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1. Introduction

Landau-Lifshitz equations are fundamental equations in the theory of ferromagnetism. They
describe how the magnetization field inside ferromagnetic material evolves in time. The
study of these equations is a very challenging mathematical problem, and is rewarded by
the great amount of applications of magnetic devices, such as recording media, computer
memory chips, and computer disks. The equations were first derived by Landau and Lifshitz
on a phenomenological ground in [1]. They can be written as

∂m

∂t
= −α2m × (m ×H(m)) + βm ×H(m), (1.1)

where × is the vector cross product in Rn (n ≥ 2), m = (m1, m2, . . . , mn) : Ω × [0,+∞) → Rn

is the magnetization and α2 is a Gilbert damping constant. The system (1.1) is implied by
the conservation of energy and magnitude of m.H(m) = −δE/δm is the unconstrained first
variation of the energy functional E(m). The magnitude of the magnetization is finite, that is,
|m|2 =∑n

i=1m
2
i = 1. Here

E = E(m) =
∫

Ω
|∇m|2dx +

∫

Ω
φ(m)dx +

∫

Rn
|∇Φ|2dx (1.2)
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is the free energy functional, and it is composed of three parts:

(i) Eex(m) =
∫
Ω|∇m|2dx is the exchange energy. It tends to alignm in the same direction

and preventsm from being discontinuous in space;

(ii) Ean(m) =
∫
Ωφ(m)dx is the anisotropy energy. φ ∈ C∞(R3), φ ≥ 0 depends on

the crystal structure of the material. It arises from the fact that the material has
some preferred magnetization direction, for example, if (1,0,0) is the preferred
magnetization direction, φ(m) = m2

2 +m
2
3 for |m| = 1;

(iii) Efi(m) =
∫
Rn |∇Φ|2dx is the energy of the stray field ∇Φ induced by m. By the

magnetostatics theory

−ΔΦ = divm in D′(Rn). (1.3)

Equation (1.1) has been widely studied. In the case β = 0, α /= 0, (1.1) corresponds
to the heat flow for harmonic maps studied in [2, 3]; if β /= 0, α /= 0 (which implies strong
damping in physics), the interested readers can refer to [2, 4–7] for mathematical theory;
while in the conservative case, that is, β /= 0, α = 0, (1.1) corresponds to Schrödinger flow
which represents conservation of angular momentum [8]. The numerical treatment to the
problem can be found in [9, 10].

Recently, the study of the theory of ferromagnetism, especially the theory on thin
film, is one of the focuses for both physicists and mathematicians. In the asymptotic regime
which is readily accessible experimentally, DeSimone and Otto, and so forth, deduced a
thin film micromagnetics model in which self-induced energy is the leading term of the
free energy functional (see [11]). The physical consequences of the model are discussed
further in [12]. The free energy functional is E(m) =

∫
R2(|ξ · m̂χΩ|2/|ξ|)dξ.We have δE/δm =

−∇(−Δ)−1/2divm (see Section 2 for detailed computation) and the Landau-Lifshitz equation
(β = 0) becomes,

∂m

∂t
− ∇(−Δ)−1/2divm +∇(−Δ)−1/2divm ·mm = 0, (1.4)

in which m = (m1, m2) : T

2 × [0,+∞) → R2 is in-plane component of the magnetization,
T

2 = R2/(2πZ)2 is a flat torus. u ·v is the inner product. To the best knowledge of ours, this is
the first time a new model has been raised. Equation (1.4) is not easy to deal with because of
lower order of differential operator with respect to x-variable and its strong nonlinear term.
Inspired by physical prototype of the problem, we approximate it by a second-order equation,

∂mε

∂t
= εΔmε +∇(−Δ)−1/2divmε + ε

∣
∣∇mε

∣
∣2mε − ∇(−Δ)−1/2divmε ·mεmε. (1.5)

Equation (1.5) is the Landau-Lifshitz equation corresponding to the free energy E(m) =
ε
∫
Ω|∇m|2dx+∫R2(|ξ · m̂χΩ|2/|ξ|)dξ, sum of exchange and self-induced energy. One difficulty in

dealing with (1.5) lies in the nonconvex constraint |mε| = 1,which is overcame by considering
a penalty approximationmimicking treatment of harmonic maps. To get existence of a unique
mild solution of the penalized equation, we first give the formal solution of the corresponding
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linear equation, which requires special tricks and techniques. In the convergence process, a
compensated compactness principle is applied.

The rest of this paper is organized as follows. Section 2 is devoted to studying (1.5).
More precisely, we first study the penalized equation. In order to do this, we consider the
corresponding linear equation and get its formal solution and well-posedness, then we get
the existence of a unique mild solution of the penalized equation using semigroup theory.
Second, we get the existence of a weak solution of (1.5) by passing to the limit in the penalized
equation. The key point in the convergence process relies on a compensated compactness
principle. In Section 3, we get existence of weak solution of (1.4) in Theorem 3.1 by passing
to the limit in (1.5) as ε → 0.

2. Approximation Equations

In this section, we always suppose that T

2 = R2/(2πZ)2 is the flat torus. We prove existence
of a weak solution of the following equations:

∂mε

∂t
= εΔmε +∇(−Δ)−1/2divmε + ε

∣
∣∇mε

∣
∣2mε − ∇(−Δ)−1/2divmε ·mεmε, in T

2 × (0,+∞),

(2.1)

mε(x, 0) = m0(x), on T

2, (2.2)

mε : T

2 × (0,∞) −→ R2,
∣
∣mε
∣
∣ = 1 a.e. in T

2. (2.3)

Denote Lmε = −εΔmε − ∇(−Δ)−1/2divmε. Note that the corresponding energy is E(m) =
ε
∫
Ω|∇m|2dx +

∫
R2(|ξ · m̂χΩ|2/|ξ|)dξ. The variation of the self-induced energy is

lim
η→ 0

∫

R2

∣
∣ξ · ̂(mχΩ + ηv)

∣
∣2 − ∣∣ξ · m̂χΩ

∣
∣2

|ξ|η dξ =
∫

R2

2iξ · m̂χΩ

|ξ|1/2
iξ · v̂
|ξ|1/2dξ

= 2
∫

R2

(
(−Δ)−1/4divmχΩ

)(
(−Δ)−1/4divv

)
dx

= 2
∫

R2
(−Δ)−1/2divmχΩ divv dx

= 2
∫

R2
− ∇(−Δ)−1/2divmχΩ ·v dx.

Equation (2.1) can be written as

∂mε

∂t
= −Lmε +

(
Lmε ·mε)mε. (2.4)

It is very easy to prove that (2.1) is equivalent to

mε × ∂mε

∂t
+mε × Lmε = 0. (2.5)
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The equivalence follows from the following.

Lemma 2.1. In the classical sense, mε is a solution of (2.1)–(2.3) if and only if mε is a solution of
(2.5).

Proof. Suppose thatmε is a solution of (2.1)–(2.3). By the vector cross product formula

a × (b × c) = (a · c)b − (a · b)c, (2.6)

we have

∂mε

∂t
= −Lmε +

(
Lmε ·mε)mε

=
(
Lmε ·mε)mε − (mε ·mε)Lmε

= mε × (mε × Lmε).

(2.7)

By the cross product ofmε and (2.7), we have

mε × ∂mε

∂t
= mε × (mε × (mε × Lmε)) = −mε × Lmε. (2.8)

This proves thatmε satisfies (2.5).
Suppose that mε is a solution of (2.5). Then by the cross product of mε and (2.5), we

obtain

mε ×
(

mε × ∂mε

∂t

)

+mε × (mε × Lmε) = 0. (2.9)

Since |mε| = 1, we havemε · (∂mε/∂t) = 0. Hence (2.9) implies

∂mε

∂t
= −Lmε +

(
Lmε ·mε)mε. (2.10)

We define a local weak solution of (2.1) as follows.

Definition 2.2. A vector-valued function mε(x, t) is said to be a local weak solution of (2.1), if
mε is defined a.e. in T

2 × (0, T) such that

(1) mε ∈ L∞(0, T ;H1(T2)) and ∂mε/∂t ∈ L2(T2 × (0, T));

(2) |mε(x, t)| = 1 a.e. in T

2 × (0, T);

(3) (2.1) holds in the sense of distribution;

(4) mε(x, 0) = m0(x) in the trace sense.
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We state our main result in this section as follows.

Theorem 2.3. For everym0(x) ∈ H1(T2) and |m0(x)| = 1, a.e. in T

2, there exists a weak solution of
(2.1)–(2.3).

To prove Theorem 2.3, we have to consider a penalized equation.

2.1. The Penalized Equation

In the spirit of [13], we first construct weak solutions to a penalized problem, where the
constraint |mε| = 1 is relaxed:

∂mk

∂t
+ Lmk − k2

(
1 − ∣∣mk

∣
∣2
)
mk = 0, in T

2 × (0,+∞), (2.11)

mk(x, 0) = m0(x), on T

2, (2.12)
∣
∣m0(x)

∣
∣ = 1, on T

2. (2.13)

Here mk : T

2 × (0,∞) → R2. In order to prove the existence of a mild solution of semilinear
system (2.11)–(2.13), we consider the corresponding linear equation.

2.1.1. The Corresponding Linear Equation

First, we consider the corresponding linear equation of (2.11)–(2.13) in the whole space:

∂m

∂t
= εΔm +∇(−Δ)−1/2divm + k2m, in R2 × (0,+∞),

m(x, 0) = m0(x), on R2,
(2.14)

where m0(x) = (m01(x), m02(x)). While dealing with linear equation (2.14), we just write m
instead ofmk unless there may be some confusion.

By Fourier transform in the x-variable, (2.14) are turned into

m̂t + ε
∣
∣ξ
∣
∣2m̂ +

(
ξ ⊗ ξ
|ξ|
)

m̂ − k2m̂ = 0, in R2 × (0,+∞),

m̂(ξ, 0) = m̂0(ξ), on R2.

(2.15)

For each fixed ξ, the problem has a unique solution

m̂(ξ, t) = e−B(ξ)t · e−A(ξ)tm̂0(ξ), (2.16)

where

A(ξ) =
1
|ξ|
(
ξ21 ξ1ξ2
ξ1ξ2 ξ22

)

, B(ξ) =
(−k2 + ε|ξ|2 0

0 −k2 + ε|ξ|2
)

. (2.17)
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So the problem has the solution

m(x, t) =
1

4π2

(
e−B(ξ)t

)∨∗(e−A(ξ)t)∨∗m0(x). (2.18)

Now the only problem left is to find the inverse Fourier transforms of e−A(ξ)t and e−B(ξ)t. First,
we need to find an orthogonal matrix O(ξ) such that O(ξ)A(ξ)Oτ(ξ) is the Jordan normal
form of A(ξ). In fact,

O(ξ) =
1
|ξ|
(
ξ2 −ξ1
ξ1 ξ2

)

. (2.19)

Now we begin to calculate the inverse Fourier transform of e−A(ξ)t

(
e−A(ξ)t)∨ =

1
2π

∫

R2
eix · ξe−A(ξ)tdξ

=
1
2π

∫

R2
eix · ξOτ(ξ)O(ξ)e−A(ξ)tOτ(ξ)O(ξ)dξ

=
1
2π

∫

R2
eix · ξOτ(ξ)

( ∞∑

n=0

(−1)ntn
n!

(O(ξ)A(ξ)Oτ(ξ))n
)

O(ξ)dξ

=
1
2π

∫

R2
eix · ξOτ(ξ)

( ∞∑

n=0

(−1)ntn
n!

(
0 0
0 |ξ|

)n)

O(ξ)dξ

=
1
2π

∫

R2
eix · ξOτ(ξ)

(

I +
∞∑

n=1

(−1)ntn
n!

(
0 0
0 |ξ|n

))

O(ξ)dξ

=
1
2π

∫

R2
eix · ξOτ(ξ)

(

I +
(
0 0
0 e−|ξ|t − 1

))

O(ξ)dξ

=
1
2π

∫

R2
eix · ξ

(

I +
1
|ξ|2
(
ξ21 ξ1ξ2
ξ1ξ2 ξ22

)
(
e−|ξ|t − 1

)
)

dξ

= δ(x)I +
1
2π

∫

R2
eix · ξ

1
|ξ|2
((

ξ21 ξ1ξ2
ξ1ξ2 ξ22

)
(
e−|ξ|t − 1

)
)

dξ.

(2.20)

Denote

Rij(x, t) =
1
2π

∫

R2
eix · ξ

(
e−|ξ|t − 1

)ξiξj

|ξ|2 dξ. (2.21)



Abstract and Applied Analysis 7

By the property of the Fourier transform, we have

Rij(x, t) = −∂xi∂xj
{

1
2π

∫

R2
eix · ξ

(
e−|ξ|t − 1

) 1
|ξ|2dξ

}

. (2.22)

Denote (1/2π)
∫
R2e

ix · ξ(e−|ξ|t − 1)(1/|ξ|2)dξ by I(x, t). Obviously, we have

I(x, 0) = 0,
∂I(x, t)
∂t

= − 1
2π

∫

R2
eix · ξe−|ξ|t

1
|ξ|dξ,

∂I(x, t)
∂t

∣
∣
∣
∣
t=0

= − 1
2π

∫

R2
eix · ξ

1
|ξ|dξ,

∂2I(x, t)
∂t2

=
1
2π

∫

R2
eix · ξe−|ξ|tdξ.

(2.23)

By [14, page 15-16], we know that

I ′′(t) =
t

(
t2 + |x|2)3/2

. (2.24)

In harmonic analysis, (2.24) is known as Poisson kernel.
Also by [14, page 107], we have I ′(0) = −1/|x|.
Hence

∂I(x, t)
∂t

=
∫ t

0

τ
(
τ2 + |x|2)3/2

dτ + I ′(0)

= −(t2 + |x|2)−1/2 + |x|−1 − |x|−1

= −(t2 + |x|2)−1/2.

(2.25)

Therefore,

I(x, t) =
∫ t

0

∂I(x, τ)
∂τ

dτ = ln |x| − ln
∣
∣
∣t +
√
|x|2 + t2

∣
∣
∣. (2.26)

We continue to compute other terms,

∂I(x, t)
∂xi

=
xi
|x|2 − xi

t2 + |x|2 + t
√
t2 + |x|2

, i = 1, 2,

Rij(x, t) = −∂
2I(x, t)
∂xi∂xj

=
2xixj
|x|4 − 2xixj + t

(
t2 + |x|2)−1/2xixj

(
t2 + |x|2 + t

√
t2 + |x|2

)2 ,

(2.27)
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in which i, j = 1, 2, i /= j

Rii(x, t) = −∂
2I(x, t)
∂x2

i

=
2x2

i

|x|4 − 2x2
i + t
(
t2 + |x|2)−1/2x2

i
(
t2 + |x|2 + t

√
t2 + |x|2

)2 − 1
|x|2 +

1

t2 + |x|2 + t
√
t2 + |x|2

, i = 1, 2.
(2.28)

Hence we obtain

(
e−A(ξ)t)∨ =

(
δ(x) + R11 R12

R21 δ(x) + R22

)

. (2.29)

By standard procedure, we can get

(
e−B(ξ)t

)∨
=
(
W(x, t) 0

0 W(x, t)

)

, (2.30)

whereW(x, t) = (2εt)−1e−(|x|
2/4εt)+k2t. Therefore,

(
m1

m2

)

=
1

4π2

(
W +W∗R11 W∗R12

W∗R21 W +W∗R22

)

∗
(
m01(x)
m02(x)

)

=
1

4π2

((
W +W∗R11

)∗m01(x) +W∗R12∗m02(x)

W∗R21∗m01(x) +
(
W +W∗R22

)∗m02(x)

)

.

(2.31)

Theorem 2.4. Suppose that m0(x) ∈ (L2(R2))2, then there exists a solution m(x, t) ∈ (C([0, T];
L2(R2)))2 of (2.14) and

lim
t→ 0

∥
∥m(x, t) −m0(x)

∥
∥
L2(R2) = 0. (2.32)

Proof. From (2.21) and (2.30), we know ŴR̂ij ∈ L∞(R2) = M2
2(R

2), so Rij∗W ∈ L2
2(R

2) and
Rij∗W∗m0 ∈ L2(R2).M2

2 is a Hörmander space (see [14], page 49-50). Moreover,

∫

R2

∣
∣Rij∗W∗m0i

∣
∣2dx

=
∫

R2

∣
∣Ŵ
∣
∣2
∣
∣R̂ij

∣
∣2
∣
∣m̂0i

∣
∣2dξ

=
∫

{ξ∈R2||ξ|≤A}

∣
∣Ŵ
∣
∣2
∣
∣R̂ij

∣
∣2
∣
∣m̂0i

∣
∣2dξ +

∫

{ξ∈R2||ξ|>A}

∣
∣Ŵ
∣
∣2
∣
∣R̂ij

∣
∣2
∣
∣m̂0i

∣
∣2dξ

= I + II.

(2.33)

Notice that |Ŵ ||R̂ij | = |e−|ξ|2t||(e−|ξ|t − 1)ξiξj/|ξ|2| ≤ C.
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For any ε > 0, choosingA large enough such that
∫
{ξ∈R2||ξ|>A}|m̂0i|2dξ < (ε/2C),we have

II < ε/2.
For above ε, there exists a t0 > 0 such that |R̂ij | < (

√
ε/‖Ŵ‖L∞‖m̂0i‖L2) as t < t0 and

|ξ| ≤ A. Hence I < (ε/2), that is

∫

R2

∣
∣Rij∗W∗m0i

∣
∣2dx −→ 0, as t −→ 0. (2.34)

By standard procedure (see [14]), we can prove that

lim
t→ 0

∥
∥
∥
∥
W( · , t)
4π2

∗m0i −m0i

∥
∥
∥
∥
L2

= 0. (2.35)

Therefore the proof is completely finished.

Remark 2.5. Consider

∂m

∂t
= εΔm +∇(−Δ)−1/2divm + k2m, in T

2 × (0,+∞),

m(x, 0) = m0(x), on T

2,
(2.36)

where m0(x + 2πn) = m0(x), ∀n ∈ Z2 and T

2 is a flat torus R2/(2πZ)2. By extending
the equations periodically with respect to variable x to the whole space, and using Fourier
transform, we obtain

(
m1

m2

)

=

⎛

⎝

(
W̃ + ˜W∗R11

)∗m01(x) + ˜W∗R12∗m02(x)

˜W∗R21∗m01(x) +
(
W̃ + ˜W∗R22

)∗m02(x)

⎞

⎠ , (2.37)

in which

W̃(x, t) =
∑

n∈Z2

W
(
x + 2πn, t

)
, ˜W∗Rij =

∑

n∈Z2

(
W∗Rij

)(
x + 2πn, t

)
, i, j = 1, 2. (2.38)

2.1.2. Existence of a Unique Mild Solution of the Penalized Equation

First, let us recall a classical theorem in the theory of semigroup.

Theorem 2.6 (see [15]). Let N(u) : X → X be locally Lipschitz continuous in u. If L is the
infinitesimal generator of a C0 semigroup S(t) on X, then for every u0(x) ∈ X there is a T ≤ ∞ such
that the initial value problem

∂u

∂t
= Lu +N(u), t ∈ [0,∞),

u(x, 0) = u0(x),
(2.39)

has a unique mild solution u on [0, T).Moreover, if T <∞, then limt→ T‖u(t)‖ = ∞.
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Applying Theorem 2.6 to (2.11)–(2.13), we get the following theorem.

Theorem 2.7. For everym0 ∈ H1(T2), there exists a unique mild solutionmk of (2.11)–(2.13).

Proof. Here Lmk = εΔmk + ∇(−Δ)−1/2divmk + k2mk,N(mk) = −k2|mk|2mk. By Theorem 2.4
and Remark 2.5, we know that L is the infinitesimal generator of a C0 semigroup onH1(T2).
Next, we want to check the inequality

‖N(u) −N(v)‖H1 ≤ C(‖u‖2
H1 + ‖v‖2

H1

)‖u − v‖H1 . (2.40)

Letting B(u, v,w) = k2uvw,we have

N(u) −N(v) = B(u − v, u, u) + B(v, u − v, u) + B(v, v, u − v). (2.41)

So it is sufficient to prove

‖B(u, v,w)‖H1 ≤ C(‖u‖2
H1 + ‖v‖2

H1

)‖w‖H1 . (2.42)

This last result is an easy consequence of Sobolev embedding theorem. Therefore,
Theorem 2.6 gives us the desired result.

2.2. Existence of Weak Solution of Approximate Equation (2.1)–(2.3)

In this section, we establish our main results about the approximate equations (2.1)–(2.3) by
passing to the limit in the penalized equation (2.11) as k → ∞.

Proof of Theorem 2.3. Multiplying (2.11)with ∂mk/∂t, and integrating over T

2×(0, T),we have

ε

2

∫

T2

∣
∣∇mk

∣
∣2dx +

k2

4

∫

T2

(∣
∣mk
∣
∣2 − 1

)2
dx +

∫T

0

∫

T2

∣
∣
∣
∣
∂mk

∂t

∣
∣
∣
∣

2

dx dt

≤
∫

T2

∣
∣(−Δ)−1/4divm0

∣
∣2

2
dx +

ε

2

∫

T2

∣
∣∇m0

∣
∣2dx.

(2.43)

We now take the limit as k goes to infinite: from (2.43), we deduce that

mk is bounded in L∞(0, T ;H1(
T

2)),

∂mk

∂t
is bounded in L2(0, T ;L2(

T

2)),
∣
∣mk
∣
∣2 − 1 −→ 0, in L∞(0, T ;L2(

T

2)).

(2.44)
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Therefore, up to a subsequence, we have

mk ⇀ mε in L∞(0, T ;H1(
T

2)) weak∗, (2.45)

∂mk

∂t
⇀

∂mε

∂t
in L2(0, T ;L2(

T

2)) weakly, (2.46)

mk −→ mε in L2(0, T ;L2(
T

2)) strongly, (2.47)
∣
∣mk
∣
∣2 − 1 −→ 0 in L∞(0, T ;L2(

T

2)) strongly and a.e. in T

2 × (0, T), (2.48)

and |mε| = 1 a.e. in T

2 × (0, T).
In order to pass to the limit in (2.11), let Φ be in (C∞(T2 × (0, T)))3, and let the test

function ψ = mk ×Φ, there holds

∫T

0

∫

T2

(

mk × ∂mk

∂t

)

·Φdx dt +
∫T

0

∫

T2

(
mk × Lmk) ·Φdx dt = 0. (2.49)

From (2.45), (2.46), and (2.47), as k goes to infinite, we have

∫T

0

∫

T2
mk × ∂mk

∂t
·Φdx dt −→

∫T

0

∫

T2
mε × ∂mε

∂t
·Φdx dt,

∫T

0

∫

T2
mk × ∇(−Δ)−1/2divmk ·Φdx dt −→

∫T

0

∫

T2
mε × ∇(−Δ)−1/2divmε ·Φdx dt,

∫T

0

∫

T2
mk × εΔmk ·Φdx dt = −

∫T

0

∫

T2
mk × ε∇mk · ∇Φdx dt

−→ −
∫T

0

∫

T2
mε × ε∇mε · ∇Φdx dt.

(2.50)

Namely, (2.49) is convergent to

∫T

0

∫

T2
mε × ∂mε

∂t
·Φdx dt +

∫T

0

∫

T2
mε × (−∇(−Δ)−1/2divmε) ·Φdx dt

−
∫T

0

∫

T2
mε × ε∇mε · ∇Φdx dt = 0.

(2.51)

Hence by Lemma 2.1, we know that (2.1)–(2.3) has a weak solution.

Remark 2.8. From (2.43) and Theorem 2.6, we know that the unique mild solution of the
penalized equation (2.11) globally exists.

3. Existence of Weak Solution of (1.4)

From above section, we know that for each fixed ε > 0, (2.1)–(2.3) admit weak solutions
mε ∈ L∞(0, T ;H1(T2)). In this section, we will prove that there exists a subsequence of mε
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(still denoted bymε) strongly converging tom in L2(0, T ;L2(T2)),which is the weak solution
of (1.4). More precisely, we state our main result of this section in the following theorem.

Theorem 3.1. Suppose thatm0(x) ∈ H1(T2), |m0(x)| = 1, a.e. in T

2, and divm0 = 0, there exists a
weak solutionm(x, t) ∈ L∞(0, T ;H1(T2)) and (∂m/∂t) ∈ L2(0, T ;L2(T2)) of (1.4).

Proof. Form (2.43), we have

ε

2

∫

Ω

∣
∣∇mk

∣
∣2dx +

∫T

0

∫

Ω

∣
∣
∣
∣
∂mk

∂t

∣
∣
∣
∣

2

dx dt ≤ ε

2

∫

Ω

∣
∣∇m0

∣
∣2dx. (3.1)

Passing to the limit as k → ∞ and taking (2.45), (2.46) into consideration, we have

ε

2

∫

Ω

∣
∣∇mε

∣
∣2dx +

∫T

0

∫

Ω

∣
∣
∣
∣
∂mε

∂t

∣
∣
∣
∣

2

dx dt ≤ ε

2

∫

Ω

∣
∣∇m0

∣
∣2dx. (3.2)

So we conclude that mε is bounded in L∞(0, T ;H1(Ω)), and ∂mε/∂t is bounded in
L2(0, T ;L2(Ω)).

Therefore, up to subsequence,

mε ⇀ m in L∞(0, T ;H1(
T

2)) weak∗,

∂mε

∂t
⇀

∂m

∂t
in L2(0, T ;L2(

T

2)) weakly.
(3.3)

By [16, Chapter 1, Theorem 5.1, pages 56–60], we know that

mε → m strongly inL2(
T

2 × (0, T)), a.e. in T

2 × (0, T). (3.4)

Passing to the limit as ε goes to zero in (2.51), we have,

∫T

0

∫

T2
mε × ∂mε

∂t
·Φdx dt −→

∫T

0

∫

T2
m × ∂m

∂t
·Φdx dt,

∫T

0

∫

T2
mε × ∇(−Δ)−1/2divmε ·Φdx dt −→

∫T

0

∫

T2
m × ∇(−Δ)−1/2divm ·Φdx dt,

∫T

0

∫

T2
mε × ε∇mε · ∇Φdx dt −→ 0.

(3.5)

That is to say,m is the weak solution of

m × ∂m

∂t
−m × ∇(−Δ)−1/2divm = 0. (3.6)

By an argument analogous to Lemma 2.1, (3.6) is equivalent to (1.4).
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ferromagnetic films,” Proceedings of the Royal Society of London. Series A, vol. 457, no. 2016, pp. 2983–
2991, 2001.

[13] F. Alouges and A. Soyeur, “On global weak solutions for Landau-Lifshitz equations: existence and
nonuniqueness,” Nonlinear Analysis: Theory, Methods & Applications, vol. 18, no. 11, pp. 1071–1084,
1992.

[14] C. X. Miao,Harmonic Analysis and Its Applications to Partial Differential Equations, Science Press, Beijing,
China, 2nd edition, 1999.

[15] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44 ofApplied
Mathematical Sciences, Springer, New York, NY, USA, 1983.
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