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1. Introduction

Let E be a Banach space and let C be a nonempty, closed, and convex subset of E. LetA : C →
E∗ be an operator. The classical variational inequality problem [1] forA is to find x∗ ∈ C such
that

〈
Ax∗, y − x∗〉 ≥ 0, ∀y ∈ C, (1.1)

where E∗ denotes the dual space of E and 〈·, ·〉 the generalized duality pairing between E
and E∗. The set of all solutions of (1.1) is denoted by V I(A,C). Such a problem is connected
with the convex minimization problem, the complementarity, the problem of finding a point
x∗ ∈ E satisfying 0 = Ax∗, and so on. First, we recall that a mapping A : C → E∗ is said to be
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(i) monotone if 〈Ax −Ay, x − y〉 ≥ 0, for all x, y ∈ C,

(ii) α-inverse-strongly monotone if there exists a positive real number α such that

〈
Ax −Ay, x − y

〉 ≥ α
∥
∥Ax −Ay

∥
∥2

, ∀x, y ∈ C. (1.2)

In this paper, we assume that the operator A satisfies the following conditions:

(C1) A is α-inverse-strongly monotone,

(C2) ‖Ay‖ ≤ ‖Ay −Au‖ for all y ∈ C and u ∈ V I(A,C).

Let J be the normalized duality mapping from E into 2E
∗
given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x‖ = ‖x∗‖}, ∀x ∈ E. (1.3)

It is well known that if E∗ is uniformly convex, then J is uniformly continuous on bounded
subsets of E. Some properties of the duality mapping are given in [2–4].

Recall that a mapping T : C → C is said to be nonexpansive if

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, ∀x, y ∈ C. (1.4)

If C is a nonempty closed convex subset of a Hilbert space H and PC : H → C is the metric
projection of H onto C, then PC is a nonexpansive mapping. This fact actually characterizes
Hilbert spaces and, consequently, it is not available in more general Banach spaces. In this
connection, Alber [5] recently introduced a generalized projection operator C in a Banach
space E which is an analogue of the metric projection in Hilbert spaces.

Consider the functional φ : E × E → R defined by

φ
(
y, x

)
=
∥∥y

∥∥2 − 2
〈
y, Jx

〉
+ ‖x‖2 (1.5)

for all x, y ∈ E, where J is the normalized duality mapping from E to E∗. Observe that,
in a Hilbert space H, (1.5) reduces to φ(y, x) = ‖x − y‖2 for all x, y ∈ H. The generalized
projection ΠC : E → C is a mapping that assigns to an arbitrary point x ∈ E the minimum
point of the functional φ(y, x), that is,ΠCx = x∗, where x∗ is the solution to the minimization
problem:

φ(x∗, x) = inf
y∈C

φ
(
y, x

)
. (1.6)

The existence and uniqueness of the operatorΠC follows from the properties of the functional
φ(y, x) and strict monotonicity of the mapping J (see, e.g., [2, 5–7]). In Hilbert spaces, ΠC =
PC, where PC is the metric projection. It is obvious from the definition of the function φ that

(1) (‖y‖ − ‖x‖)2 � φ(y, x) � (‖y‖ + ‖x‖)2 for all x, y ∈ E,

(2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉 for all x, y, z ∈ E,

(3) φ(x, y) = 〈x, Jx − Jy〉 + 〈y − x, Jy〉 � ‖x‖‖Jx − Jy‖ + ‖y − x‖‖y‖ for all x, y ∈ E,
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(4) if E is a reflexive, strictly convex, and smooth Banach space, then for all x, y ∈ E,

φ
(
x, y

)
= 0 iff x = y. (1.7)

For more details see [2, 3]. Let C be a closed convex subset of E, and let T be a mapping from
C into itself. We denote by F(T) the set of fixed point of T . A point p in C is said to be an
asymptotic fixed point of T [8] if C contains a sequence {xn}which converges weakly to p such
that limn→∞‖xn − Txn‖ = 0. The set of asymptotic fixed points of T will be denoted by F̂(T).
A mapping T from C into itself is called nonexpansive if ‖Tx − Ty‖ � ‖x − y‖ for all x, y ∈ C

and relatively nonexpansive [9–11] if F̂(T) = F(T) and φ(p, Tx) � φ(p, x) for all x ∈ C
and p ∈ F(T). The asymptotic behavior of relatively nonexpansive mappings which was
studied in [9–11] is of special interest in the convergence analysis of feasibility, optimization,
and equilibrium methods for solving the problems of image processing, rational resource
allocation, and optimal control. The most typical examples in this regard are the Bregman
projections and the Yosida type operators which are the cornerstones of the common fixed
point and optimization algorithms discussed in [12] (see also the references therein).

The mapping T is said to be φ-nonexpansive if φ(Tx, Ty) ≤ φ(x, y) for all x, y ∈ C. T is
said to be quasi-φ-nonexpansive if F(T)/= ∅ and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F(T).

Remark 1.1. The class of quasi-φ-nonexpansive is more general than the class of relatively
nonexpansive mappings [9, 10, 13–15]which requires the strong restriction F̂(T) = F(T).

Next, we give some examples which are closed quasi-φ-nonexpansive [16].

Example 1.2. (1) Let E be a uniformly smooth and strictly convex Banach space and let A
be a maximal monotone mapping from E to E such that its zero set A−10 is nonempty. The
resolvent Jr = (J + rA)−1J is a closed quasi-φ-nonexpansive mapping from E onto D(A) and
F(Jr) = A−10.

(2) Let ΠC be the generalized projection from a smooth, strictly convex, and reflexive
Banach space E onto a nonempty closed convex subset C of E. ThenΠC is a closed and quasi-
φ-nonexpansive mapping from E onto C with F(ΠC) = C.

Iiduka and Takahashi [17] introduced the following algorithm for finding a solution
of the variational inequality for an operator A that satisfies conditions (C1)-(C2) in a 2
uniformly convex and uniformly smooth Banach space E. For an initial point x0 = x ∈ C,
define a sequence {xn} by

xn+1 = ΠCJ
−1(Jxn − λnxn), ∀n ≥ 0. (1.8)

where J is the duality mapping on E, and ΠC is the generalized projection of E onto C.
Assume that λn ∈ [a, b] for some a, b with 0 < a < b < c2α/2 where 1/c is the 2
uniformly convexity constant of E. They proved that if J is weakly sequentially continuous,
then the sequence {xn} converges weakly to some element z in V I(A,C) where z =
limn→∞ΠV I(A,C)(xn).
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The problem of finding a common element of the set of the variational inequalities
for monotone mappings in the framework of Hilbert spaces and Banach spaces has been
intensively studied by many authors; see, for instance, [18–20] and the references cited
therein.

On the other hand, one classical way to study nonexpansive mappings is to use
contractions to approximate a nonexpansive mapping (see [21]). More precisely, let t ∈ (0, 1)
and define a contraction Gt : C → C by Gtx = tx0 + (1 − t)Tx for all x ∈ C, where x0 ∈ C is
a fixed point in C. Applying Banach’s Contraction Principle, there exists a unique fixed point
xt of Gt in C. It is unclear, in general, what is the behavior of xt as t → 0 even if T has a fixed
point. However, in the case of T having a fixed point, Browder [21] proved that the net {xt}
defined by xt = tx0+(1− t)Txt for all t ∈ (0, 1) converges strongly to an element of F(T)which
is nearest to x0 in a real Hilbert space. Motivated by Browder [21], Halpern [22] proposed the
following iteration process:

x0 ∈ C, xn+1 = αnx0 + (1 − αn)Txn, n � 0 (1.9)

and proved the following theorem.

Theorem H. Let C be a bounded closed convex subset of a Hilbert space H and let T be a
nonexpansive mapping on C. Define a real sequence {αn} in [0, 1] by αn = n−θ, 0 < θ < 1. Define a
sequence {xn} by (1.9). Then {xn} converges strongly to the element of F(T) which is the nearest to
u.

Recently, Martinez-Yanes and Xu [23] have adapted Nakajo and Takahashi’s [24] idea
to modify the process (1.9) for a single nonexpansive mapping T in a Hilbert space H:

x0 = x ∈ C chosen arbitrary,

yn = αnx0 + (1 − αn)Txn,

Cn =
{
v ∈ C :

∥∥yn − v
∥∥2 � ‖xn − v‖2 + αn

(
‖x0‖2 + 2〈xn − x0, v〉

)}
,

Qn = {v ∈ C : 〈xn − v, x0 − xn〉 � 0},

xn+1 = PCn∩Qnx0,

(1.10)

where PC denotes the metric projection ofH onto a closed convex subsetC ofH. They proved
that if {αn} ⊂ (0, 1) and limn→∞αn = 0, then the sequence {xn} generated by (1.10) converges
strongly to PF(T)x.

In [15] (see also [13]), Qin and Su improved the result of Martinez-Yanes and Xu [23]
fromHilbert spaces to Banach spaces. To be more precise, they proved the following theorem.

TheoremQS. Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty
closed convex subset of E, and let T : C → C be a relatively nonexpansive mapping. Assume that
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{αn} is a sequence in (0, 1) such that limn→∞αn = 0. Define a sequence {xn} in C by the following
algorithm:

x0 = x ∈ C chosen arbitrary,

yn = J−1(αnJx0 + (1 − αn)JTxn),

Cn =
{
v ∈ C : φ

(
v, yn

) ≤ αnφ
(
v, yn

)
+ (1 − αn)φ(v, xn)

}
,

Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 � 0},

xn+1 = ΠCn∩Qnx0,

(1.11)

where J is the single-valued duality mapping on E. If F(T) is nonempty, then {xn} converges to
ΠF(T)x0.

In [14], Plubtieng and Ungchittrakool introduced the following hybrid projection
algorithm for a pair of relatively nonexpansive mappings:

x0 = x ∈ C chosen arbitrary,

zn = J−1
(
β
(1)
n Jxn + β

(2)
n JTxn + β

(3)
n JSxn

)
,

yn = J−1(αnJx0 + (1 − αn)Jzn),

Hn =
{
z ∈ C : φ

(
z, yn

)
� φ(z, xn) + αn

(
‖x0‖2 + 2〈z, Jxn − Jx〉

)}
,

Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 � 0},

xn+1 = PHn∩Wnx, n = 0, 1, 2, . . . ,

(1.12)

where {αn}, {β(1)n }, {β(2)n }, and {β(3)n } are sequences in [0, 1] satisfying β
(1)
n + β

(2)
n + β

(3)
n = 1

for all n ∈ N ∪ {0} and T, S are relatively nonexpansive mappings and J is the single-valued
duality mapping on E. They proved, under appropriate conditions on the parameters, that
the sequence {xn} generated by (1.12) converges strongly to a common fixed point of T and
S.

Very recently, Qin et al. [25] introduced a new hybrid projection algorithm for
two families of quasi-φ-nonexpansive mappings which are more general than relatively
nonexpansive mappings to have strong convergence theorems in the framework of Banach
spaces. To be more precise, they proved the following theorem.

Theorem QCKZ. Let E be a uniformly convex and uniformly smooth Banach space, and let C be
a nonempty closed convex subset of E. Let {Si}i∈I and {Ti}i∈I be two families of closed quasi-φ-
nonexpansive mappings of C into itself with F :=

⋂
i∈IF(Ti) ∩

⋂
i∈IF(Si) being nonempty, where
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I is an index set. Let the sequence {xn} be generated by the following manner:

x0 = x ∈ C chosen arbitrary,

zn,i = J−1
(
β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSixn

)
,

yn,i = J−1(αn,iJx0 + (1 − αn,i)Jzn,i),

Cn,i =
{
u ∈ C : φ

(
u, yn,i

)
� φ(u, xn) + αn,i

(
‖x0‖2 + 2〈u, Jxn − Jxn〉

)}
,

Cn =
⋂

i∈I
Cn,i,

Q0 = C,

Qn = {u ∈ Qn−1 : 〈xn − u, Jx0 − Jxn〉 ≥ 0},
xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, . . . ,

(1.13)

where J is the duality mapping on E, and {αn,i} and {β(i)n,i} (i = 1, 2, 3, . . .) are sequences in (0, 1)
satisfying

(i) β(1)n,i + β
(2)
n,i + β

(3)
n,i = 1 for all i ∈ I,

(ii) limn→∞αn,i = 0 for all i ∈ I,

(iii) lim infn→∞β
(2)
n,i β

(3)
n,i > 0 and limn→∞β

(1)
n,i = 0 for all i ∈ I.

Then the sequence {xn} converges strongly toΠFx0.

On the other hand, recently, Takahashi et al. [26] introduced the following hybrid
method (1.14)which is different fromNakajo and Takahashi’s [24] hybrid method. It is called
the shrinking projection method. They obtained the following result.

Theorem NT. Let C be a nonempty closed convex subset of a Hilbert space H. Let T be a
nonexpansive mapping of C into H such that F(T)/= ∅ and let x0 ∈ H. For C1 = C and x1 = PC1x0,
define a sequence {xn} of C as follows:

yn = αnxn + (1 − αn)Txn,

Cn+1 =
{
z ∈ Cn :

∥∥yn − z
∥∥ ≤ ‖xn − z‖},

xn+1 = PCn+1x0, ∀n ≥ 0,

(1.14)

where 0 ≤ αn < a < 1 for all n ∈ N. Then {xn} converges strongly to z0 = PF(T)(x0).

Motivated and inspired by Iiduka and Takahashi [17], Martinez-Yanes and Xu [23],
Matsushita and Takahashi [13], Plubtieng and Ungchittrakool [14], Qin and Su [15], Qin et al.
[25], and Takahashi et al. [26], we introduce a new hybrid projection algorithm basing on the
shrinking projection method for two families of quasi-φ-nonexpansive mappings which are
more general than relatively nonexpansive mappings to have strong convergence theorems
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for approximating the common element of the set of common fixed points of two families of
quasi-φ-nonexpansive mappings and the set of solutions of the variational inequality for an
inverse-strongly monotone operator in the framework of Banach spaces. As applications, the
problem of finding a zero point of an inverse-strongly monotone operator and the problem
of finding a solution of the complementarity problem are studied. Our results improve and
extend the corresponding results announced by recent results.

2. Preliminaries

Let E be a real Banach space with duality mapping J . We denote strong convergence of {xn}
to x by xn → x and weak convergence by xn ⇀ x. A multivalued operator T : E → 2E

∗

with domain D(T) and range R(T) is said to be monotone if 〈x1 − x2, y1 − y2〉 ≥ 0 for each
xi ∈ D(T) and yi ∈ Txi, i = 1, 2. A monotone operator T is said to be maximal if its graph
G(T) = {(x, y) : y ∈ Tx} is not properly contained in the graph of any other monotone
operators.

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E with
‖x‖ = ‖y‖ = 1 and x /=y. It is said to be uniformly convex if limn→∞‖xn − yn‖ = 0 for any
two sequences {xn}, {yn} in E such that ‖xn‖ = ‖yn‖ = 1 and limn→∞‖(xn + yn)/2‖ = 1. Let
U = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. Then the Banach space E is said to be smooth
provided that

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.1)

exists for each x, y ∈ U. It is also said to be uniformly smooth if the limit is attained uniformly
for x, y ∈ U. It is well know that if E is smooth, then the duality mapping J is single valued.
It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm continuous
on bounded subset of E. Some properties of the duality mapping are given in [2, 3, 27–29].
We define the function δ : [0, 2] → [0, 1] which is called the modulus of convexity of E as
follows:

δ(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : x, y ∈ C, ‖x‖ =
∥
∥y

∥∥ = 1,
∥∥x − y

∥∥ ≥ ε

}
. (2.2)

Then E is said to be 2 uniformly convex if there exists a constant c > 0 such that constant
δ(ε) > cε2 for all ε ∈ (0, 2]. Constant 1/c is called the 2 uniformly convexity constant of E. A
2 uniformly convex Banach space is uniformly convex; see [30, 31] for more details. We know
the following lemma of 2 uniformly convex Banach spaces.

Lemma 2.1 (see [32, 33]). Let E be a 2 uniformly convex Banach, then for all x, y from any bounded
set of E and jx ∈ Jx, jy ∈ Jy,

〈
x − y, jx − jy

〉 ≥ c2

2
∥∥x − y

∥∥2
, (2.3)

where 1/c is the 2 uniformly convexity constant of E.
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Now we present some definitions and lemmas which will be applied in the proof of
the main result in the next section.

Lemma 2.2 (Kamimura and Takahashi [7]). Let E be a uniformly convex and smooth Banach
space and let {yn}, {zn} be two sequences of E such that either {yn} or {zn} is bounded. If
limn→∞φ(yn, zn) = 0, then limn→∞‖yn − zn‖ = 0.

Lemma 2.3 (Alber [5]). Let C be a nonempty closed convex subset of a smooth Banach space E and
x ∈ E. Then, x0 = ΠCx if and only if 〈x0 − y, Jx − Jx0〉 � 0 for any y ∈ C.

Lemma 2.4 (Alber [5]). Let E be a reflexive, strictly convex, and smooth Banach space, let C be a
nonempty closed convex subset of E, and let x ∈ E. Then

φ
(
y,ΠCx

)
+ φ(ΠCx, x) � φ

(
y, x

)
(2.4)

for all y ∈ C.

Lemma 2.5 (Qin et al. [25]). Let E be a uniformly convex and smooth Banach space, letC be a closed
convex subset of E, and let T be a closed quasi-φ-nonexpansive mapping of C into itself. Then F(T) is
a closed convex subset of C.

Let E be a reflexive strictly convex, smooth, and uniformly Banach space and the
duality mapping from E to E∗. Then J−1 is also single valued, one to one, and surjective, and
it is the duality mapping from E∗ to E. We need the following mapping V which is studied in
Alber [5]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x‖2 (2.5)

for all x ∈ E and x∗ ∈ E∗. Obviously, V (x, x∗) = φ(x, J−1(x∗)). We know the following lemma.

Lemma 2.6 (Kamimura and Takahashi [7]). Let E be a reflexive, strictly convex, and smooth
Banach space, and let V be as in (2.5). Then

V (x, x∗) + 2
〈
J−1(x∗) − x, y∗

〉
≤ V

(
x, x∗ + y∗) (2.6)

for all x ∈ E and x∗, y∗ ∈ E∗.

Lemma 2.7 (see [34, Lemma 1.4]). Let E be a uniformly convex Banach space and Br(0) = {x ∈
E : ‖x‖ � r} be a closed ball of E. Then there exists a continuous strictly increasing convex function
g : [0,∞) → [0,∞) with g(0) = 0 such that

∥∥λx + μy + γz
∥∥2 � λ‖x‖2 + μ

∥∥y
∥∥2 + γ‖z‖2 − λμg

(∥∥x − y
∥∥) (2.7)

for all x, y, z ∈ Br(0) and λ, μ, γ ∈ [0, 1] with λ + μ + γ = 1.
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An operatorA ofC into E∗ is said to be hemicontinuous if, for all x, y ∈ C, the mapping
F of [0, 1) into E∗ defined by F(t) = A(tx + (1 − t)y) is continuous with respect to the weak∗

topology of E∗. We denote by NC(v) the normal cone for C at a point v ∈ C, that is,

NC(v) =
{
x∗ ∈ E∗ :

〈
v − y, x∗〉 ≥ 0, ∀y ∈ C

}
. (2.8)

Lemma 2.8 (see [35]). Let C be a nonempty closed convex subset of a Banach space E and A a
monotone, hemicontinuous operator of C into E∗. Let T ⊂ E × E∗ be an operator defined as follows:

Tv =

{
Av +NC(v), v ∈ C,

∅, v /∈C.
(2.9)

Then T is maximal monotone and T−10 = V I(A,C).

3. Main Results

In this section, we prove strong convergence theorem which is our main result.

Theorem 3.1. Let E be a 2 uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let A be an operator of C into E∗ satisfying (C1) and (C2), and
let {Si}i∈I and {Ti}i∈I be two families of closed quasi-φ-nonexpansive mappings of C into itself with
F :=

⋂
i∈IF(Ti) ∩

⋂
i∈IF(Si) ∩ V I(A,C) being nonempty, where I is an index set. Let {xn} be a

sequence generated by the following manner:

x0 ∈ C chosen arbitrary,

C1,i = C, C1 =
∞⋂

i=1

C1,i, x1 = ΠC1(x0) ∀i ∈ I,

wn,i = ΠCJ
−1(Jxn − λn,iAxn),

zn,i = J−1
(
β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

)
,

yn,i = J−1(αn,iJx0 + (1 − αn,i)Jzn,i),

Cn+1,i =
{
u ∈ Cn,i : φ

(
u, yn,i

)
� φ(u, xn) + αn,i

(
‖x0‖2 + 2〈u, Jxn − Jx0〉

)}
,

Cn+1 =
⋂

i∈I
Cn+1,i,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(3.1)

where J is the duality mapping on E, and {λn,i}, {αn,i}, and {β(j)n,i} (j = 1, 2, 3) are sequences in (0, 1)
satisfying the following conditions:

(i) limn→∞αn,i = 0 for all i ∈ I;

(ii) for all i ∈ I, {λn,i} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, where 1/c is the 2
uniformly convexity constant of E;
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(iii) β(1)n,i + β
(2)
n,i + β

(3)
n,i = 1 for all i ∈ I and if one of the following conditions is satisfied:

(a) lim infn→∞β
(1)
n,i β

(l)
n,i > 0 for all l = 2, 3 and for all i ∈ I,

(b) lim infn→∞β
(2)
n,i β

(3)
n,i > 0 and limn→∞β

(1)
n,i = 0 for all i ∈ I.

Then the sequence {xn} converges strongly to ΠFx0, where ΠF is the generalized projection from C
onto F.

Proof. We divide the proof into six steps.

Step 1. Show that ΠFx0 and ΠCn+1x0 are well defined.
To this end, we prove first that F is closed and convex. It is obvious that V I(A,C) is a

closed convex subset of C. By Lemma 2.5, we know that
⋂

i∈IF(Ti) ∩
⋂

i∈IF(Si) is closed and
convex. Hence F :=

⋂
i∈IF(Ti)∩

⋂
i∈IF(Si)∩V I(A,C) is a nonempty, closed, and convex subset

of C. Consequently, ΠFx0 is well defined.
We next show thatCn+1 is convex for each n ≥ 0. From the definition ofCn, it is obvious

that Cn is closed for each n ≥ 0. Notice that

Cn+1,i =
{
u ∈ Cn,i : φ

(
u, yn,i

) ≤ φ(u, xn) + αn,i

(
‖x0‖2 + 2〈u, Jxn − Jx0〉

)}
(3.2)

is equivalent to

C′
n+1,i =

{
u ∈ Cn,i : 2

〈
u, Jxn − Jyn,i

〉 − 2αn,i〈u, Jxn − Jx0〉 ≤ ‖xn‖2 −
∥∥yn,i

∥∥2 + αn,i‖x0‖2
}
.

(3.3)

It is easy to see that C′
n+1,i is closed and convex for all n ≥ 0 and i ∈ I. Therefore, Cn+1 =⋂

i∈ICn+1,i =
⋂

i∈IC
′
n+1,i is closed and convex for every n ≥ 0. This shows that ΠCn+1x0 is well

defined.

Step 2. Show that F :=
⋂

i∈IF(Ti) ∩
⋂

i∈IF(Si) ∩ V I(A,C) ⊂ Cn for all n ≥ 0.
Put vn,i = J−1(Jxn − λn,iAxn). We have to show that F ⊂ Cn for all n ≥ 0. For all u ∈ F,

we know from Lemmas 2.4 and 2.6 that

φ(u,wn,i) = φ(u,ΠCvn,i)

≤ φ(u, vn,i)

= φ
(
u, J−1(Jxn − λn,iAxn)

)

= V (u, Jxn − λn,iAxn)

≤ V (u, (Jxn − λn,iAxn) + λn,iAxn) − 2
〈
J−1(Jxn − λn,iAxn) − u, λn,iAxn

〉

= V (u, Jxn) − 2λn,i〈vn,i − u,Axn〉
= φ(u, xn) − 2λn,i〈xn − u,Axn〉 + 2〈vn,i − xn,−λn,iAxn〉.

(3.4)
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Since u ∈ V I(A,C) and from condition (C1), we have

−2λn,i〈xn − u,Axn〉 = −2λn,i〈xn − u,Axn −Au〉 − 2λn,i〈xn − u,Au〉

≤ −2αλn,i‖Axn −Au‖2.
(3.5)

From Lemma 2.1, and condition (C2), we also have

2〈vn,i − xn,−λn,iAxn〉 = 2
〈
J−1(Jxn − λn,iAxn) − J−1(Jxn),−λn,iAxn

〉

≤ 2
∥
∥
∥J−1(Jxn − λn,iAxn) − J−1(Jxn)

∥
∥
∥‖λn,iAxn‖

≤ 4
c2

∥∥∥JJ−1(Jxn − λn,iAxn) − JJ−1(Jxn)
∥∥∥‖λn,iAxn‖

=
4
c2
‖(Jxn − λn,iAxn) − (Jxn)‖‖λn,iAxn‖

≤ 4
c2
λ2n,i‖Axn‖2

≤ 4
c2
λ2n,i‖Axn −Au‖2.

(3.6)

Subtituting (3.6) and (3.5) into (3.4) and using the assumption (ii), we obtain

φ(u,wn,i) ≤ φ(u, xn) − 2αλn,i‖Axn −Au‖2 + 4
c2
λ2n,i‖Axn −Au‖2.

≤ φ(u, xn) + 2λn,i
(

2
c2
λn,i − α

)
‖Axn −Au‖2

≤ φ(u, xn).

(3.7)

It follows from the convexity of ‖ · ‖2 and (3.7) that

φ(u, zn,i) = φ
(
u, J−1

(
β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

))

= ‖u‖2 − 2
〈
u, β

(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

〉

+
∥∥∥β(1)n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

∥∥∥
2

≤ ‖u‖2 − 2β(1)n,i 〈u, Jxn〉 − 2β(2)n,i 〈u, JTixn〉 − 2β(2)n,i 〈u, JSiwn,i〉

+ β
(1)
n,i ‖Jxn‖2 + β

(2)
n,i ‖JTixn‖2 + β

(3)
n,i ‖JSiwn,i‖2
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= β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, Tixn) + β

(3)
n,i φ(u, Siwn,i)

≤ β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, xn) + β

(3)
n,i φ(u,wn,i)

≤ φ(u, xn),

(3.8)

and hence

φ
(
u, yn,i

)
= φ

(
u, J−1(αn,iJx0 + (1 − αn,i)Jzn,i)

)

= ‖u‖2 − 2〈u, αn,iJx0 + (1 − αn,i)Jzn,i〉 + ‖αn,iJx0 + (1 − αn,i)Jzn,i‖2

≤ ‖u‖2 − 2αn,i〈u, Jx0〉 − 2(1 − αn,i)〈u, Jzn,i〉 + αn,i‖x0‖2 + (1 − αn,i)‖zn,i‖2

≤ αn,iφ(u, x0) + (1 − αn,i)φ(u, zn,i)

≤ αn,iφ(u, x0) + (1 − αn,i)φ(u, xn)

= φ(u, xn) + αn,i

[
φ(u, x0) − φ(u, xn)

]

≤ φ(u, xn) + αn,i

(
‖x0‖2 + 2〈u, Jxn − Jx0〉

)
.

(3.9)

This show that u ∈ Cn+1,i for each i ∈ I. That is, u ∈ Cn =
⋂

i∈ICn,i for all n ≥ 0. This show that

F :=
⋂

i∈I
F(Ti) ∩

⋂

i∈I
F(Si) ∩ V I(A,C) ⊂ Cn, ∀n ≥ 0. (3.10)

Step 3. Show that limn→∞φ(xn, x0) exists.
We note that Cn+1,i ⊂ Cn,i for all n ≥ 0 and for all i ∈ I. Hence

Cn+1 =
⋂

i∈I
Cn+1,i ⊂ Cn =

⋂

i∈I
Cn,i. (3.11)

From xn+1 = ΠCn+1x0 ∈ Cn+1 ⊂ Cn and xn = ΠCnx0 ∈ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 1. (3.12)

This shows that {φ(xn, x0)} is nondecreasing. On the other hand, from Lemma 2.4, we have

φ(xn, x0) = φ(ΠCnx0, x0) ≤ φ(w,x0) − φ(w,xn) ≤ φ(w,x0) (3.13)

for each w ∈ F ⊂ Cn. This show that {φ(xn, x0)} is bounded. Consequently, limn→∞φ(xn, x0)
exists.

Step 4. Show that {xn} is a convergent sequence in C.
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Since xm = ΠCmx0 ∈ Cn for any m ≥ n. It follows that

φ(xm, xn) = φ(xm,ΠCnx0)

≤ φ(xm, x0) − φ(ΠCnx0, x0)

= φ(xm, x0) − φ(xn, x0).

(3.14)

Letting m,n → ∞ in (3.14), we have φ(xm, xn) → 0. It follows from Lemma 2.2 that

lim
m,n→∞

‖xm − xn‖ = 0. (3.15)

Hence {xn} is a Cauchy sequence in C. By the completeness of E and the closedness of C, we
can assume that

xn −→ p ∈ C as n −→ ∞. (3.16)

Step 5. We show that p ∈ F :=
⋂

i∈IF(Ti) ∩
⋂

i∈IF(Si) ∩ V I(A,C).
(I)We first show that p ∈ ⋂

i∈IF(Ti) ∩
⋂

i∈IF(Si). Takingm = n + 1 in (3.14), one arrives
that

lim
n→∞

φ(xn+1, xn) = 0. (3.17)

From Lemma 2.2, we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (3.18)

Noticing that xn+1 = ΠCn+1x0, from the definition of Cn,i for every i ∈ I, we obtain

φ
(
xn+1, yn,i

)
� φ(xn+1, xn) + αn,i

(
‖x0‖2 + 2〈u, Jxn − Jx0〉

)
. (3.19)

It follows from (3.17) and limn→∞αn,i = 0 and the fact that {Jxn} is bounded that

lim
n→∞

φ
(
xn+1, yn,i

)
= 0, ∀i ∈ I. (3.20)

From Lemma 2.2, we obtain

lim
n→∞

∥∥xn+1 − yn,i

∥∥ = 0, ∀i ∈ I. (3.21)

It follows from (3.18) that

lim
n→∞

∥∥xn − yn,i

∥∥ = 0, ∀i ∈ I. (3.22)
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Since J is uniformly norm-to-norm continuity on bounded sets, for every i ∈ I, one has

lim
n→∞

∥
∥Jxn − Jyn,i

∥
∥ = lim

n→∞
‖Jxn+1 − Jxn‖ = 0, ∀i ∈ I. (3.23)

For every i ∈ I, we obtain from the properties of φ that

φ(zn,i, xn) = φ
(
zn,i, yn,i

)
+ φ

(
yn,i, xn

)
+ 2

〈
zn,i − yn,i, Jyn,i − Jxn

〉

≤ φ
(
zn,i, yn,i

)
+ φ

(
yn,i, xn

)
+ 2

∥
∥zn,i − yn,i

∥
∥
∥
∥Jyn,i − Jxn

∥
∥.

(3.24)

On the other hand, for all i ∈ I, we have

φ
(
zn,i, yn,i

)
= ‖zn,i‖2 − 2〈zn,i, αn,iJx0 + (1 − αn,i)Jzn,i〉 + ‖αn,iJx0 + (1 − αn,i)Jzn,i‖2

≤ ‖zn,i‖2 − 2αn,i〈zn,i, Jx0〉 − 2(1 − αn,i)〈zn,i, Jzn,i〉 + αn,i‖x0‖2 + (1 − αn,i)‖zn,i‖2

= αn,i

(
‖zn,i‖2 − 2〈zn,i, Jx0〉 + ‖x0‖2

)
= αn,iφ(zn,i, x0).

(3.25)

It follows form (ii) that

lim
n→∞

φ
(
zn,i, yn,i

)
= 0, ∀i ∈ I. (3.26)

Notice that

φ
(
yn,i, xn

)
=
∥∥yn,i

∥∥2 − 2
〈
yn,i, Jxn

〉
+ ‖xn‖2

=
∥∥yn,i

∥∥2 − 2
〈
yn,i, Jxn

〉
+ ‖xn‖2 + ‖xn+1‖2 − ‖xn+1‖2

− 2〈xn+1, Jyn,i〉 + 2
〈
xn+1, Jyn,i

〉

= φ
(
xn+1, yn,i

) − 2〈yn,i, Jxn〉 + ‖xn‖2 − ‖xn+1‖2 + 2
〈
xn+1, Jyn,i

〉

= φ
(
xn+1, yn,i

)
+ (‖xn − xn+1‖)(‖xn‖ + ‖xn+1‖)

− 2
〈
yn,i, Jxn − Jyn,i

〉 − 2〈yn,i, Jyn,i〉 + 2
〈
xn+1, Jyn,i

〉

= φ
(
xn+1, yn,i

)
+ (‖xn − xn+1‖)(‖xn‖ + ‖xn+1‖)

+ 2
〈
yn,i, Jyn,i − Jxn

〉
+ 2

〈
xn+1 − yn,i, Jyn,i

〉

≤ φ
(
xn+1, yn,i

)
+ (‖xn − xn+1‖)(‖xn‖ + ‖xn+1‖)

+ 2
∥∥yn,i

∥∥∥∥Jyn,i − Jxn

∥∥ + 2
∥∥xn+1 − yn,i

∥∥∥∥Jyn,i

∥∥.

(3.27)

Applying (3.18), (3.20), (3.21), and (3.23) to the last inequality, we obtain

lim
n→∞

φ
(
yn,i, xn

)
= 0, ∀i ∈ I. (3.28)
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Combining (3.26) with (3.28) in (3.24), we have

lim
n→∞

φ(zn,i, xn) = 0, ∀i ∈ I. (3.29)

From Lemma 2.2, we have

lim
n→∞

‖zn,i − xn‖ = 0, ∀i ∈ I. (3.30)

Since J is uniformly norm-to-norm continuity on bounded sets, for every i ∈ I, one has

lim
n→∞

‖Jzn,i − Jxn‖ = 0, ∀i ∈ I. (3.31)

Let r = supn≥1{‖xn‖, ‖Tixn‖, ‖Sixn‖} for every i ∈ I. Therefore Lemma 2.7 implies that there
exists a continuous strictly increasing convex function g : [0,∞) → [0,∞) satisfying g(0) = 0
and (2.7).

Case I. Assume that (a) holds. Applying (2.7), we can calculate

φ(u, zn,i) = φ
(
u, J−1

(
β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

))

= ‖u‖2 − 2
〈
u, β

(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

〉

+
∥∥∥β(1)n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

∥∥∥
2

≤ ‖u‖2 − 2β(1)n,i 〈u, Jxn〉 − 2β(2)n,i 〈u, JTixn〉 − 2β(2)n,i 〈u, JSiwn,i〉

+ β
(1)
n,i ‖xn‖2 + β

(2)
n,i ‖Tixn‖2 + β

(3)
n,i ‖Siwn,i‖2 − β

(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

= β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, Tixn) + β

(3)
n,i φ(u, Siwn,i) − β

(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

≤ β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, xn) + β

(3)
n,i φ(u,wn,i) − β

(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

≤ β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, xn) + β

(3)
n,i φ(u, xn) − β

(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

= φ(u, xn) − β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖).

(3.32)

This implies that

β
(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖) ≤ φ(u, xn) − φ(u, zn,i), ∀i ∈ I. (3.33)

On the other hand, for every i ∈ I, one has

φ(u, xn) − φ(u, zn,i) = ‖xn‖2 − ‖zn,i‖2 − 2〈u, Jxn − Jzn,i〉
≤ ‖xn − zn,i‖(‖xn‖ + ‖zn,i‖) + 2‖u‖‖Jxn − Jzn,i‖.

(3.34)
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It follows from (3.30) and (3.31) that

φ(u, xn) − φ(u, zn,i) −→ 0 as n −→ ∞, ∀i ∈ I. (3.35)

Applying lim infn→∞β
(1)
n,i β

(2)
n,i > 0 and (3.35) in (3.33) we get

g(‖Jxn − JTixn‖) −→ 0 as n −→ ∞, ∀i ∈ I. (3.36)

It follows from the property of g that

‖Jxn − JTixn‖ −→ 0 as n −→ ∞, ∀i ∈ I. (3.37)

Since J−1 is also uniformly norm-to-norm continuity on bounded sets, for every i ∈ I, one has

lim
n→∞

‖xn − Tixn‖ = 0, ∀i ∈ I. (3.38)

In a similar way, one has

lim
n→∞

‖xn − Siwn,i‖ = 0, ∀i ∈ I. (3.39)

On the other hand, we observe from (3.7) that

φ(u, zn,i) = φ
(
u, J−1

(
β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

))

= ‖u‖2 − 2
〈
u, β

(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

〉

+
∥∥∥β(1)n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

∥∥
∥
2

≤ ‖u‖2 − 2β(1)n,i 〈u, Jxn〉 − 2β(2)n,i 〈u, JTixn〉 − 2β(2)n,i 〈u, JSiwn,i〉

+ β
(1)
n,i ‖Jxn‖2 + β

(2)
n,i ‖JTixn‖2 + β

(3)
n,i ‖JSiwn,i‖2 − β

(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

= β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, Tixn) + β

(3)
n,i φ(u, Siwn,i) − β

(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

≤ β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, xn) + β

(3)
n,i φ(u,wn,i) − β

(1)
n,i β

(2)
n,i g(‖Jxn − JTixn‖)

≤ β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, xn) + β

(3)
n,i

[
φ(u, xn) + 2λn,i

(
2
c2
λn,i − α

)
‖Axn −Au‖2

]

= φ(u, xn) + 2β(3)n,i λn,i

(
2
c2
λn,i − α

)
‖Axn −Au‖2.

(3.40)
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Hence

2a
(
α − 2

c2
b

)
‖Axn −Au‖2 ≤ φ(u, xn) − φ(u, zn,i). (3.41)

Using (3.35), we can conclude that

lim
n→∞

‖Axn −Au‖ = 0, ∀i ∈ I. (3.42)

From (3.6), we can calculate

φ(xn,wn,i) = φ(xn,ΠCvn,i)

≤ φ(xn, vn,i)

= φ
(
xn, J

−1(Jxn − λn,iAxn)
)

= V (xn, Jxn − λn,iAxn)

≤ V (xn, (Jxn − λn,iAxn) + λn,iAxn)

− 2
〈
J−1(Jxn − λn,iAxn) − u, λn,iAxn

〉

= V (xn, Jxn) + 2〈vn,i − xn,−λn,iAxn〉
= φ(xn, xn) + 2〈vn,i − xn,−λn,iAxn〉
= 2〈vn,i − xn,−λn,iAxn〉

≤ 4
c2
λ2n,i‖Axn −Au‖.

(3.43)

It follows from (3.42) and the fact that {λn,i} is bounded that

lim
n→∞

φ(xn,wn,i) = 0, ∀i ∈ I. (3.44)

From Lemma 2.2, we have

lim
n→∞

‖xn −wn,i‖ = 0, ∀i ∈ I. (3.45)

Hence wn,i → p as n → ∞ for each i ∈ I. From (3.39) and (3.45), we have

lim
n→∞

‖wn,i − Siwn,i‖ = 0, ∀i ∈ I. (3.46)

The closedness of Ti and Si implies that p ∈ ⋂
i∈IF(Ti) ∩

⋂
i∈IF(Si).
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Case II. Assume that (b) holds. We observe that

φ(u, zn,i) = φ
(
u, J−1

(
β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

))

= ‖u‖2 − 2〈u, β(1)n,i Jxn + β
(2)
n,i JTixn + β

(3)
n,i JSiwn,i〉

+
∥
∥
∥β(1)n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

∥
∥
∥
2

≤ ‖u‖2 − 2β(1)n,i 〈u, Jxn〉 − 2β(2)n,i 〈u, JTixn〉 − 2β(2)n,i 〈u, JSiwn,i〉

+ β
(1)
n,i ‖Jxn‖2 + β

(2)
n,i ‖JTixn‖2 + β

(3)
n,i ‖JSiwn,i‖2 − β

(2)
n,i β

(3)
n,i g(‖JSiwn,i − JTixn‖)

= β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, Tixn) + β

(3)
n,i φ(u, Siwn,i) − β

(2)
n,i β

(3)
n,i g(‖JSiwn,i − JTixn‖)

≤ β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, xn) + β

(3)
n,i φ(u,wn,i) − β

(2)
n,i β

(3)
n,i g(‖JSiwn,i − JTixn‖)

≤ β
(1)
n,i φ(u, xn) + β

(2)
n,i φ(u, xn) + β

(3)
n,i φ(u, xn) − β

(2)
n,i β

(3)
n,i g(‖JSiwn,i − JTixn‖)

= φ(u, xn) − β
(2)
n,i β

(3)
n,i g(‖JSiwn,i − JTixn‖).

(3.47)

This implies that

β
(2)
n,i β

(3)
n,i g(‖JSiwn,i − JTixn‖) ≤ φ(u, xn) − φ(u, zn,i), ∀i ∈ I. (3.48)

On the other hand, for every i ∈ I, one has

φ(u, xn) − φ(u, zn,i) = ‖xn‖2 − ‖zn,i‖2 − 2〈u, Jxn − Jzn,i〉
≤ ‖xn − zn,i‖(‖xn‖ + ‖zn,i‖) + 2‖u‖‖Jxn − Jzn,i‖.

(3.49)

It follows from (3.30) and (3.31) that

φ(u, xn) − φ(u, zn,i) −→ 0 as n −→ ∞, ∀i ∈ I. (3.50)

Applying lim infn→∞β
(2)
n,i β

(3)
n,i > 0 and (3.50)we get

g(‖JSiwn,i − JTixn‖) −→ 0 as n −→ ∞, ∀i ∈ I. (3.51)

It follows from the property of g that

‖JSiwn,i − JTixn‖ −→ 0 as n −→ ∞, ∀i ∈ I. (3.52)
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Since J−1 is also uniformly norm-to-norm continuity on bounded sets, for every i ∈ I, one has

lim
n→∞

‖Tixn − Siwn,i‖ = 0, ∀i ∈ I. (3.53)

On the other hand, we can calculate

φ(Tixn, zn,i) = φ
(
Tixn, J

−1
(
β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

))

= ‖Tixn‖2 − 2
〈
Tixn, β

(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

〉

+
∥
∥
∥β(1)n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i)

∥
∥
∥
2

≤ ‖Tixn‖2 − 2β(1)n,i 〈Tixn, Jxn〉 − 2β(2)n,i 〈Tixn, JTixn〉 − 2β(3)n,i 〈Tixn, JSiwn,i〉

+ β
(1)
n,i ‖xn‖2 + β

(2)
n,i ‖Tixn‖2 + β

(3)
n,i ‖Siwn,i‖2

≤ β
(1)
n,i φ(Tixn, xn) + β

(3)
n,i φ(Tixn, Siwn,i).

(3.54)

Observe that

φ(Tixn, Siwn,i) = ‖Tixn‖2 − 2〈Tixn, JSiwn,i〉 + ‖Siwn,i‖2

= ‖Tixn‖2 − 2〈Tixn, JTixn〉 + 2〈Tixn, JTixn − JSiwn,i〉 + ‖Siwn,i‖2

≤ ‖Siwn,i‖2 − ‖Tixn‖2 + 2‖Tixn‖‖JTixn − JSiwn,i‖

≤ ‖Siwn,i − Tixn‖(‖Siwn,i‖ + ‖Tixn‖) + 2‖Tixn‖‖JTixn − JSiwn,i‖.

(3.55)

It follows from (3.52) and (3.53) that

lim
n→∞

φ(Tixn, Siwn,i) = 0, ∀i ∈ I. (3.56)

Applying limn→∞β
(1)
n,i = 0 and (3.56) and the fact that {φ(Tixn, xn)} is bounded to (3.54), we

obtain

lim
n→∞

φ(Tixn, zn,i) = 0, ∀i ∈ I. (3.57)

From Lemma 2.2, one obtains

lim
n→∞

‖Tixn − zn,i‖ = 0, ∀i ∈ I. (3.58)
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We observe that

‖Tixn − xn‖ ≤ ‖Tixn − zn,i‖ + ‖zn,i − xn‖. (3.59)

It follows from (3.30) and (3.58) that

lim
n→∞

‖Tixn − xn‖ = 0, ∀i ∈ I. (3.60)

By the same proof as in Case I, we obtain that

lim
n→∞

‖xn −wn,i‖ = 0, ∀i ∈ I. (3.61)

Hence wn,i → p as n → ∞ for each i ∈ I and

lim
n→∞

‖Jxn − Jwn,i‖ = 0, ∀i ∈ I. (3.62)

Combining (3.53), (3.60), and (3.61), we also have

lim
n→∞

‖Siwn,i −wn,i‖ = 0, ∀i ∈ I. (3.63)

It follows from the closedness of Ti and Si that p ∈ ⋂
i∈IF(Ti) ∩

⋂
i∈IF(Si).

(II) Now, we show that p ∈ V I(A,C).
Let T ⊂ E × E∗ be an operator defined by

Tv =

⎧
⎨

⎩

Av +NC(v), v ∈ C,

∅, v /∈C.
(3.64)

By Lemma 2.8, we have that T is maximal monotone and T−10 = V I(A,C). Let (v,w) ∈ G(T).
Since w ∈ Tv = Av +NC(v), we obtain that w −Av ∈ NC(v). From xn = ΠCnx0 ⊂ Cn ⊂ C, we
have

〈v − xn,w −Av〉 ≥ 0. (3.65)

Since A is α-inverse strongly monotone, we can calculate

〈v − xn,w〉 ≥ 〈v − xn,Av〉
= 〈v − xn,Av −Axn〉 + 〈v − xn,Axn〉
≥ 〈v − xn,Axn〉.

(3.66)
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From wn,i = ΠCJ
−1(Jxn − λn,iAxn) and by Lemma 2.3, we have

〈v −wn,i, Jwn,i − Jxn − λn,iAxn〉 ≥ 0. (3.67)

This implies that

〈
v −wn,i,

Jxn − Jwn,i

λn,i
−Axn

〉
≤ 0. (3.68)

Since A is α-inverse strongly monotone, we have also that A is 1/α-Lipschitzian. Hence

〈v − xn,w〉 ≥ 〈v − xn,Axn〉 +
〈
v −wn,i,

Jxn − Jwn,i

λn,i
−Axn

〉

= 〈v −wn,i, Axn〉 + 〈wn,i − xn,Axn〉

− 〈v −wn,i, Axn〉 +
〈
v −wn,i,

Jxn − Jwn,i

λn,i

〉

= 〈wn,i − xn,Axn〉 +
〈
v −wn,i,

Jxn − Jwn,i

λn,i

〉

≥ −‖wn,i − xn‖‖Axn‖ − ‖v −wn,i‖
∥∥∥∥
Jxn − Jwn,i

a

∥∥∥∥

(3.69)

for all n ≥ 0. By Taking the limit as n → ∞ and by (3.61) and (3.62), we obtain 〈v − p,w〉 ≥ 0.
By the maximality of T we obtain p ∈ T−10 and hence p ∈ V I(A,C). Hence p ∈ F.

Step 6. Finally, we show that p = ΠFx0.
From xn = ΠCnx0, we have

〈Jx0 − Jxn, xn − z〉 ≥ 0, ∀z ∈ Cn. (3.70)

Since F ⊂ Cn, we also have

〈Jx0 − Jxn, xn − u〉 ≥ 0, ∀u ∈ F. (3.71)

By taking limit in (3.71), we obtain that

〈Jx0 − Jp, p − u〉 ≥ 0, ∀u ∈ F. (3.72)

By Lemma 2.3, we can conclude that p = ΠFx0. This completes the proof.
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Remark 3.2. Theorem 3.1 improves and extends main results of Iiduka and Takahashi [17],
Martinez-Yanes and Xu [23], Matsushita and Takahashi [13], Plubtieng and Ungchittrakool
[14], Qin and Su [15], and Qin et al. [25] because it can be applied to solving the problem of
finding the common element of the set of common fixed points of two families of quasi-φ-
nonexpansive mappings and the set of solutions of the variational inequality for an inverse-
strongly monotone operator.

4. Applications

From Theorem 3.1 we can obtain some new and interesting strong convergence theorems.
Now we give some examples as follows.

If β(1)n,i = 0 for all n ≥ 0, Ti = Si for all i ∈ I and A = 0 in Theorem 3.1, then we have the
following result.

Corollary 4.1. Let E be a uniformly convex and uniformly smooth Banach space, and let C be a
nonempty closed convex subset of E. Let {Ti}i∈I be a family of closed quasi-φ-nonexpansive mappings
of C into itself with F :=

⋂
i∈IF(Ti) being nonempty, where I is an index set. Let {xn} be a sequence

generated by the following manner:

x0 ∈ C chosen arbitrary,

C1,i = C, C1 =
∞⋂

i=1

C1,i, x1 = ΠC1(x0) ∀i ∈ I,

yn,i = J−1(αn,iJx0 + (1 − αn,i)JTixn),

Cn+1,i =
{
u ∈ Cn,i : φ

(
u, yn,i

)
� φ(u, xn) + αn,i

(
‖x0‖2 + 2〈u, Jxn − Jx0〉

)}
,

Cn+1 =
⋂

i∈I
Cn+1,i,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(4.1)

where J is the duality mapping on E, and {αn,i} is a sequence in (0, 1) such that lim supn→∞αn,i =
0, for all i ∈ I. Then the sequence {xn} converges strongly to ΠFx0, where ΠF is the generalized
projection from C onto F.

Nowwe consider the problem of finding a zero point of an inverse-strongly monotone
operator of E into E∗. Assume that A satisfies the following conditions:

(C1) A is α-inverse-strongly monotone,

(C2) A−10 = {u ∈ E : Au = 0}/= ∅.

Corollary 4.2. Let E be a 2 uniformly convex and uniformly smooth Banach space. Let A be an
operator of E into E∗ satisfying (C1) and (C2), and let {Si}i∈I and {Ti}i∈I be two families of closed



Abstract and Applied Analysis 23

quasi-φ-nonexpansive mappings of E into itself with F :=
⋂

i∈IF(Ti) ∩
⋂

i∈IF(Si) ∩ A−10 being
nonempty, where I is an index set. Let {xn} be a sequence generated by the following manner:

x0 ∈ E chosen arbitrary,

C1,i = E, C1 =
∞⋂

i=1

C1,i, x1 = ΠC1(x0) ∀i ∈ I,

wn,i = J−1(Jxn − λn,iAxn),

zn,i = J−1
(
β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

)
,

yn,i = J−1(αn,iJx0 + (1 − αn,i)Jzn,i),

Cn+1,i =
{
u ∈ Cn,i : φ

(
u, yn,i

)
� φ(u, xn) + αn,i

(
‖x0‖2 + 2〈u, Jxn − Jx0〉

)}
,

Cn+1 =
⋂

i∈I
Cn+1,i,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(4.2)

where J is the duality mapping on E, and {λn,i}, {αn,i}, and {β(j)n,i} (j = 1, 2, 3) are sequences in (0, 1)
such that

(i) limn→∞αn,i = 0 for all i ∈ I;

(ii) for all i ∈ I, {λn,i} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, where 1/c is the 2
uniformly convexity constant of E;

(iii) β(1)n,i + β
(2)
n,i + β

(3)
n,i = 1 for all i ∈ I and if one of the following conditions is satisfied:

(a) lim infn→∞β
(1)
n,i β

(l)
n,i > 0 for all l = 2, 3 and for all i ∈ I,

(b) lim infn→∞β
(2)
n,i β

(3)
n,i > 0 and limn→∞β

(1)
n,i = 0 for all i ∈ I.

Then the sequence {xn} converges strongly to ΠFx0, where ΠF is the generalized projection from C
onto F.

Proof. Setting C = E in Theorem 3.1, we get that ΠE is the identity mapping, that is, ΠEx = x
for all x ∈ E. We also have V I(A,E) = A−10. From Theorem 3.1, we can obtain the desired
conclusion easily.

Let X be a nonempty closed convex cone in E, and let A be an operator from X into
E∗. We define its polar in E∗ to be the set

X∗ =
{
y∗ ∈ E∗ : 〈x, y∗〉 ≥ 0 ∀x ∈ X

}
. (4.3)

Then an element x in X is called a solution of the complementarity problem if

Ax ∈ X∗, 〈x,Ax〉 = 0. (4.4)
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The set of all solutions of the complementarity problem is denoted by CP(A,X). Several
problems arising in different fields, such as mathematical programming, game theory,
mechanics, and geometry, are to find solutions of the complementarity problems.

Corollary 4.3. Let E be a 2 uniformly convex and uniformly smooth Banach space, and let X be a
nonempty closed convex subset of E. Let A be an operator of X into E∗ satisfying (C1) and (C2), and
let {Si}i∈I and {Ti}i∈I be two families of closed quasi-φ-nonexpansive mappings of X into itself with
F :=

⋂
i∈IF(Ti) ∩

⋂
i∈IF(Si) ∩ CP(A,X) being nonempty, where I is an index set. Let {xn} be a

sequence generated by the following manner:

x0 ∈ X chosen arbitrary,

C1,i = X, C1 =
∞⋂

i=1

C1,i, x1 = ΠC1(x0) ∀i ∈ I,

wn,i = ΠXJ
−1(Jxn − λn,iAxn),

zn,i = J−1
(
β
(1)
n,i Jxn + β

(2)
n,i JTixn + β

(3)
n,i JSiwn,i

)
,

yn,i = J−1(αn,iJx0 + (1 − αn,i)Jzn,i),

Cn+1,i =
{
u ∈ Cn,i : φ

(
u, yn,i

)
� φ(u, xn) + αn,i

(
‖x0‖2 + 2〈u, Jxn − Jx0〉

)}
,

Cn+1 =
⋂

i∈I
Cn+1,i,

xn+1 = ΠCn+1x0, ∀n ≥ 0,

(4.5)

where J is the duality mapping on E, and {λn,i}, {αn,i}, and {β(j)n,i} (j = 1, 2, 3) are sequences in (0, 1)
such that

(i) limn→∞αn,i = 0 for all i ∈ I;

(ii) for all i ∈ I, {λn,i} ⊂ [a, b] for some a, b with 0 < a < b < c2α/2, where 1/c is the 2
uniformly convexity constant of E;

(iii) β(1)n,i + β
(2)
n,i + β

(3)
n,i = 1 for all i ∈ I and if one of the following conditions is satisfied:

(a) lim infn→∞β
(1)
n,i β

(l)
n,i > 0 for all l = 2, 3 and for all i ∈ I,

(b) lim infn→∞β
(2)
n,i β

(3)
n,i > 0 and limn→∞β

(1)
n,i = 0 for all i ∈ I.

Then the sequence {xn} converges strongly to ΠFx0, where ΠF is the generalized projection from C
onto F.

Proof. From [29, Lemma 7.1.1], we have V I(A,X) = CP(A,X). From Theorem 3.1, we can
obtain the desired conclusion easily.
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