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1. Introduction

It is well known that the abstract Cauchy problem of first order

u′(t) = Au(t), t > 0; u(0) = x (1.1)

is well posed if and only if A is the generator of a C0-semigroup. However, many partial
differential operators (PDOs) such as the Schrödinger operator iΔ on Lp(Rn) (p /= 2) cannot
generate C0-semigroups. It was Kellermann and Hieber [1] who first showed that some
elliptic differential operators on some function spaces generate integrated semigroups, and
their results are improved and developed in [2, 3]. Because of the limitations of integrated
semigroups, the results in [1–3] are confined to elliptic differential operators with constant
coefficients. One of the limitations is that the resolvent sets of generators must contain a right
half-plane; however, it is known that there are many nonelliptic operators whose resolvent
sets are empty (see, e.g., [4]). On the other hand, the resolvent sets of the generators of
regularized semigroups need not be nonempty; this makes it possible to apply the theory of
regularized semigroups to nonelliptic operators, such as coercive operators and hypoelliptic
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operators (see [5–8]). Moreover, for second-order equations, Zheng [9] considered coercive
differential operators with constant coefficients generating integrated cosine functions. The
aim of this paper is to consider fractional evolution equations associated with coercive
differential operators.

Let X be a Banach space, and let A be a closed linear unbounded operator with
densely defined domain D(A). A family of strongly continuous bounded linear operators
on X, {R(t)}t≥0, is called a resolvent family for A with kernel a(t) ∈ L1

loc(R+) if R(t)A ⊂ AR(t)
and the resolvent equation

R(t)x = x +
∫ t

0
a(t − s)AR(s)xds, t ≥ 0, x ∈ D(A) (1.2)

holds. It is obvious that a C0-semigroup is a resolvent family for its generator with kernel
a1(t) ≡ 1; a cosine function is a resolvent family for its generator with kernel a2(t) = t. If
we define the α -times resolvent family for A as being a resolvent family with kernel gα(t) :=
tα−1/Γ(α), then such resolvent families interpolate C0-semigroups and cosine functions.

Recently Bazhlekova studied classes of such resolvent families (see [10]). Let 0 < α ≤ 2,
and let m be the smallest integer greater than or equal to α. It was shown in [10] that the
fractional evolution equation of order α,

Dαu(t) = Au(t), t > 0; u(k)(0) = xk, k = 0, 1, . . . , m − 1, (1.3)

is well posed if and only if there exists an α-times resolvent family for A. Here Dα is the
Caputo fractional derivative of order α > 0 defined by

Dαf(t) :=
∫ t

0
gm−α(t − s)

dm

dsm
f(s)ds, (1.4)

where f ∈ Wm,1(I) for every interval I. The hypothesis on f can be relaxed; see [10] for
details. Fujita in [11] studied (1.3) for the case that A = Δ, the Laplacian (∂/∂x)2 on R,
which interpolates the heat equation and the wave equation. Since α-times resolvent families
interpolate C0-semigroups and cosine functions, this motivates us to consider the existence
of fractional resolvent families for PDOs.

There are several examples of the existence of α-times resolvent families for concrete
PDOs in [10], but Bazhlekova did not develop the theory of α-times resolvent families for
general PDOs. The authors showed in [12] that there exist fractional resolvent families for
elliptic operators. In this paper we will consider coercive operators. Since α-times resolvent
families are not sufficient for applications we have in mind, we first extend, in Section 2, such
a notion to the setting of C-regularized resolvent families which was introduced in [13]. To
do this, we use methods of the Fourier multiplier theory.

This paper is organized as follows. Section 2 contains the definition and some basic
properties of α-times regularized resolvent families. Section 3 prepares for the proof of
the main result of this paper. Our main result, Theorem 4.1, shows that there are α-times
regularized resolvent families for PDOs corresponding to coercive polynomials taking values
in a sector of angle less than π . Some examples are also given in Section 4.
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2. α-Times Regularized Resolvent Family

Throughout this paper,X is a complex Banach space, and we denote by B(X) the algebra of all
bounded linear operators onX. LetA be a closed densely defined operator onX, letD(A) and
R(A) be its domain and range, respectively, and let α ∈ (0, 2], C ∈ B(X) be injective. Define
ρC(A) := {λ ∈ C : λ − A is injective and R(C) ⊂ R(λ − A)}. Let Σθ := {λ ∈ C : |arg λ| < θ}
be the open sector of angle 2θ in the complex plane, where arg is the branch of the argument
between −π and π .

Definition 2.1. A strongly continuous family {Sα(t)}t≥0 ⊂ B(X) is called an α -times C -
regularized resolvent family for A if

(a) Sα(0) = C;

(b) Sα(t)A ⊂ ASα(t) for t ≥ 0;

(c) C−1AC = A;

(d) for x ∈ D(A), Sα(t)x = Cx +
∫ t

0((t − s)
α−1/Γ(α))Sα(s)Axds.

{Sα(t)}t≥0 is called analytic if it can be extended analytically to some sector Σθ.

If ‖Sα(t)‖ ≤ Meωt (t ≥ 0) for some constants M ≥ 1 and ω ∈ R+, we will write
A ∈ CαC(M,ω), and CαC(ω) := ∪{CαC(M,ω);M ≥ 1}, CαC := ∪{CαC(ω);ω ≥ 0}.

Define the operator Ã by

Ãx = C−1
(

lim
t↓0

Γ(α + 1)
tα

(Sα(t)x − Cx)
)
, x ∈ D

(
Ã
)
, (2.1)

with

D
(
Ã
)
=
{
x ∈ X : lim

t↓0

Sα(t)x − Cx
tα

exists and is in R(C)
}
. (2.2)

Proposition 2.2. Suppose that there exists an α-times C-regularized resolvent family, {Sα(t)}t≥0, for
the operator A, and let Ã be defined as above. Then A = Ã.

Proof. By the strong continuity of Sα(t), we have for every x ∈ X,

∥∥∥∥∥gα+1(t)−1
∫ t

0
gα(t − s)Sα(s)xds − Cx

∥∥∥∥∥ ≤ gα+1(t)−1
∫ t

0
gα(t − s)‖Sα(s)x − Cx‖ds

≤ sup
0≤s≤t

‖Sα(s)x − Cx‖ −→ 0 as t −→ 0.
(2.3)

Thus for x ∈ D(A), by Definition 2.1,

lim
t↓0
gα+1(t)−1(Sα(t)x − Cx) = lim

t↓0
gα+1(t)−1

∫ t
0
gα(t − s)Sα(s)Axds

= CAx,

(2.4)



4 Abstract and Applied Analysis

which means that x ∈ D(Ã) and Ãx = Ax. On the other hand, for x ∈ D(Ã), by the definition
of Ã and Definition 2.1,

CÃx = lim
t↓0
gα+1(t)−1(Sα(t)x − Cx)

= lim
t↓0
gα+1(t)−1A

∫ t
0
gα(t − s)Sα(s)xds,

(2.5)

but limt→ 0gα+1(t)
−1∫ t

0gα(t−s)Sα(s)xds = Cx, by (d) of Definition 2.1. Thus it follows from the
closedness of A that Cx ∈ D(A) with ACx = CÃx. This implies that x ∈ D(C−1AC) = D(A),
so we have Ã = A.

The following generation theorem and subordination principle for α-times C-
regularized resolvent families can be proved similarly as those for α-times resolvent families
(see [10]).

Theorem 2.3. Let α ∈ (0, 2]. Then the following statements are equivalent:

(a) A ∈ CαC(M,ω);

(b) A = C−1AC, (ωα,∞) ⊆ ρC(A) and

∥∥∥∥ d
n

dλn

(
λα−1(λα −A)−1C

)∥∥∥∥ ≤ Mn!

(λ −ω)n+1
, λ > ω, n ∈ N0 := N ∪ {0}; (2.6)

(c) A = C−1AC, (ωα,∞) ⊆ ρC(A) and there exists a strongly continuous family {Sα(t)}t≥0 ⊂
B(X) satisfying ‖Sα(t)‖ ≤Meωt such that

λα−1(λα −A)−1Cx =
∫∞

0
e−λtSα(t)xdt, λ > ω, x ∈ X. (2.7)

Theorem 2.4. Suppose that 0 < α < β ≤ 2, γ = α/β. If A ∈ CβC(ω) then A ∈ CαC(ω1/γ) and the
α-times C-regularized resolvent family for A, {Sα(t)}t≥0, can be extended analytically to Σmin{θ(γ),π},
where θ(γ) := (1/γ − 1)π/2.

3. Coercive Operators and Mittag-Leffler Functions

We now introduce a functional calculus for generators of boundedC0-groups (cf. [14]), which
will play a key role in our proof.

Let iAj (1 ≤ j ≤ n) be commuting generators of bounded C0-groups on a Banach space
X. Write A = (A1, . . . , An) and Aμ = Aμ1

1 · · ·Aμn
n for μ = (μ1, . . . , μn) ∈ N

n
0 . Similarly, write Dμ =

D
μ1

1 · · ·Dμn
n , where Dj = −i∂/∂xj for j = 1, . . . , n. For a polynomial P(ξ) :=

∑
|μ|≤maμξ

μ (ξ ∈
R
n) (|μ| :=

∑n
j=1μj) with constant coefficients, we define P(A) =

∑
|μ|≤maμA

μ (ξ ∈ R
n) with

maximal domain. Then P(A) is closable. Let F be the Fourier transform, that is, (Fu)(η) =∫
Rnu(ξ)e−i(ξ,η)dξ for u ∈ L1(Rn), where (ξ, η) =

∑n
j=1ξjηj . If u ∈ FL1(Rn) := {Fv : v ∈ L1(Rn)},

then there exists a unique function in L1(Rn), written F−1u, such that u = F(F−1u). In
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particular, F−1u is the inverse Fourier transform of u if u ∈ S(Rn) (the space of rapidly
decreasing functions on R

n). We define u(A) ∈ B(X) by

u(A)x =
∫

Rn

(
F−1u

)
(ξ)e−i(ξ,A)xdξ, x ∈ X, (3.1)

where (ξ,A) =
∑n

j=1ξjAj .
We will need the following lemma, in which the statements (a) and (b) are well-

known, (c) and (d) can be found in [14] and [6], respectively.

Lemma 3.1. (a)FL1(Rn) is a Banach algebra under pointwise multiplication and addition with norm
‖u‖FL1 := ‖F−1u‖L1 .

(b) u �→ u(A) is an algebra homomorphism from FL1(Rn) into B(X), and there exists a
constantM > 0 such that ‖u(A)‖ ≤M‖u‖FL1 .

(c) E := {φ(A)x : φ ∈ S(Rn), x ∈ X} ⊂ ∩μ∈N
n
0
D(Aμ), E = X, P(A)|E = P(A) and

φ(A)P(A) ⊂ P(A)φ(A) = (Pφ)(A) for φ ∈ S(Rn).
(d) Let u ∈ Cj(Rn) (j > n/2). Suppose that there exist constants L, M0, a > 0, and b ∈

[−1, 2a/n − 1) such that

∣∣∣Dku(ξ)
∣∣∣ ≤
⎧⎨
⎩
M

|k|
0 |ξ|b|k|−a, for |ξ| ≥ L, |k| ≤ j,

M
|k|
0 , for |ξ| < L, |k| ≤ j,

(3.2)

where k ∈ N
n
0 , then u ∈ FL1(Rn) and ‖u‖FL1 ≤MMn/2

0 for some constantM > 0.

Recall that the Mittag-Leffler function (see [15, 16]) is defined by

Eα,β(z) :=
∞∑
n=0

zn

Γ
(
αn + β

) =
1

2πi

∫
T

μα−βeμ

μα − z dμ, α, β > 0, z ∈ C, (3.3)

where the path T is a loop which starts and ends at −∞ and encircles the disc |t| ≤ |z|1/α in the
positive sense. The most interesting properties of the Mittag-Leffler functions are associated
with their Laplace integral

∫∞

0
e−λttβ−1Eα,β(ωtα)dt =

λα−β

λα −ω, Reλ > ω1/α, ω > 0 (3.4)

and with their asymptotic expansion as z → ∞. If 0 < α < 2, β > 0, then

Eα,β(z) =
1
α
z(1−β)/αexp

(
z1/α
)
+ εα,β(z),

∣∣argz
∣∣ ≤ 1

2
απ, (3.5)

Eα,β(z) = εα,β(z),
∣∣arg(−z)

∣∣ <
(

1 − 1
2
α

)
π, (3.6)
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where

εα,β(z) = −
N−1∑
n=1

z−n

Γ
(
β − αn

) +O(|z|−N) (3.7)

as z → ∞, and the O-term is uniform in arg z if |arg(−z)| ≤ (1−α/2−ε)π . Note that for β > 0,

∣∣Eα,β(z)∣∣ ≤ Eα,β(|z|), z ∈ C. (3.8)

The following two lemmas are about derivatives of the Mittag-Leffler functions.

Lemma 3.2.

E′
α,β(z) =

1
α
Eα,α+β−1(z) −

β − 1
α

Eα,α+β(z). (3.9)

Proof. By the definition of Eα,β(z),

E′
α,β(z) =

(
∞∑
n=0

zn

Γ
(
αn + β

)
)′

=
∞∑
n=1

nzn−1

Γ
(
αn + β

)

=
∞∑
n=1

nzn−1

Γ
(
αn + β − 1 + 1

)

=
∞∑
n=1

zn−1 ·
(
αn + β − 1

)
α
(
αn + β − 1

)
Γ
(
αn + β − 1

) − ∞∑
n=1

β − 1
α

· zn−1

Γ
(
αn + β

)

=
1
α
Eα,α+β−1(z) −

β − 1
α

Eα,α+β(z),

(3.10)

as we wanted to show.

For short, Eα(z) := Eα,1(z).

Lemma 3.3. Suppose that 1 < α < 2. For every n ∈ N and ε > 0 there exist constants M > 0 and
L > 0 such that for k = 0, . . . , n,

∣∣∣E(k)
α (z)

∣∣∣ ≤ M

|z| , if |z| ≥ L,
∣∣arg(−z)

∣∣ ≤ (1 − α

2
− ε
)
π. (3.11)

Proof. First note that E′
α(z) = (1/α)Eα,α(z), and by induction on k one can prove that

E
(k)
α (z) =

k∑
j=1

ajEα,αk−(k−j)(z), (3.12)
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where aj only depend on α and k. Since α > 1 we have that αk − (k − j) > 0 whence, by the
asymptotic formula for Mittag-Leffler functions (3.6), we obtain (3.11).

Now let us recall the definition of coercive polynomials. For fixed r > 0, a polynomial
P(ξ) is called r -coercive if |P(ξ)|−1 = O(|ξ|−r) as |ξ| → ∞. In the sequel, M is a generic constant
independent of t which may vary from line to line.

Lemma 3.4. Suppose that P(ξ) is an r-coercive polynomial of order m and {P(ξ) : ξ ∈ R
n} ⊂

C \ Σα′π/2, where 1 < α′ < 2. Let k0 = [n/2] + 1. Then for 1 < α < α′, γ > 0, a ∈ Σα′π/2, there exist
constantsM,L ≥ 0 such that

∣∣Dμ[Eα(tαP)(a − P)−γ
]∣∣ ≤M(1 + tα|μ|

)
|ξ|(m−1)|μ|−rγ , |ξ| ≥ L,

∣∣μ∣∣ ≤ k0, t ≥ 0. (3.13)

Proof. Suppose that for |ξ| ≥ L, (3.11) holds up to order k0 and

|P(ξ)| ≥M|ξ|r , |a − P(ξ)| ≥M|ξ|r . (3.14)

By induction, one can show that

DμEα(tαP) =
|μ|∑
j=1

tαjE
(j)
α (tαP)Qj, (3.15)

where degQj ≤ mj − |μ|. Thus if |ξ| ≥ L and |tαP | ≥ L,

|DμEα(tαP)| ≤M
(

1 + tα(|μ|−1)
)
|ξ|m|μ|−|μ|−r

≤M
(

1 + tα|μ|
)
|ξ|(m−1)|μ|−r ,

(3.16)

and if |ξ| ≥ L with |tαP | ≤ L, by (3.8) and (3.12) we know that

|DμEα(tαP)| ≤M
(
tα + tα|μ|

)
|ξ|(m−1)|μ|. (3.17)

Altogether, we have

|DμEα(tαP)| ≤M
(

1 + tα|μ|
)
|ξ|(m−1)|μ|, |ξ| ≥ L. (3.18)

And by

∣∣Dμ(a − P)−γ
∣∣ ≤M|ξ|(m−r−1)|μ|−rγ , |ξ| ≥ L (3.19)



8 Abstract and Applied Analysis

and Leibniz’s formula we have

∣∣Dμ(Eα(tαP)(a − P)−γ
)∣∣ ≤M(1 + tα|μ|

)
|ξ|(m−1)|μ|−rγ , |ξ| ≥ L. (3.20)

Lemma 3.5. This proves (3.13). Suppose that the assumptions of Lemma 3.4 are satisfied. Let γ >
nm/2r. Then Eα(tαP)(a − P)−γ ∈ FL1(Rn) and

∥∥Eα(tαP)(a − P)−γ
∥∥
FL1 ≤M

(
1 + tαn/2

)
, t ≥ 0. (3.21)

The same result holds with Eα(tαP) replaced by Eα,α(tαP).

Proof. By Lemma 3.1(d), it remains to prove that for |ξ| ≤ L,

∣∣Dμ(Eα(tαP)(a − P)−γ
)∣∣ ≤M(1 + tα|μ|

)
,
∣∣μ∣∣ ≤ k0, t ≥ 0. (3.22)

To show this we can use (3.15) and then give the estimates according to the values tαP . For
|ξ| ≤ L with |tαP | ≥ L the estimate (3.8) can be applied, and for |ξ| ≤ L with |tαP | ≤ L note that
all the functions E(j)

α (tαP) are uniformly bounded.
For the second part of the lemma, note that Eα,α(z) = αE′

α(z).

4. Existence of α-Times Regularized Resolvents for
Operator Polynomials

In this section, we will construct the fractional regularized resolvent families for coercive
differential operators on Banach spaces.

Theorem 4.1. Suppose that P is an r-coercive polynomial of order m, and {P(ξ) : ξ ∈ R
n} ⊂

C \ Σα′π/2, where 1 < α′ < 2. Then for 1 < α < α′, a ∈ Σα′π/2, γ > nm/2r, C = (a − P)−γ(A), there
exists an analytic α-times C-regularized resolvent family Sα(t) for P(A), and Sα(t) = (Eα(tαP)(a −
P)−γ)(A) with

‖Sα(t)‖ ≤M
(

1 + tαn/2
)
, t ≥ 0. (4.1)

Proof. Let ut = Eα(tαP)(a − P)−γ , t ≥ 0. By Lemma 3.5, ut ∈ FL1 and ‖ut‖FL1 ≤ M(1 + tαn/2).
Define Sα(t) = ut(A). Then by Lemma 3.1(b), Sα(t) ∈ B(X), ‖Sα(t)‖ ≤ M(1 + tαn/2), and in
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particular C = Sα(0) ∈ B(X). To check the strong continuity of Sα(t), take φ ∈ S(Rn). Then for
t, t + h ≥ 0, by Lemma 3.5

∥∥Sα(t + h)φ(A) − Sα(t)φ(A)
∥∥

≤M
∥∥(Eα((t + h)αP) − Eα(tαP))(a − P)−γφ

∥∥
FL1

≤M
∥∥∥∥∥
∫ t+h
t

sα−1Eα,α(sαP)(a − P)−γPφds
∥∥∥∥∥
FL1

≤M
∫ t+h
t

sα−1
(

1 + sαn/2
)
ds ·
∥∥Pφ∥∥FL1 −→ 0, as h −→ 0.

(4.2)

Since the set E of Lemma 3.1 is dense in X, we have done. Next we will show that

λα−1(λα − P(A))
−1
C =

∫∞

0
e−λtSα(t)dt, λ > 0. (4.3)

In fact, for φ ∈ S(Rn), by Lemma 3.1(b) and (c) we have

P(A)Sα(t)φ(A) =
(
Putφ

)
(A) = Sα(t)P(A)φ(A). (4.4)

Since FL1(Rn) is a Banach algebra, it follows that ut, ut(λ − P)φ ∈ FL1. Thus by Lemmas 3.1,
3.5, (3.4), and Fubini’s theorem one obtains that for x ∈ X, λ > 0,

∫∞

0
e−λtSα(t)(λα − P(A))φ(A)xdt =

∫∞

0
e−λt
(
ut(λα − P)φ

)
(A)xdt

=
(∫∞

0
e−λtutdt(λα − P)φ

)
(A)x

= λα−1Cφ(A)x.

(4.5)

This implies that

∫∞

0
e−λtSα(t)

(
λα − P(A)

)
xdt = λα−1Cx, x ∈ D

(
P(A)

)
, (4.6)

once again by the density of the set E of Lemma 3.1. A similar argument works to get

(
λα − P(A)

)∫∞

0
e−λtSα(t)xdt = λα−1Cx, x ∈ X. (4.7)

Therefore, we have proved (4.3). And it is routine to show that C−1P(A)C = P(A), thus
by Theorem 2.3 we know that Sα(t) is the α-times C-regularized resolvent family for P(A).
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Moreover, since α < α′ is arbitrary, by the subordination principle (Theorem 2.4) we know
that Sα(t) is analytic.

We can extend this result to a more general case.

Theorem 4.2. Let P(ξ) be an r-coercive polynomial of order m such that {P(ξ) : ξ ∈ R
n} ⊂ C \

(ω + Σα′π/2) for some ω ≥ 0, and let α′ > 1. Then for 1 < α < α′, a ∈ ω + Σα′π/2, γ > nm/2r, and
C = (a − P)−γ(A), there exists an analytic α-times C-regularized resolvent family Sα(t) for P(A)
with

‖Sα(t)‖ ≤M
(

1 + tαn/2
)

exp
(
ω1/αt

)
, t ≥ 0. (4.8)

Proof. We only consider the area above the x-axis, the lower area can be treated similarly.
Let Ray 1 := {ω + ρeiα

′π/2 : 0 ≤ ρ < ∞}, and let Ray 2 := {ρeiαπ/2 : 0 ≤ ρ < ∞}, where
1 < α < α′ < 2. Let G be the point (ω, 0), and set B to denote the intersection point of the two
above rays. Let Ω denote the region to the left side of Ray 1 and 2 (see Figure 1).

If P(ξ) falls into Ω, the asymptotic formula (3.6) can be applied to get estimates
similarly as in the proof of Theorem 4.1. It remains to consider the values P(ξ) within the
triangle ΔGOB. To estimate DμEα(tαP(ξ)) for such values P(ξ), we use (3.12), (3.15), and
(3.5) to obtain

|DμEα(tαP(ξ))| ≤M
(

1 + tα|μ|
)

exp
(
ω1/αt

)
(4.9)

if Re((ρeiθ)1/α) < ω1/α, where ρeiθ denotes an arbitrary point on the line segment from G to
B.

Since

ρ

sin(α′π/2)
=

ω

sin(α′π/2 − θ) , (4.10)

we have

Re
(
(ρeiθ)

1/α)
= ω1/α

(
sin(α′π/2)

sin(α′π/2 − θ)

)1/α

cos(θ/α). (4.11)
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Thus, to show that Re((ρeiθ)1/α) < ω1/α (0 < θ ≤ απ/2) one needs to check that

cosα(θ/α) < cos θ + sinθ · tan
(
α′ − 1

2
π

)
, 0 < θ ≤ απ

2
; (4.12)

and this is true if

cos(θ/α) ≤ cos θ + sinθ · tan
(
α − 1

2
π

)
, 0 < θ ≤ απ

2
, (4.13)

since 1 < α < α′ < 2.
We first consider the case when π/2 ≤ θ ≤ απ/2. Let g(θ) = cos θ + sinθ · tan(((α −

1)/2)π) − cos(θ/α), then g ′(θ) = −sinθ + (1/α)sin(θ/α) + cos θ · tan(((α − 1)/2)π) ≤ 0 since
sinθ > (1/α)sin(θ/α) and cos θ ≤ 0 for π/2 ≤ θ ≤ απ/2. So g(θ) decreases with respect to θ,
which means that g(θ) ≥ 0 since g(απ/2) = 0.

For 0 < θ < π/2, we will show that

cos(θ/α) ≤ cos θ + sinθ · α − 1
2

π, (4.14)

which implies (4.13). Now for fixed θ ∈ (0, π/2), denote by h(α) = cos θ+ sinθ · ((α−1)/2)π −
cos(θ/α). Since α > 1, we have h′(α) = (π/2)sinθ − (θ/α2)sin(θ/α) > 0; it thus follows that
h(α) ≥ h(1) = 0. Therefore we have proved (4.14).

Now by (3.19) and (4.9) one obtains, for |ξ| ≥ L,

∣∣Dμ(Eα(tαP)(a − P)−γ
)∣∣ ≤M(1 + tα|μ|

)
|ξ|(m−1)|μ|−rγexp

(
ω1/αt

)
, (4.15)

and for |ξ| ≤ L,

∣∣Dμ(Eα(tαP)(a − P)−γ
)∣∣ ≤M(1 + tα|μ|

)
exp
(
ω1/α t

)
. (4.16)

An argument similar to that one of the proof of Theorem 4.1 gives our claim.

In the following theorem, we do not assume that P is coercive, but the choice of C is
different.

Theorem 4.3. Suppose that P(ξ) is a polynomial of orderm, and {P(ξ) : ξ ∈ R
n} ⊂ C\(ω+Σα′π/2),

where 1 < α′ < 2. Then for 1 < α < α′ < 2, β > n/2, C = (1 + |A|2)−mβ/2 (which is defined by (3.1)
with u(x) = (1+ |x|2)−mβ/2), there exists an analytic α-times C-regularized resolvent family Sα(t) for
P(A) such that

‖Sα(t)‖ ≤M
(

1 + tαn/2
)

exp
(
ω1/αt

)
, t ≥ 0. (4.17)
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Proof. From (4.9) and

∣∣∣∣Dμ
(

1 + |ξ|2
)−β/2

∣∣∣∣ ≤M|ξ|−|μ|−β, |ξ| ≥ L, μ ∈ N
n
0 , (4.18)

we have for |ξ| ≥ L,

∣∣∣∣Dμ

(
Eα(tαP)

(
1 + ξ|2

)−β/2
)∣∣∣∣ ≤M

(
1 + tα|μ|

)
|ξ|(m−1)|μ|−βexp

(
ω1/αt

)
, (4.19)

and for |ξ| ≤ L,

∣∣∣Dμ
(
Eα(tαP)(1 + |ξ|2)−β/2

)∣∣∣ ≤M(1 + tα|μ|
)

exp
(
ω1/αt

)
. (4.20)

It thus follows from Lemma 3.1 that when β > nm/2,Eα(tαP)(1+|ξ|2)−β/2 ∈ FL1(Rn). Similarly
as in the proof of Theorem 4.1 we can show that there is an analytic α-times C-regularized
resolvent family for P(A).

From now on X will be Lp(Rn) (1 ≤ p < ∞) or C0(Rn) := {f ∈ C(Rn) : lim|x|→∞f(x) =
0}. The partial differential operator P(D) defined by

P(D)f = F−1(PFf) (4.21)

with

D(P(D)) =
{
f ∈ X : F−1(PFf) ∈ X} (4.22)

is closed and densely defined on X. Since iDj = ∂/∂xj (1 ≤ j ≤ n) is the generator of the
bounded C0-group {Tj(t)}t∈R

given by

Tj(t)f(x1, . . . , xn) = f
(
x1, . . . , xj−1, xj + t, xj+1, . . . , xn

)
t ∈ R (4.23)

on X, we can apply the above results to P(D) on X. It is remarkable that when X = Lp(Rn)
(1 < p <∞) these results can be improved. In fact, if A = D = (D1, . . . , Dn), then the functions
ut’s in the proofs of the above theorems give rise to Fourier multipliers on Lp(Rn) having
norm of polynomial growth tnp at infinity, where np = n|1/2 − 1/p|. For details we refer to
[3, 8]). We summarize these conclusions in the following two theorems.

Theorem 4.4. Suppose that the assumptions of Theorem 4.2 are satisfied.

(a) For X = L1(Rn) or C0(Rn), C = (a − P)−γ(D), where γ > nm/2r, there exists an analytic
α-times C-regularized resolvent family Sα(t) for P(D) and

‖Sα(t)‖ ≤M
(

1 + tαn/2
)

exp
(
ω1/αt

)
, t ≥ 0. (4.24)
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(b) For X = Lp(Rn), C = (a−P)−γ(D), where γ > npm/r, np = n|1/2− 1/p|, there exists an
analytic α-times C-regularized resolvent family Sα(t) for P(D) and

‖Sα(t)‖ ≤M(1 + tαnp) exp
(
ω1/αt

)
, t ≥ 0. (4.25)

Theorem 4.5. Suppose that the assumptions of Theorem 4.3 are satisfied.

(a) For X = L1(Rn) or C0(Rn), C = (1 − Δ)−mβ/2, where β > n/2, there exists an analytic
α-times C-regularized resolvent family Sα(t) for P(D) and

‖Sα(t)‖ ≤M
(

1 + tαn/2
)

exp
(
ω1/αt

)
, t ≥ 0. (4.26)

(b) For X = Lp(Rn), C = (1 − Δ)−mβ/2, where β > np, there exists an analytic α-times C-
regularized resolvent family Sα(t) for P(D) and

‖Sα(t)‖ ≤M(1 + tαnp) exp
(
ω1/αt

)
, t ≥ 0. (4.27)

We end this paper with some examples to demonstrate the applications of our results.

Example 4.6. (a) The polynomial corresponding to the Laplacian Δ on Lp(Rn) (n > 1, p /= 2) is
P(ξ) = −|ξ|2. By Theorem 4.4, for every 1 < α < 2 there exists an analytic α-times (1 − Δ)−γ -
regularized resolvent family for the operator Δ, where γ > np.

(b) Consider P(D) on Lp(R2) (1 < p <∞) with

P(ξ) = −
(

1 + ξ2
1

)(
1 + (ξ2 − ξl1)

2)
(l ∈ N). (4.28)

Then P(ξ) ≤ −1(ξ ∈ R
2). We claim that P is (2/l)-coercive. Indeed, if |ξ2| ≥ 2|ξl1|, then

|P(ξ)| ≥
(

1 + ξ2
1

)(
1 +

1
4
ξ2

2

)
≥ 1

4
|ξ|2. (4.29)

If |ξ2| < 2|ξl1|, then

|P(ξ)| ≥ 1 + |ξ1|2 ≥ c|ξ|2/l for |ξ| ≥ 1, (4.30)

for some proper constant c, as desired. By Theorems 4.4 and 4.5, for every 1 < α < 2 there
exists an analytic α-times C-regularized resolvent family for P(D), where C = (1 − P)−γ(D)
with γ > 2(l2 + l)|1/2 − 1/p| or C = (1 −Δ)−(l+1)β with β > 2|1/2 − 1/p|. We remark that if l ≥ 5
and |1/2 − 1/p| ≥ 1/4 + 1/l, then 0 ∈ σ(P(D)) (see [17]). Since 0�∈P(R2), it follows from [18,
Theorem 1] that ρ(P(D)) = ∅. Consequently, in this case there is no α-times resolvent family
for P(D) for any α.
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