2.13)
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when δ < |ϕ(z)| < 1. By Lemmas 2.1 and 2.2, we have

∥∥uCϕfk
∥∥
H∞

μ
= sup

z∈B
μ(|z|)∣∣(uCϕfk

)
(z)
∣∣

= sup
z∈B

μ(|z|)|u(z)|∣∣fk(ϕ(z))
∣∣

≤ sup
ϕ(z)∈B(0,δ)

μ(|z|)|u(z)|∣∣fk(ϕ(z))
∣∣

+ C sup
ϕ(z)∈B\B(0,δ)

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

∥∥fk
∥∥
F(p,q,s)

≤ M1 sup
ϕ(z)∈B(0,δ)

∣∣fk(ϕ(z))
∣∣ + CLε,

(2.14)

where M1 := supz∈B μ(|z|)|u(z)| < ∞. Using the fact that fk → 0 uniformly on compact
subsets of B as k → ∞, we obtain

M1lim sup
k→∞

sup
ϕ(z)∈B(0,δ)

∣∣fk(ϕ(z))
∣∣ = 0. (2.15)

Therefore,

lim sup
k→∞

∥∥uCϕfk
∥∥
H∞

μ
≤ CLε. (2.16)

Since ε is an arbitrary positive number, we have that limk→∞‖uCϕfk‖H∞
μ
= 0, and, therefore,

uCϕ : F(p, q, s) → H∞
μ is compact by Lemma 2.4.

Conversely, suppose uCϕ : F(p, q, s) → H∞
μ is compact. Let (zk)k∈N

be a sequence in
B such that |ϕ(zk)| → 1 as k → ∞ (if such a sequence does not exist that condition (2.12) is
vacuously satisfied). Set

fk(z) =
1 − ∣∣ϕ(zk)

∣∣2
(
1 − 〈z, ϕ(zk)

〉)(q+n+1)/p , k ∈ N. (2.17)

From the proof of Theorem 2.6, we see that fk ∈ F(p, q, s) for every k ∈ N; moreover,
supk∈N

‖fk‖F(p,q,s) ≤ C. Beside this, fk converges to 0 uniformly on compact subsets of B as
k → ∞. Since uCϕ is compact, by Lemma 2.4 we have that ‖uCϕfk‖H∞

μ
→ 0 as k → ∞. Thus

(
1 − ∣∣ϕ(zk

)∣∣2)1−(q+n+1)/pμ(∣∣zk
∣∣)∣∣u(zk

)∣∣ = μ
(∣∣zk

∣∣)∣∣u(zk
)∣∣ ∣∣fk

(
ϕ
(
zk
))∣∣

≤ sup
z∈B

μ(|z|)∣∣fk(ϕ(z))
∣∣|u(z)|

= sup
z∈B

μ(|z|)∣∣(uCϕfk
)
(z)
∣∣

=
∥∥uCϕfk

∥∥
H∞

μ
−→ 0,

(2.18)

as k → ∞, from which we obtain (2.12), finishing the proof of the theorem.
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Theorem 2.8. Assume that u ∈ H(B), ϕ is a holomorphic self-map of B, μ is a normal function on
[0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, p < n + 1 + q . Then uCϕ : F(p, q, s) → H∞

μ,0 is
compact if and only if

lim
|z|→ 1

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

= 0. (2.19)

Proof. Suppose that (2.19) holds. From Lemma 2.3, we see that uCϕ : F(p, q, s) → H∞
μ,0 is

compact if and only if

lim
|z|→ 1

sup
‖f‖F(p,q,s)≤1

μ(|z|)∣∣(uCϕf
)
(z)
∣∣ = 0. (2.20)

On the other hand, by Lemmas 2.1 and 2.2, we have that

μ(|z|)∣∣(uCϕf
)
(z)
∣∣ ≤ C‖f‖F(p,q,s)

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

. (2.21)

Taking the supremum in (2.21) over the the unit ball in the space F(p, q, s), then letting |z| →
1 and applying (2.19) the result follows.

Conversely, suppose that uCϕ : F(p, q, s) → H∞
μ,0 is compact. Then uCϕ : F(p, q, s) →

H∞
μ is compact and hence by Theorem 2.7,

lim
|ϕ(z)|→ 1

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

= 0. (2.22)

In addition, uCϕ : F(p, q, s) → H∞
μ,0 is bounded. Taking f(z) = 1, then employing the

boundedness of uCϕ : F(p, q, s) → H∞
μ,0, we get

lim
|z|→ 1

μ(|z|)|u(z)| = 0. (2.23)

By (2.22), for every ε > 0, there exists a δ ∈ (0, 1),

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

< ε, (2.24)

when δ < |ϕ(z)| < 1. By (2.23), for above chosen ε, there exists r ∈ (0, 1),

μ(|z|)|u(z)| ≤ ε
(
1 − δ2)(n+1+q)/p−1, (2.25)

when r < |z| < 1.
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Therefore, when r < |z| < 1 and δ < |ϕ(z)| < 1, we have that

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

< ε. (2.26)

If |ϕ(z)| ≤ δ and r < |z| < 1, we obtain

μ(|z|)|u(z)|
(
1 − |ϕ(z)|2)(n+1+q)/p−1

≤ 1
(
1 − δ2

)(n+1+q)/p−1μ(|z|)|u(z)| < ε. (2.27)

Combing (2.26) with (2.27), we get (2.19), as desired.

2.2. Case p = n + 1 + q

Theorem 2.9. Assume that u ∈ H(B), ϕ is a holomorphic self-map of B, μ is a normal function on
[0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, p = n + 1 + q . Then uCϕ : F(p, q, s) → H∞

μ is
bounded if and only if

sup
z∈B

μ(|z|)|u(z)| ln e

1 − |ϕ(z)|2
< ∞. (2.28)

Moreover, the following relationship

∥∥uCϕ

∥∥
F(p,q,s)→H∞

μ
� sup

z∈B
μ(|z|)|u(z)| ln e

1 − |ϕ(z)|2
(2.29)

holds.

Proof. Suppose that (2.28) holds. For any f ∈ F(p, q, s) ⊆ B, by Lemmas 2.1 and 2.2, we have

∥∥uCϕf
∥∥
H∞

μ
= sup

z∈B
μ(|z|)∣∣(uCϕf

)
(z)
∣∣

= sup
z∈B

μ(|z|)∣∣f(ϕ(z))∣∣|u(z)|

≤ C‖f‖F(p,q,s)sup
z∈B

μ(|z|)|u(z)| ln e

1 − |ϕ(z)|2
.

(2.30)

Therefore, (2.28) implies that uCϕ is a bounded operator from F(p, q, s) toH∞
μ .

Conversely, suppose that uCϕ : F(p, q, s) → H∞
μ is bounded. For b ∈ B, let

fb(z) = ln
e

1 − 〈z, b〉 , z ∈ B. (2.31)
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Then by [12] we see that fb ∈ F(p, q, s); moreover, there is a positive constant K such that
supb∈B‖fb‖F(p,q,s) ≤ K. Hence

μ(|w|)|u(w)| ln e

1 − |ϕ(w)|2
= μ(|w|)∣∣fϕ(w)(ϕ(w))

∣∣|u(w)| ≤ ∥∥uCϕfϕ(w)
∥∥
H∞

μ
, (2.32)

for every w ∈ B, that is, we get

sup
w∈B

μ(|w|)|u(w)| ln e

1 − |ϕ(w)|2
≤ C
∥∥uCϕfϕ(w)

∥∥
H∞

μ

≤ CK
∥∥uCϕ

∥∥
F(p,q,s)→H∞

μ
< ∞.

(2.33)

From (2.30) and (2.33), (2.29) follows. The proof is finished.

Theorem 2.10. Assume that u ∈ H(B), ϕ is a holomorphic self-map of B, μ is a normal function on
[0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, p = n + 1 + q . Then uCϕ : F(p, q, s) → H∞

μ is
compact if and only if u ∈ H∞

μ and

lim
|ϕ(z)|→ 1

μ(|z|)|u(z)| ln e

1 − |ϕ(z)|2
= 0. (2.34)

Proof. Assume that u ∈ H∞
μ and (2.34) hold, and that (fk)k∈N

is bounded in F(p, q, s) and
converges to 0 uniformly on compact subsets of B as k → ∞. We have that, for every ε > 0,
there is a δ ∈ (0, 1) such that

μ(|z|)|u(z)| ln e

1 − |ϕ(z)|2
< ε, (2.35)

when δ < |ϕ(z)| < 1.
In addition

∥∥uCϕfk
∥∥
H∞

μ
= sup

z∈B
μ(|z|)∣∣(uCϕfk

)
(z)
∣∣

= sup
z∈B

μ(|z|)|u(z)|∣∣fk(ϕ(z))
∣∣

≤ sup
ϕ(z)∈B(0,δ)

μ(|z|)∣∣u(z)fk(ϕ(z))
∣∣

+ C
∥∥fk
∥∥
F(p,q,s) sup

ϕ(z)∈B\B(0,δ)
μ(|z|)|u(z)| ln e

1 − |ϕ(z)|2

≤ C sup
ϕ(z)∈B(0,δ)

∣∣fk(ϕ(z))
∣∣ + Cε.

(2.36)

Similar to the proof of Theorem 2.7, we obtain ‖uCϕfk‖H∞
μ

→ 0 as k → ∞. Therefore, uCϕ :
F(p, q, s) → H∞

μ is compact by Lemma 2.4.
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Conversely, suppose that uCϕ : F(p, q, s) → H∞
μ is compact. Assume that (zk)k∈N

is
a sequence in B such that |ϕ(zk)| → 1 as k → ∞ (if such a sequence does not exist that
condition (2.34) is vacuously satisfied). Set

fk(z) =

(
ln

e

1 − ∣∣ϕ(zk
)∣∣2
)−1(

ln
e

1 − 〈z, ϕ(zk
)〉
)2

, k ∈ N. (2.37)

After some calculations or from [12], we see that supk∈N
‖fk‖F(p,q,s) ≤ C for some positive C

independent of k, and fk converges to 0 uniformly on compact subsets of B as k → ∞. Since
uCϕ is compact, by Lemma 2.4, we have ‖uCϕfk‖H∞

μ
→ 0 as k → ∞. Thus

μ
(∣∣zk

∣∣)∣∣u(zk
)∣∣ ln e

1 − ∣∣ϕ(zk
)∣∣2 ≤ sup

z∈B
μ(|z|)∣∣fk

(
ϕ
(
zk
))∣∣∣∣u(zk

)∣∣

= sup
z∈B

μ(|z|)∣∣(uCϕfk
)
(z)
∣∣

=
∥∥uCϕfk

∥∥
H∞

μ
−→ 0,

(2.38)

as k → ∞, which is equivalent to (2.34). The proof of this theorem is finished.

Similarly to the proof of Theorem 2.8, we can obtain the following results. We omit the
details of the proof.

Theorem 2.11. Assume that u ∈ H(B), ϕ is a holomorphic self-map of B, μ is a normal function on
[0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, p = n + 1 + q . Then uCϕ : F(p, q, s) → H∞

μ,0 is
compact if and only if

lim
|z|→ 1

μ(|z|)|u(z)| ln e

1 − |ϕ(z)|2
< ∞. (2.39)

2.3. Case p > n + 1 + q

Theorem 2.12. Assume that u ∈ H(B), ϕ is a holomorphic self-map of B, μ is a normal function on
[0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, p > n + 1 + q . Then the following statements are
equivalent:

(i) uCϕ : F(p, q, s) → H∞
μ is bounded;

(ii) uCϕ : F(p, q, s) → H∞
μ is compact;

(iii) u ∈ H∞
μ .

Proof. (ii)⇒(i) This implication is obvious.
(i)⇒(iii) Taking f(z) = 1, then using the boundedness of uCϕ : F(p, q, s) → H∞

μ the
implication follows.

(iii)⇒(ii) Suppose that u ∈ H∞
μ . For an f ∈ F(p, q, s), by Lemma 2.1, we see that f is

continuous on the closed unit ball and so is bounded in B. Therefore,

μ(|z|)∣∣(uCϕf
)
(z)
∣∣ = μ(|z|)∣∣f(ϕ(z))∣∣|u(z)| ≤ C‖f‖F(p,q,s)μ(|z|)|u(z)|. (2.40)
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From the above inequality, we see that uCϕ : F(p, q, s) → H∞
μ is bounded. Let (fk)k∈N

be any
bounded sequence in F(p, q, s) and fk → 0 uniformly on compact subsets of B as k → ∞.
Employing Lemma 2.5, we have

∥∥uCϕfk
∥∥
H∞

μ
= sup

z∈B
μ(|z|)∣∣fk(ϕ(z))u(z)

∣∣ ≤ ‖u‖H∞
μ
sup
z∈B

∣∣fk(ϕ(z))
∣∣ −→ 0, (2.41)

as k → ∞. Then the result follows from Lemma 2.3.

Theorem 2.13. Assume that u ∈ H(B), ϕ is a holomorphic self-map of B, μ is a normal function on
[0, 1), 0 < p, s < ∞, −n − 1 < q < ∞, q + s > −1, p > n + 1 + q . Then the following statements are
equivalent:

(i) uCϕ : F(p, q, s) → H∞
μ,0 is bounded;

(ii) uCϕ : F(p, q, s) → H∞
μ,0 is compact;

(iii) u ∈ H∞
μ,0.

Proof. (ii)⇒(i) It is obvious.
(i)⇒(iii) Taking f(z) = 1, then using the boundedness of uCϕ : F(p, q, s) → H∞

μ,0, we
get the desired result.

(iii)⇒(ii) Suppose that u ∈ H∞
μ,0. For any f ∈ F(p, q, s)with ‖f‖F(p,q,s) ≤ 1, we have

μ(|z|)∣∣(uCϕf
)
(z)
∣∣ ≤ C‖f‖F(p,q,s)μ(|z|)|u(z)| ≤ Cμ(|z|)|u(z)|, (2.42)

from which we obtain

lim
|z|→ 1

sup
‖f‖F(p,q,s)≤1

μ(|z|)∣∣(uCϕf
)
(z)
∣∣ ≤ C lim

|z|→ 1
μ(|z|)|u(z)| = 0. (2.43)

Using Lemma 2.3, we see that uCϕ : F(p, q, s) → H∞
μ,0 is compact, as desired.
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[28] S. Stević, “Norms of some operators from Bergman spaces to weighted and Bloch-type spaces,”
Utilitas Mathematica, vol. 76, pp. 59–64, 2008.

[29] S.-I. Ueki and L. Luo, “Compact weighted composition operators and multiplication operators
between Hardy spaces,” Abstract and Applied Analysis, vol. 2008, Article ID 196498, 12 pages, 2008.

[30] S. Ye, “Weighted composition operator between the little α-Bloch spaces and the logarithmic Bloch,”
Journal of Computational Analysis and Applications, vol. 10, no. 2, pp. 243–252, 2008.

[31] X. Zhu, “Generalized weighted composition operators from Bloch type spaces to weighted Bergman
spaces,” Indian Journal of Mathematics, vol. 49, no. 2, pp. 139–150, 2007.
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