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1. Introduction

As one of important dynamical systems, neutral system has been received considerable
attention in past years. Large numbers of monographs and papers on the stability of neutral
type system with or without time delays have been published. A wide variety of methods
disposing the stability problems of neutral system have been proposed [1–6]. It is well
known that, because of the finite switching speed, memory effect, and so on, time delays
are unavoidable in nature and technology. They can make important effects on the stability
of concerned dynamical systems. Thus, the studies on stability of time-delayed neutral
system are of great significance. In recent years, all kinds of delays such as time-varying
delay [7–10], distributed delay [11–13], and mixed delay [14–16] were considered, and
corresponding stable criteria have been derived. In practical, during the design of control
system and its hardware implementation, the convergence of a control system may often be
destroyed by its unavoidable uncertainty due to the existence of modeling error, the deviation
of vital data, and so on. Therefore, the studies on robust convergence of delayed control
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system have been a hot research topic, and many sufficient conditions have been derived
to guarantee the robust asymptotic or exponential stability for different class of delayed
systems (see [2, 7, 8, 10, 12, 13, 17–20]). General speaking, these criteria can be divided
into two categories [21]: that is, delay-independent criteria and delay-dependent criteria. As
pointed out in [12], when the size of time delay is small, delay-dependent criteria may be less
conservative than those of delay-independent criteria, and the more free-weighting matrices
are introduced in criterion, the less conservative it may be. On the other hand, compared with
traditional matrix measure, matrix norm, and Riccati matrix criteria, linear matrix inequality
(LMI) technique can be easily checked by LMI toolbox in MATLAB software and can make
free weighting matrices easy to select. Thus, it becomes one of the most extensively used
techniques in control system. In addition, the admissible allowed upper bound on the delay is
usually regarded as the performance index for measuring the conservatism of the conditions
obtained.

Motivated by the afore-mentioned analysis, in this paper, based on the equivalent
equation of the zero which is similar to [2] in the derivative of a Lyapunov-Krasovskii
functional, we will focus on deriving some improved robust stable criteria for a class of
neutral control systems with mixed delays. By constructing a new Lyapunov function,
some new delay-dependent stable criteria are derived via sufficiently employing Newton-
Leibniz formula to introduce large numbers of free weighting matrices. These free
weighting matrices express the influence of the relationship among terms x(t), ẋ(t), x(t −
τ1), x(t − τ2), ẋ(t − τ2),

∫ t
t−τ1

ẋ(s)ds,
∫ t
t−τ2

ẋ(s)ds. Since these criteria are both discrete
delay-dependent and distributed delay-dependent, they are less conservative than some
previous methods for the concerned systems. When norm-bounded parameter uncertainties
appear in the concerned system, delay-dependent robust asymptotic stability criteria
are also presented. All of these criteria are expressed in the forms of linear matrix
inequalities (LMIs), which can be easily solved. Finally, numerical examples are given
to illustrate the improvement of the main results. Simulations show that our results are
valid.

2. Preliminaries

Consider uncertain neutral system with mixed delays [4] as follows:

Σ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) − Cẋ(t − τ2) = (A + ΔA(t))x(t) + (B + ΔB(t))x(t − τ1)

+(D + ΔD(t))
∫ t

t−h
x(s)ds, t > 0,

x(t) = φ(t), t ∈ [−τ, 0],

(2.1)

where x(t) ∈ Rn is the state vector; A,B,C ∈ Rn×n represent the weighting matrices; τ1, τ2 are
discrete delays; h is distributed delay; φ(t) is initial condition which is continuous on interval
[−τ, 0], where τ = max{τ1, τ2, h}; ΔA(t),ΔB(t),ΔD(t) denote the time-varying structured
uncertainties which are of the following form:
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[ΔA(t),ΔB(t),ΔD(t)] = KF(t)[Ea, Eb, Ed], (2.2)

where K,Ea, Eb, Ed are the known constant matrices with appropriate dimensions; F(t) is
unknown continuous time-varying matrix function satisfying FT (t)F(t) ≤ I, for all t ≥ 0.

The nominal Σ0 of Σ can be defined as

Σ0 :

⎧
⎪⎨

⎪⎩

ẋ(t) − Cẋ(t − τ2) = Ax(t) + Bx(t − τ1) +D
∫ t

t−h
x(s)ds, t > 0,

x(t) = φ(t), t ∈ [−τ, 0].
(2.3)

For further discussion, we first introduce the following lemmas.

Lemma 2.1 (see [22]). Given constant symmetric matrices Σ1,Σ2,Σ3 where ΣT
1 = Σ1 and 0 < Σ2 =

ΣT
2 , then Σ1 + ΣT

3Σ
−1
2 Σ3 < 0 if and only if

(
Σ1 ΣT

3

Σ3 −Σ2

)

< 0, or

(
−Σ2 Σ3

ΣT
3 Σ1

)

< 0. (2.4)

Lemma 2.2 (see [23]). For given matrices Q = QT,H,E, and R = RT > 0 with appropriate
dimensions, then

Q +HFE + ETFTHT < 0, (2.5)

for all F satisfying FTF ≤ R if and only if there exists a positive number ε > 0, such that

Q + ε−1HHT + εETRE < 0. (2.6)

Lemma 2.3. For any real vectorX,Y and positive definite matrix Σ > 0 with appropriate dimensions,
it follows that

2XTY ≤ XTΣX + YTΣ−1Y. (2.7)

3. Main Results

In this section, we will analyse the stability problem of uncertain neutral systems with mixed
delays described by (2.1). First, we consider the stability problem for the nominal system
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(2.3) with ΔA(t) = 0,ΔB(t) = 0,ΔD(t) = 0. In order to introduce free-weighting matrix, we
can use the following fact:

M

[

x(t) − x(t − τ1) −
∫ t

t−τ1

ẋ(s)ds

]

= 0, (3.1)

whereM is an arbitrary matrix with appropriate dimensions. Substituting zero equation (3.1)
into system (2.3), the original system can be transformed into the following form:

ẋ(t) − Cẋ(t − τ2) = (A −M)x(t) + (B +M)x(t − τ1)+

D

∫ t

t−h
x(s)ds +M

∫ t

t−τ1

ẋ(s)ds, t > 0,

x(t) = φ(t), t ∈ [−τ, 0].

(3.2)

For the asymptotic stability of system (3.2), we can obtain the following results.

Theorem 3.1. For any given matrix M, scalars τ1 > 0, τ2 > 0, h > 0, the nominal system Σ0 is
asymptotically stable if ‖C‖ < 1, and there exist positive definite matrices P1, Q1, Q2, Q3, Q4, Q5,
arbitrary matrices Pi(i = 2, 3, . . . , 25), Fi(i = 1, 2, . . . , 8) with appropriate dimensions such that the
following linear matrix inequality is feasible:

Ξ1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18 Ξ19

∗ Ξ22 Ξ23 Ξ24 Ξ25 Ξ26 Ξ27 Ξ28 Ξ29

∗ ∗ Ξ33 Ξ34 Ξ35 Ξ36 Ξ37 Ξ38 Ξ39

∗ ∗ ∗ Ξ44 Ξ45 Ξ46 Ξ47 Ξ48 Ξ49

∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 Ξ58 Ξ59

∗ ∗ ∗ ∗ ∗ Ξ66 Ξ67 Ξ68 Ξ69

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 Ξ78 Ξ79

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 Ξ89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, (3.3)
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where

Ξ11 = PT2 (A −M) + PT10 + P
T
18 + (A −M)TP2 + P10 + P18 + hQ3 +Q1,

Ξ12 = PT1 − P
T
2 + (A −M)TP3 + P11 + P19,

Ξ13 = PT2 (B +M) − PT18 + (A −M)TP4 + P12 + P20,

Ξ14 = −PT10 + (A −M)TP5 + P13 + P21,

Ξ15 = PT2 C + (A −M)TP6 + P14 + P22,

Ξ16 = PT2 M − PT18 + (A −M)TP7 + P15 + P23 − FT1 ,

Ξ17 = −PT10 + (A −M)TP8 + P16 + P24 − FT1 ,

Ξ18 = PT2 D + (A −M)TP9 + P17 + P25 − FT1 ,

Ξ19 = FT1 ,

Ξ22 = −PT3 + PT3 + τ1Q4 + τ2Q5 +Q2,

Ξ23 = PT3 (B +M) − PT19 − P4, Ξ24 = −PT11 − P
T
5 ,

Ξ25 = PT3 C − P
T
6 , Ξ26 = PT3 M − PT19 − P7 − FT2 ,

Ξ27 = −PT11 − P8 − FT2 , Ξ28 = PT3 D − P9 − FT2 ,

Ξ29 = FT2 ,

Ξ33 = PT4 (B +M) − PT20 + (B +M)TP4 − P20 −Q1,

Ξ34 = −PT12 + (B +M)TP5 − P21,

Ξ35 = PT4 C + (B +M)TP6 − P22,

Ξ36 = PT4 M − PT20 + (B +M)TP7 − P23 − FT3 ,

Ξ37 = −PT12 + (B +M)TP8 − P24 − FT3 ,

Ξ38 = PT4 D + (B +M)TP9 − P25 − FT3 ,

Ξ39 = FT3 ,

Ξ44 = −PT13 − P13,
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Ξ45 = PT5 C − P14,

Ξ46 = PT5 M − PT21 − P15 − FT4 ,

Ξ47 = −PT13 − P16 − FT4 ,

Ξ48 = PT5 D − P17 − FT4 ,

Ξ49 = FT4 ,

Ξ55 = PT6 C + CTP6 −Q2,

Ξ56 = PT6 M − PT22 + C
TP7 − FT5 ,

Ξ57 = −PT14 + C
TP8 − FT5 ,

Ξ58 = PT6 D + CTP9 − FT5 ,

Ξ59 = FT5 ,

Ξ66 = PT7 M − PT23 +M
TP7 − P23 − FT6 − F6,

Ξ67 = −PT15 +M
TP8 − P24 − FT6 − F

T
7 ,

Ξ68 = PT7 D +MTP9 − P25 − FT6 − F
T
8 ,

Ξ69 = FT6 ,

Ξ77 = −PT16 − P16 − FT7 − F7,

Ξ78 = PT8 D − P17 − FT8 − FT7 ,

Ξ79 = FT7 ,

Ξ88 = PT9 D +DTP9 − FT8 − FT8 ,

Ξ89 = FT8 ,

Ξ99 = −
(

1
h
Q3 +

1
τ1
Q4 +

1
τ2
Q5

)
.

(3.4)

Proof. Constructing a new Lyapunov functional candidate for system (3.2) as follows:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) + V6(t), (3.5)
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where

V1(t) = YT (t)PY (t),

Y (t) =

⎡

⎣xT (t), ẋT (t), xT (t − τ1), xT (t − τ2), ẋT (t − τ2),

(∫ t

t−τ1

ẋ(s)ds

)T

,

(∫ t

t−τ2

ẋ(s)ds

)T

,

(∫ t

t−h
x(s)ds

)T
⎤

⎦

T

,

V2(t) =
∫ t

t−τ1

xT (s)Q1x(s)ds, V3(t) =
∫ t

t−τ2

ẋT (s)Q2ẋ(s)ds, V4(t) =
∫ t

t−h

∫ t

s

xT (ξ)Q3x(ξ)dξ ds,

V5(t) =
∫ t

t−τ1

∫ t

s

ẋT (ξ)Q4ẋ(ξ)dξ ds, V6(t) =
∫ t

t−τ2

∫ t

s

ẋT (ξ)Q5ẋ(ξ)dξ ds,

(3.6)

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

P1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.7)

Set

P̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

P1 0 0 0 0 0 0 0

P2 P3 P4 P5 P6 P7 P8 P9

P10 P11 P12 P13 P14 P15 P16 P17

P18 P19 P20 P21 P22 P23 P24 P25

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.8)

along the trajectories of system (3.2), the derivative of V (t) is given by

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) + V̇5(t) + V̇6(t), (3.9)
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where

V̇1(t) = 2YT (t)PẎ (t)

= 2YT (t)P̃ T

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ẋ(t)

−ẋ(t) + Cẋ(t − τ2) + (A −M)x(t)

+(B +M)x(t − τ1) +D
∫ t

t−h
x(s)ds +M

∫ t

t−τ1

ẋ(s)ds

x(t) − x(t − τ2) −
∫ t

t−τ2

ẋ(s)ds

x(t) − x(t − τ1) −
∫ t

t−τ1

ẋ(s)ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 2YT (t)P̃ T

⎛

⎜⎜⎜⎜⎜
⎝

0 I 0 0 0 0 0 0

A −M −I B +M 0 C M 0 D

I 0 0 −I 0 0 −I 0

I 0 −I 0 0 −I 0 0

⎞

⎟⎟⎟⎟⎟
⎠
Y (t),

(3.10)

V̇2(t) = xT (t)Q1x(t) − xT (t − τ1)Q1x(t − τ1),

V̇3(t) = ẋT (t)Q2ẋ(t) − ẋT (t − τ2)Q2ẋ(t − τ2),

V̇2(t) + V̇3(t) = YT (t)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Q1 0 0 0 0 0 0 0

∗ Q2 0 0 0 0 0 0

∗ ∗ −Q1 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0 0

∗ ∗ ∗ ∗ −Q2 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Y (t).

(3.11)

By Lemma 2.3, similar to the disposal route in [34], we have

V̇4(t) = hxT (t)Q3x(t) −
∫ t

t−h
xT (s)Q3x(s)ds

≤ hxT (t)Q3x(t) +
∫ t

t−h

[
−2xT (s)FY (t) + YT (t)FTQ−1

3 FY (t)
]
ds

= hxT (t)Q3x(t) − 2

(∫ t

t−h
x(s)ds

)T

FY (t) + hYT (t)FTQ−1
3 FY (t),

(3.12)
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where F = [F1, F2, F3, F4, F5, F6, F7, F8]. Similarly, we have

V̇5(t) = τ1ẋ
T (t)Q4ẋ(t) −

∫ t

t−τ1

ẋT (s)Q4ẋ(s)ds

≤ τ1ẋ
T (t)Q4ẋ(t) +

∫ t

t−τ1

[
−2ẋT (s)FY (t) + YT (t)FTQ−1

4 FY (t)
]
ds

= τ1ẋ
T (t)Q4ẋ(t) − 2

(∫ t

t−τ1

ẋ(s)ds

)T

FY (t) + τ1Y
T (t)FTQ−1

4 FY (t),

(3.13)

V̇6(t) = τ2ẋ
T (t)Q5ẋ(t) −

∫ t

t−τ2

ẋT (s)Q5ẋ(s)ds

≤ τ2ẋ
T (t)Q5ẋ(t) +

∫ t

t−τ2

[
−2ẋT (s)FY (t) + YT (t)FTQ−1

5 FY (t)
]
ds

= τ2ẋ
T (t)Q5ẋ(t) − 2

(∫ t

t−τ2

ẋ(s)ds

)T

FY (t) + τ2Y
T (t)FTQ−1

5 FY (t).

(3.14)

From (3.12)–(3.14), we get

V̇4(t) + V̇5(t) + V̇6(t)

≤ YT (t)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

hQ3 0 0 0 0 −FT1 −FT1 −FT1
∗ τ1Q4 + τ2Q5 0 0 0 −FT2 −FT2 FT2

∗ ∗ 0 0 0 −FT3 −FT3 −FT3
∗ ∗ ∗ 0 0 −FT4 −FT4 −FT4
∗ ∗ ∗ ∗ 0 −FT5 −FT5 −FT5
∗ ∗ ∗ ∗ ∗ −FT6 − F6 −FT7 − F

T
6 −F

T
8 − F

T
6

∗ ∗ ∗ ∗ ∗ ∗ −FT7 − F
T
7 −F

T
8 − F

T
7

∗ ∗ ∗ ∗ ∗ ∗ ∗ −FT8 − FT8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Y (t)

+ YT (t)FT
(
hQ−1

3 + τ1Q
−1
4 + τ2Q

−1
5

)
FY (t).

(3.15)

Hence,

V̇ (t) ≤ YT (t)
[
Ξ′ + FT

(
hQ−1

3 + τ1Q
−1
4 + τ2Q

−1
5

)
F
]
Y (t), (3.16)
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where

Ξ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Ξ11 Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18

∗ Ξ22 Ξ23 Ξ24 Ξ25 Ξ26 Ξ27 Ξ28

∗ ∗ Ξ33 Ξ34 Ξ35 Ξ36 Ξ37 Ξ38

∗ ∗ ∗ Ξ44 Ξ45 Ξ46 Ξ47 Ξ48

∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 Ξ58

∗ ∗ ∗ ∗ ∗ Ξ66 Ξ67 Ξ68

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 Ξ78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.17)

In views of Lemma 2.1 and (3.3), we have V̇ (t) < 0, namely, there exists a positive scalar
λ > 0 such that V̇ (t) ≤ −λ‖Y (t)‖2. According to [35], system (2.3) is asymptotically stable, this
completes the proof.

Remark 3.2. Motivated by the results obtained in [34], free-weighting matrices Fi(i =
1, 2, . . . , 8) are introduced in Theorem 3.1 so as to reduce the conservatism of the delay-
dependent result. Moreover, more free-weighting matrices are introduced by the construction
and disposal of V1(t), which may make the conservatism reduce further.

Remark 3.3. The transformation from system (2.3) to (3.2) enables us to utilize the information
of the relationship among terms x(t), x(t − τ1),

∫ t
t−τ1

ẋ(s)ds. Combined with the arbitrariness
of matrix M, the conservatism of stability criterion is reduced further.

Remark 3.4. When M = I, we can obtain the following simplified corollary.

Corollary 3.5. For given positive scalars τ1 > 0, τ2 > 0, h > 0, the nominal system Σ0 is
asymptotically stable if ‖C‖ < 1, and there exist positive definite matrices P1, Q1, Q2, Q3, Q4, Q5

and arbitrary matrices Pi(i = 2, 3, . . . , 25), Fi(i = 1, 2, . . . , 8) with appropriate dimensions such that
the following linear matrix inequality is feasible:

Ξ2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ξ′11 Ξ′12 Ξ′13 Ξ′14 Ξ′15 Ξ′16 Ξ′17 Ξ′18 Ξ19

∗ Ξ22 Ξ′23 Ξ24 Ξ25 Ξ′26 Ξ27 Ξ28 Ξ29

∗ ∗ Ξ′33 Ξ′34 Ξ′35 Ξ′36 Ξ′37 Ξ′38 Ξ39

∗ ∗ ∗ Ξ44 Ξ45 Ξ′46 Ξ47 Ξ48 Ξ49

∗ ∗ ∗ ∗ Ξ55 Ξ′56 Ξ57 Ξ58 Ξ59

∗ ∗ ∗ ∗ ∗ Ξ′66 Ξ′67 Ξ′68 Ξ69

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 Ξ78 Ξ79

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 Ξ89

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0, (3.18)



Abstract and Applied Analysis 11

where

Ξ′11 = PT2 (A − I) + P
T
10 + P

T
18 + (A − I)TP2 + P10 + P18 + hQ3 +Q1,

Ξ′12 = PT1 − P
T
2 + (A − I)TP3 + P11 + P19,

Ξ′13 = PT2 (B + I) − PT18 + (A − I)TP4 + P12 + P20,

Ξ′14 = −PT10 + (A − I)TP5 + P13 + P21,

Ξ′15 = PT2 C + (A − I)TP6 + P14 + P22,

Ξ′16 = PT2 − P
T
18 + (A − I)TP7 + P15 + P23 − FT1 ,

Ξ′18 = PT2 D + (A − I)TP9 + P17 + P25 − FT1 ,

Ξ′23 = PT3 (B + I) − PT19 − P4,

Ξ′26 = PT3 − PT19 − P7 − FT2 ,

Ξ′33 = PT4 (B + I) − PT20 + (B + I)TP4 − P20 −Q1,

Ξ′34 = −PT12 + (B + I)TP5 − P21,

Ξ′35 = PT4 C + (B + I)TP6 − P22,

Ξ′36 = PT4 − P
T
20 + (B + I)TP7 − P23 − FT3 ,

Ξ′37 = −PT12 + (B + I)TP8 − P24 − FT3 ,

Ξ′38 = PT4 D + (B + I)TP9 − P25 − FT3 ,

Ξ′46 = PT5 − P
T
21 − P15 − FT4 ,

Ξ′56 = PT6 − P
T
22 + C

TP7 − FT5 ,

Ξ′66 = PT7 − P
T
23 + P7 − P23 − FT6 − F6,

Ξ′67 = −PT15 + P8 − P24 − FT6 − FT7 ,

Ξ′68 = PT7 D + P9 − P25 − FT6 − FT8 .

(3.19)
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Remark 3.6. Based on Theorem 3.1 and Corollary 3.5, by using Lemmas 2.1 and 2.2, we
can perform the robust asymptotic stability analysis for system (2.1) with uncertainty
ΔA(t),ΔB(t),ΔD(t) as follows.

Theorem 3.7. For any given matrixM, scalars τ1 > 0, τ2 > 0, h > 0, the original systemΣ is robustly
and asymptotically stable if ‖C‖ < 1, and there exist positive definite matrices P1, Q1, Q2, Q3, Q4, Q5,
positive scalar δ, and arbitrary matrices Pi(i = 2, 3, . . . , 25), Fi(i = 1, 2, . . . , 8) with appropriate
dimensions such that the following linear matrix inequality is feasible:

Ξ3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ξ11 + δETaEa Ξ12 Ξ13 Ξ14 Ξ15 Ξ16 Ξ17 Ξ18 Ξ19 PT2 K

∗ Ξ22 Ξ23 Ξ24 Ξ25 Ξ26 Ξ27 Ξ28 Ξ29 PT3 K

∗ ∗ Ξ33 + δETb Eb Ξ34 Ξ35 Ξ36 Ξ37 Ξ38 Ξ39 PT4 K

∗ ∗ ∗ Ξ44 Ξ45 Ξ46 Ξ47 Ξ48 Ξ49 PT5 K

∗ ∗ ∗ ∗ Ξ55 Ξ56 Ξ57 Ξ58 Ξ59 PT6 K

∗ ∗ ∗ ∗ ∗ Ξ66 + δETc Ec Ξ67 Ξ68 Ξ69 PT7 K

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 Ξ78 Ξ79 PT8 K

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 Ξ89 PT9 K

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −δI

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0.

(3.20)

Proof. ReplacingA,B,D in (3.3) withA+KF(t)Ea, B+KF(t)Eb, andD+KF(t)Ed, respectively,
(3.3) for system (2.1) is equivalent to the following form:

Ξ + ΠT
1F

T (t)Π2 + ΠT
2F(t)Π1 < 0, (3.21)

where Π1 = [KTP2, K
TP3, K

TP4, K
TP5, K

TP6, K
TP7, K

TP8, K
TP9], Π2 = [Ea, 0, Eb, 0, 0, Ec,

0, 0, 0]. From Lemma 2.2, a sufficient condition for (3.20) is that there exists a positive scalar
δ > 0 such that

Ξ + δ−1ΠT
1Π1 + δΠT

2Π2 < 0. (3.22)

In views of Lemma 2.1, we can easily obtain this conclusion, this completes the proof.

Corollary 3.8. For given positive scalars τ1 > 0, τ2 > 0, h > 0, the original system Σ is robustly
and asymptotically stable if ‖C‖ < 1, and there exist positive definite matrices P1, Q1, Q2, Q3, Q4, Q5,
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Table 1: Stability bounds of time delays (Example 4.1).

[24] [25] [26] [27] [28] [12] Ours
τ1 0 < τ1 < 0.4991 0 < τ1 < 0.7602 0 < τ1 < 0.4991 0 < τ1 < 1.6965 τ1 > 0 τ1 > 0 τ1 > 0

Table 2: Some comparison for allowable upper bounds on τ1 (Example 4.2).

[29] [30] [31] [24] [28] [32] [13] [12] [33] Ours
τ1, τ2 0.3 0.71 0.74 0.8844 1.3718 1.6525 1.6525 1.6525 2.2254 2.2254

positive scalar δ, and arbitrary matrices Pi(i = 2, 3, . . . , 25), Fi(i = 1, 2, . . . , 8) with appropriate
dimensions such that the following linear matrix inequality is feasible:

Ξ4 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ξ′11 + δE
T
aEa Ξ′12 Ξ′13 Ξ′14 Ξ′15 Ξ′16 Ξ′17 Ξ′18 Ξ19 PT2 K

∗ Ξ22 Ξ′23 Ξ24 Ξ25 Ξ′26 Ξ27 Ξ28 Ξ29 PT3 K

∗ ∗ Ξ′33 + δE
T
b
Eb Ξ′34 Ξ′35 Ξ′36 Ξ′37 Ξ′38 Ξ39 PT4 K

∗ ∗ ∗ Ξ44 Ξ45 Ξ′46 Ξ47 Ξ48 Ξ49 PT5 K

∗ ∗ ∗ ∗ Ξ55 Ξ′56 Ξ57 Ξ58 Ξ59 PT6 K

∗ ∗ ∗ ∗ ∗ Ξ′66 + δE
T
c Ec Ξ′67 Ξ′68 Ξ69 PT7 K

∗ ∗ ∗ ∗ ∗ ∗ Ξ77 Ξ78 Ξ79 PT8 K

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 Ξ89 PT9 K

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −δI

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

< 0.

(3.23)

4. Numerical Examples

In this section, some numerical examples will be presented to show the validity and
improvement of the main results derived earlier.

Example 4.1. Consider the following neutral system presented in Park and Kwon [28]:

ẋ(t) − Cẋ(t − τ2) = Ax(t) + Bx(t − τ1) +D
∫ t

t−h
x(s)ds, (4.1)

with

A =

(
−3 −2

1 0

)

, B =

(
−0.5 0.1

0.3 0

)

, C = 0, D = 0. (4.2)
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Figure 1: State trajectories of system (12) with cc = 0.4, h = τ1 = τ2 = 1.60, Ea = Eb = Ed = 0.2I,K = I.
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Figure 2: State trajectories of system (12) with cc = 0.4, τ1 = τ2 = 0.3, h = 1.94, Ea = Eb = Ed = 0.2I,K = I.
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Figure 3: State trajectories of system (12) with cc = 0.4, τ1 = τ2 = 0.3, h = 2.61, Ea = Eb = Ed = 0.
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Table 3: Calculated allowable size of distributed delay h (ΔA(t) = ΔB(t) = ΔD(t) = 0) (Example 4.3).

Liu [12] cc 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
τ1 = τ2 = h 0.67 0.62 0.56 0.51 0.46 0.41 0.36 0.32 0.28
τ1 = τ2 = 0.3 0.79 0.78 0.73 0.66 0.58 0.50 0.41 0.37 0.21

Ours
τ1 = τ2 = h 2.15 2.13 2.11 2.09 2.07 2.04 2.02 1.99 1.97
τ1 = τ2 = 0.3 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61 2.61

Table 4: Calculated allowable size of distributed delay h (K = I, Ea = Eb = Ed = 0.2I) (Example 4.3).

Liu [12] cc 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
τ1 = τ2 = h 0.67 0.62 0.56 0.51 0.46 0.41 0.36 0.32 0.28
τ1 = τ2 = 0.3 0.79 0.78 0.73 0.66 0.58 0.50 0.41 0.37 0.21

Ours 0.3
τ1 = τ2 = h 1.82 1.79 1.77 1.75 1.72 1.70 1.67 1.63 1.60
τ1 = τ2 = 0.3 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94 1.94

Set M =
( −1 0

0 −2

)
. For comparisons, we calculate the allowable upper bound of τ1 for which

the asymptotic stability is guaranteed. For this example, Table 1 shows that Theorem 3.1
obtained in this paper is less conservative than the related results obtained in [12, 24–28].

Example 4.2. Consider the following neutral system studied in He et al. [32]:

ẋ(t) − Cẋ(t − τ2) = Ax(t) + Bx(t − τ1) +D
∫ t

t−h
x(s)ds, (4.3)

with

A =

(
−0.9 0.2

0.1 −0.9

)

, B =

(
−1.1 −0.2

−0.1 −1.1

)

, C =

(
−0.2 0

0.2 −0.1

)

, D = 0. (4.4)

Set M =
( −1 0

0 −2

)
.

For this example, we calculate the allowable upper bound of τ1 for which the
asymptotic stability is guaranteed. Table 2 shows that Theorem 3.1 obtained in this paper
is less conservative than the related results obtained in [12, 13, 24, 28–33].

Example 4.3. Consider the neutral system studied in Liu et al. [12]:

ẋ(t) − Cẋ(t − τ2) = (A + ΔA(t))x(t) + (B + ΔB(t))x(t − τ1) + (D + ΔD(t))
∫ t

t−h
x(s)ds, (4.5)

with

A =

(
−2 0

0 −15

)

, B =

(
1 3

−3 1

)

, C =

(
cc 0

0 cc

)

, D =

(
1 0.5

−0.5 1

)

, 0 ≤ cc < 1. (4.6)
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Figure 4: State trajectories of system (12) with cc = 0.4, τ1 = τ2 = h = 1.97, Ea = Eb = Ed = 0.

Table 5: Comparison of τmax using different methods (Example 4.4).

cc 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Han [33] 3.13 2.98 2.83 2.66 2.49 2.31 2.12 1.93
Han [36] 1.77 1.63 1.48 1.33 1.16 0.98 0.79 0.59
He et al. [32] 2.39 2.05 1.75 1.49 1.27 1.08 0.91 0.76
Theorem 3.7 3.45 3.21 3.02 2.88 2.62 2.54 2.51 2.23

For the convenience of comparison, let ΔA(t) = ΔB(t) = ΔD(t) = 0. Set M =
( −1 0

0 −2

)
. The

comparative results between Theorem 3.1 with the result obtained in [12] are given in Table 3.
When

[ΔA(t),ΔB(t),ΔD(t)] = KF(t)[Ea, Eb, Ed], (4.7)

where K = I, Ea = Eb = Ed = 0.2I, Table 4 shows that the robust stability criterion obtained
in this paper is also less conservative than the related result obtained in [12]. From the
simulation figures (see Figures 1–4), one can see that the results derived in this paper are
valid.

Example 4.4. Consider the following uncertain neutral system [32, 33, 36]:

ẋ(t) − Cẋ(t − τ) = [A +KF(t)Ea]x(t) + [B +KF(t)Eb]x(t − τ), (4.8)

where A =
( −2 0

0 −0.9

)
, B =

( −1 0

−1 −1

)
, C =

(
c 0

0 c

)
, 0 ≤ c < 1, L =

(
0.2 0

0 0.2

)
, Ea = Eb =

(
1 0

0 1

)
. Table 5

gives out the related comparative results, from which one can see that Theorem 3.7 obtained
in this paper is less conservative than those established in [32, 33, 36].
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5. Conclusion

By constructing a new Lyapunov function, some new robust stable criteria for a class of
neutral control systems with mixed delays are obtained. These criteria are formulated in the
forms of linear matrix inequalities. Compared with some previous publications, our results
are less conservative. Numerical examples and simulations show that our results are valid.
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