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1. Introduction

In this paper, we study the multiple results of positive solutions for the following quasilinear
elliptic equation:

−Δpu = λf(x)|u|q−2u + g(x)|u|p∗−2u in Ω,

u = 0 on ∂Ω,
(Eλf,g)

where λ > 0, Δpu = div(|∇u|p−2∇u) is the p-Laplacian, 0 ∈ Ω is a bounded domain in R
N

with smooth boundary ∂Ω, 1 < q < p < N, p∗ = Np/(N − p) is the so-called critical Sobolev
exponent and the weight functions f, g are satisfying the following conditions:

(f1) f ∈ C(Ω) and f+ = max{f, 0}/≡ 0;

(f2) there exist β0, ρ0 > 0 and x0 ∈ Ω such that B(x0, 2ρ0) ⊂ Ω and f(x) ≥ β0 for all
x ∈ B(x0, 2ρ0). Without loss of generality, we assume that x0 = 0,

(g1) g ∈ C(Ω) and g+ = max{g, 0}/≡ 0;

(g2) |g+|∞ = g(0) = maxx∈Ω g(x);
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(g3) g(x) > 0 for all x ∈ B(0, 2ρ0);
(g4) there exists β > N/(p − 1) such that

g(x) = g(0) + o
(
|x|β

)
as x −→ 0. (1.1)

For the weight functions f ≡ g ≡ 1, (Eλf,g) has been studied extensively. Historically,
the role played by such concave-convex nonlinearities in producing multiple solutions was
investigated first in the work [1]. They studied the following semilinear elliptic equation:

−Δu = λuq−1 + u2
∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.2)

for 1 < q < 2 and showed the existence of λ0 > 0 such that (1.2) admits at least two
solutions for all λ ∈ (0, λ0) and no solution for λ > λ0. Subsequently, in the work [2, 3],
the corresponding quasilinear version has been studied

−Δpu = λuq−1 + up
∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where 1 < p < N and 1 < q < p. They obtained results similar to the results of [1] above, but
only for some ranges of the exponents p and q. We summarize their results in what follows.

Theorem 1.1 (see [2, 3]). Assume that either 2N/(N +2) < p < 3 or p > 3, p > q > p∗ −2/(p−1).
Then there exists λ0 > 0 such that (1.3) admits at least two solutions for all λ ∈ (0, λ0) and no solution
for λ > λ0.

It is possible to get complete multiplicity result for problem (1.3) if Ω is taken to be a
ball in R

N . Prashanth and Sreenadh [4] have studied (1.3) in the unit ball BN(0; 1) in R
N and

obtained the following results.

Theorem 1.2 (see [4]). Let Ω = BN(0; 1), 1 < p < N, 1 < q < p. Then there exists λ0 > 0 such
that (1.3) admits at least two solutions for all λ ∈ (0, λ0) and no solution for λ > λ0. Additionally, if
1 < p < 2, then (1.3) admits exactly two solutions for all small λ > 0.

For p = 2, Tang [5] has studied the exact multiplicity about the following semilinear
elliptic equation:

−Δu = λuq−1 + ur−1 in BN(0; 1),

u > 0 in BN(0; 1),

u = 0 on ∂BN(0; 1),

(1.4)

where 1 < q < 2 < r ≤ 2N/(N − 2) andN ≥ 3. We also mention his result below.
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Theorem 1.3 (see [5]). There exists λ0 > 0 such that (1.4) admits exactly two solutions for λ ∈
(0, λ0), exactly one solution for λ = λ0, and no solution for λ > λ0.

To proceed, wemake somemotivations of the present paper. Recently, in [6] the author
has considered (1.2) with subcritical nonlinearity of concave-convex type, g ≡ 1, and f is
a continuous function which changes sign in Ω, and showed the existence of λ0 > 0 such
that (1.2) admits at least two solutions for all λ ∈ (0, λ0) via the extraction of Palais-Smale
sequences in the Nehair manifold. In a recent work [7], the author extended the results of [6]
to the quasilinear case with the more general weight functions f, g but also having subcritical
nonlinearity of concave-convex type. In the present paper, we continue the study of [7] by
considering critical nonlinearity of concave-convex type and sign-changing weight functions
f, g.

In this paper, we use a variational method involving the Nehari manifold to prove the
multiplicity of positive solutions. The Nehari method has been used also in [8] to prove the
existence of multiple for a singular elliptic problem. The existence of at least one solution
can be obtained by using the same arguments as in the subcritical case [7]. The existence of a
second solution needs different arguments due to the lack of compactness of the Palais-Smale
sequences. For what, we need addtional assumptions (f2) and (g2) to prove the compactness
of the extraction of Palais-Smale sequences in the Nehari manifold (see Theorem 4.4). The
multiplicity result is proved only for the parameter λ ∈ (0, (q/p)Λ1) (see Theorem 1.5) but
for all 1 < p < N and 1 ≤ q < p. This is not the case in the papers referred [2, 3] where
the multiplicity is global but not with the full range of p, q and with the weight functions
f ≡ g ≡ 1. Finally, we mention a recent contribution on p-Laplacian equation with changing
sign nonlinearity by Figuereido et al. [9] which gives the global multiplicity but not with
the full range of p and q. The method used in the paper by Figuereido et al. is similar to the
method introduced in [1].

In order to represpent our main results, we need to define the following constant Λ1.
Set

Λ1 =

(
p − q(

p∗ − q)∣∣g+
∣∣
∞

)(p−q)/(p∗−p)(
p∗ − p(

p∗ − q)∣∣f+
∣∣
∞

)
|Ω|(q−p∗)/p∗ S(N/p)−(N/p2)q+(q/p) > 0, (1.5)

where |Ω| is the Lebesgue measure of Ω and S is the best Sobolev constant (see (2.2)).

Theorem 1.4. Assume (f1) and (g1) hold. If λ ∈ (0,Λ1), then (Eλf,g) admits at least one positive
solution uλ ∈ C1,α(Ω) for some α ∈ (0, 1).

Theorem 1.5. Assume that (f1)-(f2) and (g1)–(g4) hold. If λ ∈ (0, (q/p)Λ1), then (Eλf,g) admits
at least two positive solutions uλ,Uλ ∈ C1,α(Ω) for some α ∈ (0, 1).

This paper is organized as follows. In Section 2, we give some preliminaries and some
properties of Nehari manifold. In Sections 3 and 4, we complete proofs of Theorems 1.4 and
1.5.

2. Preliminaries and Nehari Manifold

Throughout this paper, (f1) and (g1) will be assumed. The dual space of a Banach space
E will be denoted by E−1. W1,p

0 (Ω) denotes the standard Sobolev space with the following
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norm:

‖u‖p =
∫

Ω
|∇u|pdx. (2.1)

W
1,p
0 (Ω)with the norm ‖·‖ is simply denoted byW . We denote the norm in Lp(Ω) by | · |p and

the norm in Lp(RN) by | · |Lp(RN) . |Ω| is the Lebesgue measure of Ω. B(x, r) is a ball centered
at x with radius r. O(εt) denotes |O(εt)|/εt ≤ C, o(εt) denotes |o(εt)|/εt → 0 as ε → 0, and
on(1) denotes on(1) → 0 as n → ∞. C, Ci will denote various positive constants; the exact
values of which are not important. S is the best Sobolev embedding constant defined by

S = inf
u∈W\{0}

|∇u|pp
|u|pp∗

. (2.2)

Definition 2.1. Let c ∈ R, E be a Banach space and I ∈ C1(E,R).

(i) {un} is a (PS)c-sequence in E for I if I(un) = c + on(1) and I ′(un) = on(1) strongly in
E−1 as n → ∞.

(ii) We say that I satisfies the (PS)c condition if any (PS)c-sequence {un} in E for I has
a convergent subsequence.

Associated with (Eλf,g), we consider the energy functional Jλ inW , for each u ∈W ,

Jλ(u) =
1
p
‖u‖p − λ

q

∫

Ω
f |u|qdx − 1

p∗

∫

Ω
g|u|p∗dx. (2.3)

It is well known that Jλ is of C1 inW and the solutions of (Eλf,g) are the critical points of the
energy functional Jλ (see Rabinowitz [10]).

As the energy functional Jλ is not bounded below on W , it is useful to consider the
functional on the Nehari manifold

Nλ =
{
u ∈W \ {0} :

〈
J ′λ(u), u

〉
= 0
}
. (2.4)

Thus, u ∈ Nλ if and only if

〈
J ′λ(u), u

〉
= ‖u‖p − λ

∫

Ω
f |u|qdx −

∫

Ω
g|u|p∗dx = 0. (2.5)

Note that Nλ contains every nonzero solution of (Eλf,g). Moreover, we have the following
results.

Lemma 2.2. The energy functional Jλ is coercive and bounded below on Nλ.
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Proof. If u ∈ Nλ, then by (f1), (2.5), and the Hölder inequality and the Sobolev embedding
theorem we have

Jλ(u) =
p∗ − p
p∗p

‖u‖p − λ
(
p∗ − q
p∗q

)∫

Ω
f |u|qdx (2.6)

≥ 1
N

‖u‖p − λ
(
p∗ − q
p∗q

)
S−q/p|Ω|(p∗−q)/p∗‖u‖q∣∣f+∣∣

∞. (2.7)

Thus, Jλ is coercive and bounded below on Nλ.

Define

ψλ(u) =
〈
J ′λ(u), u

〉
. (2.8)

Then for u ∈ Nλ,

〈
ψ ′
λ(u), u

〉
= p‖u‖p − λq

∫

Ω
f |u|qdx − p∗

∫

Ω
g|u|p∗dx (2.9)

=
(
p − q)‖u‖p − (p∗ − q)

∫

Ω
g|u|p∗dx (2.10)

= λ
(
p∗ − q)

∫

Ω
f |u|qdx − (p∗ − p)‖u‖p. (2.11)

Similar to the method used in Tarantello [11], we split Nλ into three parts:

N+
λ =

{
u ∈ Nλ :

〈
ψ ′
λ(u), u

〉
> 0
}
,

N0
λ =

{
u ∈ Nλ :

〈
ψ ′
λ(u), u

〉
= 0
}
,

N−
λ =

{
u ∈ Nλ :

〈
ψ ′
λ(u), u

〉
< 0
}
.

(2.12)

Then, we have the following results.

Lemma 2.3. Assume that uλ is a local minimizer for Jλ on Nλ and uλ /∈N0
λ. Then J

′
λ(uλ) = 0 in

W−1.

Proof. Our proof is almost the same as that in Brown and Zhang [12, Theorem 2.3] (or see
Binding et al. [13]).

Lemma 2.4. One has the following.
(i) If u ∈ N+

λ
, then

∫
Ω f |u|qdx > 0.

(ii) If u ∈ N0
λ
, then

∫
Ω f |u|qdx > 0 and

∫
Ω g|u|p

∗
dx > 0.

(iii) If u ∈ N−
λ , then

∫
Ω g|u|p

∗
dx > 0.

Proof. The proof is immediate from (2.10) and (2.11).
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Moreover, we have the following result.

Lemma 2.5. If λ ∈ (0,Λ1), thenN0
λ
= ∅ where Λ1 is the same as in (1.5).

Proof. Suppose otherwise that there exists λ ∈ (0,Λ1) such that N0
λ /= ∅. Then by (2.10) and

(2.11), for u ∈ N0
λ, we have

‖u‖p = p∗ − q
p − q

∫

Ω
g|u|p∗dx,

‖u‖p = λp
∗ − q
p∗ − p

∫

Ω
f |u|qdx.

(2.13)

Moreover, by (f1), (g1), and the Hölder inequality and the Sobolev embedding theorem, we
have

‖u‖ ≥
(

p − q(
p∗ − q)∣∣g+

∣∣
∞
Sp

∗/p

)1/(p∗−p)
,

‖u‖ ≤
[
λ
p∗ − q
p∗ − pS

−q/p|Ω|(p∗−q)/p∗∣∣f+∣∣
∞

]1/(p−q)
.

(2.14)

This implies

λ ≥
(

p − q(
p∗ − q)∣∣g+

∣∣
∞

)(p−q)/(p∗−p)(
p∗ − p(

p∗ − q)∣∣f+
∣∣
∞

)
|Ω|(q−p∗)/p∗S(N/p)−(N/p2)q+(q/p) = Λ1, (2.15)

which is a contradiction. Thus, we can conclude that if λ ∈ (0,Λ1), we have N0
λ = ∅.

By Lemma 2.5, we write Nλ = N+
λ
∪N−

λ
and define

αλ = inf
u∈Nλ

Jλ(u), α+λ = inf
u∈N+

λ

Jλ(u), α−λ = inf
u∈N−

λ

Jλ(u). (2.16)

Then we get the following result.

Theorem 2.6. (i) If λ ∈ (0,Λ1) and u ∈ N+
λ , then one has Jλ(u) < 0 and αλ ≤ α+λ < 0.

(ii) If λ ∈ (0, (q/p)Λ1), then α−
λ

> d0 for some positive constant d0 depending on
λ, p, q,N, S, |f+|∞, |g+|∞, and |Ω|.

Proof. (i) Let u ∈ N+
λ . By (2.10), we have

p − q
p∗ − q‖u‖

p >

∫

Ω
g|u|p∗dx, (2.17)
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and so

Jλ(u) =
(
1
p
− 1
q

)
‖u‖p +

(
1
q
− 1
p∗

)∫

Ω
g|u|p∗dx

<

[(
1
p
− 1
q

)
+
(
1
q
− 1
p∗

)
p − q
p∗ − q

]
‖u‖p

= −p − q
qN

‖u‖p < 0.

(2.18)

Therefore, from the definition of αλ, α+λ , we can deduce that αλ ≤ α+λ < 0.
(ii) Let u ∈ N−

λ
. By (2.10), we have

p − q
p∗ − q‖u‖

p <

∫

Ω
g|u|p∗dx. (2.19)

Moreover, by (g1) and the Sobolev embedding theorem, we have

∫

Ω
g|u|p∗dx ≤ S−p∗/p‖u‖p∗∣∣g+∣∣

∞. (2.20)

This implies

‖u‖ >
(

p − q(
p∗ − q)∣∣g+

∣∣
∞

)1/(p∗−p)
SN/p

2
, ∀u ∈ N−

λ. (2.21)

By(2.7) in the proof of Lemma 2.2, we have

Jλ(u) ≥ ‖u‖q
[
p∗ − p
p∗p

‖u‖p−q − λS−q/p p
∗ − q
p∗q

|Ω|(p∗−q)/p∗∣∣f+∣∣
∞

]

>

(
p − q(

p∗ − q)∣∣g+
∣∣
∞

)q/(p∗−p)
SqN/p

2

×
⎡
⎣p

∗ − p
p∗p

S(p−q)N/p2
(

p − q
(p∗ − q)∣∣g+

∣∣
∞

)(p−q)/(p∗−p)
− λS−q/p p

∗ − q
p∗q

|Ω|(p∗−q)/p∗∣∣f+∣∣
∞

⎤
⎦.

(2.22)

Thus, if λ ∈ (0, (q/p)Λ1), then

Jλ(u) > d0, ∀u ∈ N−
λ, (2.23)

for some positive constant d0 = d0(λ, p, q,N, S, |f+|∞, |g+|∞, |Ω|). This completes the proof.
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For each u ∈W with
∫
Ω g|u|p

∗
dx > 0, we write

tmax =

( (
p − q)‖u‖p(

p∗ − q)∫Ω g|u|p
∗
dx

)1/(p∗−p)
> 0. (2.24)

Then the following lemma holds.

Lemma 2.7. Let λ ∈ (0,Λ1). For each u ∈W with
∫
Ω g|u|p

∗
dx > 0, one has the following:

(i) if
∫
Ω f |u|qdx ≤ 0, then there exists a unique t− > tmax such that t−u ∈ N−

λ
and

Jλ
(
t−u
)
= sup

t≥0
Jλ(tu), (2.25)

(ii) if
∫
Ω f |u|qdx > 0, then there exists unique 0 < t+ < tmax < t− such that t+u ∈ N+

λ
,

t−u ∈ N−
λ
, and

Jλ(t+u) = inf
0≤t≤tmax

Jλ(tu); Jλ
(
t−u
)
= sup

t≥0
Jλ(tu). (2.26)

Proof. Fix u ∈W with
∫
Ω g|u|p

∗
dx > 0. Let

k(t) = tp−q‖u‖p − tp∗−q
∫

Ω
g|u|p∗dx for t ≥ 0. (2.27)

It is clear that k(0) = 0, k(t) → −∞ as t → ∞. From

k′(t) =
(
p − q)tp−q−1‖u‖p − (p∗ − q)tp∗−q−1

∫

Ω
g|u|p∗dx, (2.28)

we can deduce that k′(t) = 0 at t = tmax, k′(t) > 0 for t ∈ (0, tmax) and k′(t) < 0 for t ∈ (tmax,∞).
Then k(t) that achieves its maximum at tmax is increasing for t ∈ [0, tmax) and decreasing for
t ∈ (tmax,∞). Moreover,

k(tmax) =

( (
p − q)‖u‖p(

p∗ − q)∫Ω g|u|p
∗
dx

)(p−q)/(p∗−p)
‖u‖p

−
( (

p − q)‖u‖p
(p∗ − q)∫Ω g|u|p

∗
dx

)(p∗−q)/(p∗−p)∫

Ω
g|u|p∗dx

= ‖u‖q
[(

p − q
p∗ − q

)(p−q)/(p∗−p)
−
(
p − q
p∗ − q

)(p∗−q)/(p∗−p)]( ‖u‖p∗∫
Ω g|u|p

∗
dx

)(p−q)/(p∗−p)

≥ ‖u‖q
(
p∗ − p
p∗ − q

)(
p − q(

p∗ − q)∣∣g+
∣∣
∞
Sp

∗/p

)(p−q)/(p∗−p)
.

(2.29)
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(i)Wehave
∫
Ω f |u|qdx ≤ 0. There exists a unique t− > tmax such that k(t−) = λ

∫
Ω f |u|qdx

and k′(t−) < 0. Now,

(
p − q)(t−)p‖u‖p − (p∗ − q)(t−)p

∫

Ω
g|u|p∗dx

=
(
t−
)1+q[(

p − q)(t−)p−q−1‖u‖p − (p∗ − q)(t−)p∗−q−1
∫

Ω
g|u|p∗dx

]

=
(
t−
)1+q

k′
(
t−
)
< 0,

〈
J ′λ
(
t−u
)
, t−u

〉
=
(
t−
)p‖u‖p − (t−)p∗

∫

Ω
g|u|p∗dx − (t−)qλ

∫

Ω
f |u|qdx

=
(
t−
)q[

k
(
t−
) − λ

∫

Ω
f |u|qdx

]
= 0.

(2.30)

Then we have that t−u ∈ N−
λ
. For t > tmax, we have

(
p − q)‖tu‖p − (p∗ − q)

∫

Ω
g|tu|p∗ < 0,

d2

dt2
Jλ(tu) < 0,

d

dt
Jλ(tu) = tp−1‖u‖p − tp∗−1

∫

Ω
g|u|p∗dx − tq−1λ

∫

Ω
f |u|qdx

= 0 for t = t−.

(2.31)

Thus, Jλ(t−u) = supt≥0 Jλ(tu).
(ii)We have

∫
Ω f |u|qdx > 0. By (2.29) and

k(0) = 0 < λ
∫

Ω
f |u|qdx

≤ λS−q/p|Ω|(p∗−q)/p∗‖u‖q∣∣f+∣∣
∞

< ‖u‖q
(
p∗ − p
p∗ − q

)(
p − q(

p∗ − q)∣∣g+
∣∣
∞
Sp

∗/p

)(p−q)/(p∗−p)

≤ k(tmax) for λ ∈ (0,Λ1),

(2.32)

there are unique t+ and t− such that 0 < t+ < tmax < t
−,

k(t+) = λ
∫

Ω
f |u|qdx = k

(
t−
)
,

k′(t+) > 0 > k′
(
t−
)
.

(2.33)
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We have t+u ∈ N+
λ , t

−u ∈ N−
λ , and Jλ(t

−u) ≥ Jλ(tu) ≥ Jλ(t+u) for each t ∈ [t+, t−] and Jλ(t+u) ≤
Jλ(tu) for each t ∈ [0, t+]. Thus,

Jλ(t+u) = inf
0≤t≤tmax

Jλ(tu), Jλ
(
t−u
)
= sup

t≥0
Jλ(tu). (2.34)

This completes the proof.

3. Proof of Theorem 1.4

First, we will use the idea of Tarantello [11] to get the following results.

Lemma 3.1. If λ ∈ (0,Λ1), then for each u ∈ Nλ, there exist ε > 0 and a differentiable function
ξ : B(0; ε) ⊂W → R

+ such that ξ(0) = 1, the function ξ(v)(u − v) ∈ Nλ, and

〈
ξ′(0), v

〉
=
p
∫
Ω |∇u|p−2∇u∇v dx − λq∫Ω f |u|q−2uv dx − p∗∫Ω g|u|p

∗−2uv dx
(
p − q)‖u‖p − (p∗ − q)∫Ω g|u|p

∗
dx

(3.1)

for all v ∈W .

Proof. For u ∈ Nλ, define a function F : R ×W → R by

Fu(ξ,w) =
〈
J ′λ(ξ(u −w)), ξ(u −w)

〉

= ξp
∫

Ω
|∇(u −w)|pdx − ξqλ

∫

Ω
f |u −w|qdx

− ξp∗
∫

Ω
g|u −w|p∗dx.

(3.2)

Then Fu(1, 0) = 〈J ′λ(u), u〉 = 0 and

d

dξ
Fu(1, 0) = p‖u‖p − λq

∫

Ω
f |u|qdx − p∗

∫

Ω
g|u|p∗dx

=
(
p − q)‖u‖p − (p∗ − q)

∫

Ω
g|u|p∗dx /= 0.

(3.3)

According to the implicit function theorem, there exist ε > 0 and a differentiable function
ξ : B(0; ε) ⊂W → R such that ξ(0) = 1,

〈
ξ′(0), v

〉
=
p
∫
Ω |∇u|p−2∇u∇v dx − λq∫Ω f |u|q−2uv dx − p∗∫Ω g|u|p

∗−2uv dx
(
p − q)‖u‖p − (p∗ − q)∫Ω g|u|p

∗
dx

,

Fu(ξ(v), v) = 0, ∀v ∈ B(0; ε),
(3.4)
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which is equivalent to

〈
J ′λ(ξ(v)(u − v)), ξ(v)(u − v)〉 = 0, ∀v ∈ B(0; ε), (3.5)

that is, ξ(v)(u − v) ∈ Nλ.

Lemma 3.2. Let λ ∈ (0,Λ1), then for each u ∈ N−
λ , there exist ε > 0 and a differentiable function

ξ− : B(0; ε) ⊂W → R
+ such that ξ−(0) = 1, the function ξ−(v)(u − v) ∈ N−

λ
, and

〈(
ξ−
)′(0), v

〉
=
p
∫
Ω |∇u|p−2∇u∇v dx − λq∫Ω f |u|q−2uv dx − p∗∫Ω g|u|p

∗−2uv dx
(
p − q)‖u‖p − (p∗ − q)∫Ω g|u|p

∗
dx

(3.6)

for all v ∈W .

Proof. Similar to the argument in Lemma 3.1, there exist ε > 0 and a differentiable function
ξ− : B(0; ε) ⊂W → R such that ξ−(0) = 1 and ξ−(v)(u − v) ∈ Nλ for all v ∈ B(0; ε). Since

〈
ψ ′
λ(u), u

〉
=
(
p − q)‖u‖p − (p∗ − q)

∫

Ω
g|u|p∗dx < 0. (3.7)

Thus, by the continuity of the function ξ−, we have

〈
ψ ′
λ

(
ξ−(v)(u − v)), ξ−(v)(u − v)〉 = (p − q)∥∥ξ−(v)(u − v)∥∥p

− (p∗ − q)
∫

Ω
g
∣∣ξ−(v)(u − v)∣∣pdx < 0,

(3.8)

if ε sufficiently small, this implies that ξ−(v)(u − v) ∈ N−
λ .

Proposition 3.3. (i) If λ ∈ (0,Λ1), then there exists a (PS)αλ-sequence {un} ⊂ Nλ inW for Jλ.
(ii) If λ ∈ (0, (q/p)Λ1), then there exists a (PS)α−

λ
-sequence {un} ⊂ N−

λ
inW for Jλ.

Proof. (i) By Lemma 2.2 and the Ekeland variational principle [14], there exists a minimizing
sequence {un} ⊂ Nλ such that

Jλ(un) < αλ +
1
n
,

Jλ(un) < Jλ(w) +
1
n
‖w − un‖ for each w ∈ Nλ.

(3.9)

By αλ < 0 and taking n large, we have

Jλ(un) =
(
1
p
− 1
p∗

)
‖un‖p −

(
1
q
− 1
p∗

)
λ

∫

Ω
f |un|qdx

< αλ +
1
n
<
αλ
p
.

(3.10)
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From (2.7), (3.10), αλ < 0, and the Hölder inequality, we deduce that

∣∣f+∣∣
∞λS

−q/p|Ω|(p∗−q)/p∗‖un‖q ≥ λ
∫

Ω
f |un|qdx >

−p∗q
p
(
p∗ − q)αλ > 0. (3.11)

Consequently, un /= 0 and putting together (3.10), (3.11), and the Hölder inequality, we obtain

‖un‖ >
[

−p∗q
pλ
(
p∗ − q)∣∣f+

∣∣
∞
αλS

q/p|Ω|(q−p∗)/p∗
]1/q

,

‖un‖ <
[
p
(
p∗ − q)

q
(
p∗ − p)λS

−q/p|Ω|(p∗−q)/p∗∣∣f+∣∣
∞

]1/(p−q)
.

(3.12)

Now, we show that

∥∥J ′λ(un)
∥∥
W−1 −→ 0, as n −→ ∞. (3.13)

Apply Lemma 3.1 with un to obtain the functions ξn : B(0; εn) → R
+ for some εn > 0, such

that ξn(w)(un −w) ∈ Nλ. Choose 0 < ρ < εn. Let u ∈ W with u/≡ 0 and let wρ = ρu/‖u‖. We
set ηρ = ξn(wρ)(un −wρ). Since ηρ ∈ Nλ, we deduce from (3.9) that

Jλ
(
ηρ
) − Jλ(un) ≥ − 1

n

∥∥ηρ − un
∥∥, (3.14)

and by the mean value theorem, we have

〈
J ′λ(un), ηρ − un

〉
+ o
(∥∥ηρ − un

∥∥) ≥ − 1
n

∥∥ηρ − un
∥∥. (3.15)

Thus,

〈
J ′λ(un),−wρ

〉
+
(
ξn
(
wρ

) − 1
)〈
J ′λ(un),

(
un −wρ

)〉 ≥ − 1
n

∥∥ηρ − un
∥∥ + o

(∥∥ηρ − un
∥∥). (3.16)

Since ξn(wρ)(un −wρ) ∈ Nλ and (3.16) it follows that

−ρ
〈
J ′λ(un),

u

‖u‖
〉
+
(
ξn
(
wρ

) − 1
)〈
J ′λ(un) − J ′λ

(
ηρ
)
,
(
un −wρ

)〉 ≥ − 1
n

∥∥ηρ − un
∥∥ + o

(∥∥ηρ − un
∥∥).

(3.17)
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Thus,

〈
J ′λ(un),

u

‖u‖
〉

≤
∥∥ηρ − un

∥∥
nρ

+
o
(∥∥ηρ − un

∥∥)

ρ

+

(
ξn
(
wρ

) − 1
)

ρ

〈
J ′λ(un) − J ′λ

(
ηρ
)
,
(
un −wρ

)〉
.

(3.18)

Since ‖ηρ − un‖ ≤ ρξn(wρ) + |ξn(wρ) − 1|‖un‖ and

lim
ρ→ 0

∣∣ξn
(
wρ

) − 1
∣∣

ρ
≤ ∥∥ξ′n(0)

∥∥, (3.19)

if we let ρ → 0 in (3.18) for a fixed n, then by (3.12)we can find a constantC > 0, independent
of ρ, such that

〈
J ′λ(un),

u

‖u‖
〉

≤ C

n

(
1 +

∥∥ξ′n(0)
∥∥). (3.20)

The proof will be complete once we show that ‖ξ′n(0)‖ is uniformly bounded in n. By (3.1),
(3.12), (f1), (g1), and the Hölder inequality and the Sobolev embedding theorem, we have

〈
ξ′n(0), v

〉 ≤ b‖v‖∣∣∣(p − q)‖un‖p −
(
p∗ − q)∫Ω g|un|p

∗
dx
∣∣∣

for some b > 0. (3.21)

We only need to show that

∣∣∣∣
(
p − q)‖un‖p −

(
p∗ − q)

∫

Ω
g|un|p

∗
dx

∣∣∣∣ > C (3.22)

for some C > 0 and n large enough. We argue by contradiction. Assume that there exists a
subsequence {un} such that

(
p − q)‖un‖p −

(
p∗ − q)

∫

Ω
g|un|p

∗
dx = on(1). (3.23)

By (3.23) and the fact that un ∈ Nλ, we get

‖un‖p =
p∗ − q
p − q

∫

Ω
g|un|p

∗
dx + on(1),

‖un‖p = λ
p∗ − q
p∗ − p

∫

Ω
f |un|qdx + on(1).

(3.24)
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Moreover, by (f1), (g1), and the Hölder inequality and the Sobolev embedding theorem, we
have

‖un‖ ≥
[

p − q(
p∗ − q)∣∣g+

∣∣
∞
Sp

∗/p

]1/(p∗−p)
+ on(1),

‖un‖ ≤
[
λ

(
p∗ − q)∣∣f+

∣∣
∞

p∗ − p S−q/p|Ω|(p∗−q)/p∗
]1/(p−q)

+ on(1).

(3.25)

This implies λ ≥ Λ1 which is a contradiction. We obtain

〈
J ′λ(un),

u

‖u‖
〉

≤ C

n
. (3.26)

This completes the proof of (i).
(ii) Similarly, by using Lemma 3.2, we can prove (ii). We will omit detailed proof here.

Now, we establish the existence of a local minimum for Jλ on N+
λ
.

Theorem 3.4. If λ ∈ (0,Λ1), then Jλ has a minimizer uλ inN+
λ
and it satisfies that

(i)Jλ(uλ) = αλ = α+λ ;
(ii)uλ is a positive solution of (Eλf,g) in C1,α(Ω) for some α ∈ (0, 1).

Proof. By Proposition 3.3(i), there exists a minimizing sequence {un} for Jλ on Nλ such that

Jλ(un) = αλ + on(1), J ′λ(un) = on(1) in W−1. (3.27)

Since Jλ is coercive on Nλ (see Lemma 2.2), we get that {un} is bounded in W . Going if
necessary to a subsequence, we can assume that there exists uλ ∈W such that

un ⇀ uλ weakly in W,

un −→ uλ almost every where in Ω,

un −→ uλ strongly in Ls(Ω) ∀1 ≤ s < p∗.
(3.28)

First, we claim that uλ is a nontrivial solution of (Eλf,g). By (3.27) and (3.28), it is easy to see
that uλ is a solution of (Eλf,g). From un ∈ Nλ and (2.6), we deduce that

λ

∫

Ω
f |un|qdx =

q
(
p∗ − p)

p
(
p∗ − q)‖un‖

p − p∗q
p∗ − qJλ(un). (3.29)

Let n → ∞ in (3.29), by (3.27), (3.28), and αλ < 0, we get

∫

Ω
f |uλ|qdx ≥ − p∗q

p∗ − qαλ > 0. (3.30)
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Thus, uλ ∈ Nλ is a nontrivial solution of (Eλf,g). Now we prove that un → uλ strongly inW
and Jλ(uλ) = αλ. By (3.29), if u ∈ Nλ, then

Jλ(u) =
p∗ − p
p∗p

‖u‖p − p∗ − q
p∗q

λ

∫

Ω
f |u|qdx. (3.31)

In order to prove that Jλ(uλ) = αλ, it suffices to recall that uλ ∈ Nλ, by (3.31), and applying
Fatou’s lemma to get

αλ ≤ Jλ(uλ) =
p∗ − p
p∗p

‖uλ‖p −
p∗ − q
p∗q

λ

∫

Ω
f |uλ|qdx

≤ lim inf
n→∞

(
p∗ − p
p∗p

‖un‖p −
p∗ − q
p∗q

λ

∫

Ω
f |un|qdx

)

≤ lim inf
n→∞

Jλ(un) = αλ.

(3.32)

This implies that Jλ(uλ) = αλ and limn→∞‖un‖p = ‖uλ‖p. Let vn = un−uλ, then Brézis and Lieb
lemma [15] implies that

‖vn‖p = ‖un‖p − ‖uλ‖p + on(1). (3.33)

Therefore, un → uλ strongly in W . Moreover, we have uλ ∈ N+
λ . On the contrary, if uλ ∈

N−
λ , then by Lemma 2.7, there are unique t+0 and t−0 such that t+0uλ ∈ N+

λ and t−0uλ ∈ N−
λ . In

particular, we have t+0 < t
−
0 = 1. Since

d

dt
Jλ
(
t+0uλ

)
= 0,

d2

dt2
Jλ
(
t+0uλ

)
> 0, (3.34)

there exists t+0 < t ≤ t−0 such that Jλ(t+0uλ) < Jλ(tuλ). By Lemma 2.7,

Jλ
(
t+0uλ

)
< Jλ

(
tuλ
)
≤ Jλ

(
t−0uλ

)
= Jλ(uλ), (3.35)

which is a contradiction. Since Jλ(uλ) = Jλ(|uλ|) and |uλ| ∈ N+
λ
, by Lemma 2.3 we may assume

that uλ is a nontrivial nonnegative solution of (Eλf,g). Moreover, from f, g ∈ L∞(Ω), then
using the standard bootstrap argument (see, e.g., [16]) we obtain uλ ∈ L∞(Ω); hence by
applying regularity results [17, 18]we derive that uλ ∈ C1,α(Ω) for some α ∈ (0, 1) and finally,
by the Harnack inequality [19]we deduce that uλ > 0. This completes the proof.

Now, we begin the proof of Theorem 1.4. By Theorem 3.4, we obtain (Eλf,g) that has a
positive solution uλ in C1,α(Ω) for some α ∈ (0, 1).

4. Proof of Theorem 1.5

Next, we will establish the existence of the second positive solution of (Eλf,g) by proving that
Jλ satisfies the (PS)α−

λ
condition.
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Lemma 4.1. Assume that (f1) and (g1) hold. If {un} ⊂ W is a (PS)c-sequence for Jλ, then {un} is
bounded inW .

Proof. We argue by contradiction. Assume that ‖un‖ → ∞. Let ûn = un/‖un‖. Wemay assume
that ûn ⇀ û inW . This implies that ûn → û strongly in Ls(Ω) for all 1 ≤ s < p∗ and

λ

q

∫

Ω
f |ûn|qdx =

λ

q

∫

Ω
f |û|qdx + on(1). (4.1)

Since {un} is a (PS)c-sequence for Jλ and ‖un‖ → ∞, there hold

1
p

∫

Ω
|∇ûn|pdx − λ‖un‖q−p

q

∫

Ω
f |ûn|qdx − ‖un‖p

∗−p

p∗

∫

Ω
g|ûn|p

∗
dx = on(1),

∫

Ω
|∇ûn|pdx − λ‖un‖q−p

∫

Ω
f |ûn|qdx − ‖un‖p

∗−p
∫

Ω
g|ûn|p

∗
dx = on(1).

(4.2)

From (4.1)-(4.2), we can deduce that

∫

Ω
|∇ûn|pdx =

p
(
p∗ − q)

q
(
p∗ − p)‖un‖

q−pλ
∫

Ω
f |û|qdx + on(1). (4.3)

Since 1 ≤ q < 2 and ‖un‖ → ∞, (4.3) implies

∫

Ω
|∇ûn|pdx −→ 0, as n −→ ∞, (4.4)

which is contrary to the fact ‖ûn‖ = 1 for all n.

Lemma 4.2. Assume that (f1) and (g1) hold. If {un} ⊂ W is a (PS)c-sequence for Jλ with
c ∈ (0, (1/N)|g+|−(N−p)/p

∞ SN/p), then there exists a subsequence of {un} converging weakly to a
nontrivial solution of (Eλf,g).

Proof. Let {un} ⊂W be a (PS)c-sequence for Jλ with c ∈ (0, (1/N)|g+|−(N−p)/p
∞ SN/p). We know

from Lemma 4.1 that {un} is bounded inW , and then there exists a subsequence of {un} (still
denoted by {un} and u0 ∈W such that

un ⇀ u0 weakly in W,

un −→ u0 almost every where in Ω,

un −→ u0 strongly in Ls(Ω) ∀1 ≤ s < p∗.
(4.5)

It is easy to see that J ′
λ
(u0) = 0 and

λ

∫

Ω
f(x)|un|qdx = λ

∫

Ω
f(x)|u0|qdx + on(1). (4.6)
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Next we verify that u0 /≡ 0. Arguing by contradiction, we assume u0 ≡ 0. Setting

l = lim
n→∞

∫

Ω
g|un|p

∗
dx. (4.7)

Since J ′λ(un) = on(1) and {un} is bounded, then by (4.6), we can deduce that

0 =
〈
lim
n→∞

J ′λ(un), un
〉

= lim
n→∞

(
‖un‖p −

∫

Ω
g|un|p

∗
)

= lim
n→∞

‖un‖p − l, (4.8)

that is,

lim
n→∞

‖un‖p = l. (4.9)

If l = 0, then we get c = limn→∞Jλ(un) = 0, which contradicts with c > 0. Thus we
conclude that l > 0. Furthermore, the Sobolev inequality implies that

‖un‖p ≥ S
(∫

Ω
|un|p

∗
)p/p∗

≥ S
(∫

Ω

g∣∣g+
∣∣
∞
|un|p

∗
)p/p∗

= S
∣∣g+∣∣−(N−p)/N

∞

(∫

Ω
g|un|p

∗
)p/p∗

.

(4.10)

Then as n → ∞we have

l = lim
n→∞

‖un‖p ≥ S
∣∣g+∣∣−(N−p)/N lim

n→∞

(∫

Ω
g|un|p

∗
)p/p∗

= S
∣∣g+∣∣−(N−p)/N

∞ lp/p
∗
, (4.11)

which implies that

l ≥ ∣∣g+∣∣−(N−p)/p
∞ SN/p. (4.12)

Hence, from (4.6) to (4.12)we get

c = lim
n→∞

Jλ(un)

=
1
p
lim
n→∞

‖un‖p − λ

q
lim
n→∞

∫

Ω
f |un|qdx − 1

p∗
lim
n→∞

∫

Ω
g|un|p

∗
dx

=
(
1
p
− 1
p∗

)
l

≥ 1
N

∣∣g+∣∣−(N−p)/p
∞ SN/p.

(4.13)

This is a contradiction to c < (1/N)|g+|−(N−p)/p
∞ SN/p. Therefore u0 is a nontrivial solution of

(Eλf,g).
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Lemma 4.3. Assume that (f1)-(f2) and (g1)–(g4) hold. Then for any λ > 0, there exists vλ ∈ W
such that

sup
t≥0

Jλ(tvλ) <
1
N

∣∣g+∣∣−(N−p)/p
∞ SN/p. (4.14)

In particular, α−
λ
< (1/N)|g+|−(N−p)/p

∞ SN/p for all λ ∈ (0,Λ1) where Λ1 is as in (1.5).

Proof. For convenience, we introduce the following notations:

I(u) =
∫

Ω

{
1
p
|∇u|p − 1

p∗
g|u|p∗

}
dx,

χB(0,2ρ0) =

⎧
⎨
⎩
1 if x ∈ B(0, 2ρ0

)
,

0 if x /∈B(0, 2ρ0
)
,

Q(u) =
|∇u|pp∣∣∣(gχB(0,2ρ0)

)1/p∗
u
∣∣∣
p

p∗

.

(4.15)

From (g3) to (g4), we know that there exists δ0 ∈ (0, ρ0) such that for all x ∈ B(0, 2δ0),

g(x) = g(0) + o
(
|x|β

)
for some β >

N

p − 1
. (4.16)

Motivated by some ideas of selecting cut-off functions in [20, Lemma 4.1], we take such cut-
off function η(x) that satisfies η(x) ∈ C∞

0 (B(0, 2δ0)), η(x) = 1 for |x| < δ0, η(x) = 0 for
|x| > 2δ0, 0 ≤ η ≤ 1, and |∇η| ≤ C. Define, for ε > 0,

uε(x) =
ε(N−p)/p2η(x)

(
ε + |x|p/(p−1)

)(N−p)/p . (4.17)

Step 1. Show that supt≥0I(tuε) ≤ (1/N)|g+|−(N−p)/p
∞ SN/p +O(ε(N−p)/p).

On that purpose, we need to establish the following estimates (as ε → 0):

∣∣∣(gχB(0,2ρ0)
)1/p∗

uε
∣∣∣
p

p∗
=
∣∣g+∣∣−(N−p)/N

∞ |U|p
Lp

∗ (RN)
+O

(
εN/p

)
, (4.18)

|∇uε|pp = |∇U|p
Lp(RN) +O

(
ε(N−p)/p

)
, (4.19)
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where U(x) = (1 + (x)p/(p−1))
−(N−p)/p ∈ W1,p(RN) is a minimizer of {|∇u|pp/|u|pp∗}u∈W1,p(RN)\{0},

that is,

|∇U|p
Lp(RN)

|U|p
Lp

∗ (RN)

= S = inf
u∈W1,p(RN)\{0}

|∇u|p
Lp(RN)

|u|p
Lp

∗ (RN)

, (4.20)

and ωN = 2πN/2/NΓ(N/2)which is the volume of the unit ball B(0, 1) in R
N . We only show

that equality (4.18) is valid; proofs of (4.19) are very similar to [20]. In view of (4.17), we get
that

∣∣∣∣
(
gχB(0,2ρ0)

)1/p∗
uε

∣∣∣∣
p∗

p∗
=
∫

B(0,2δ0)
g(x)|uε|p

∗
dx =

∫

RN

εN/pηp
∗
(x)g(x)

(
ε + |x|p/(p−1)

)N dx. (4.21)

On the other hand, let x = ε(p−1)/py, we can deduce that

∫

RN

1
(
ε + |x|p/(p−1)

)N dx = ε−N/p
∫

RN

1
(
1 +

∣∣y∣∣p/(p−1)
)N dy = ε−N/p|U|p∗

Lp
∗ (RN)

. (4.22)

Combining with g(0) = g+|∞ and the equalities above, we have

ε−N/p
∣∣g+∣∣

∞|U|p∗
Lp

∗ (RN)
− ε−N/p

∣∣∣(gχB(0,2ρ0)
)1/p∗

uε
∣∣∣
p∗

p∗

=
∫

RN\B(0,δ0)

g(0) − ηp∗(x)g(x)
(
ε + |x|p/(p−1)

)N dx +
∫

B(0,δ0)

g(0) − g(x)
(
ε + |x|p/(p−1)

)N dx,
(4.23)

hence

0 ≤ ε−N/p∣∣g+∣∣
∞|U|p∗

Lp
∗ (RN)

− ε−N/p
∣∣∣(gχB(0,2ρ0)

)1/p∗
uε
∣∣∣
p∗

p∗

≤
∫

RN\B(0,δ0)

g(0)
(
ε + |x|p/(p−1)

)N dx +
∫

B(0,δ0)

o
(
|x|β

)

(
ε + |x|p/(p−1)

)N dx

≤
∫

RN\B(0,δ0)

g(0)

|x|Np/(p−1)dx +
∫

B(0,δ0)

o
(
|x|β

)

|x|Np/(p−1)dx

=NωN

∫∞

δ0

rN−1g(0)
rpN/(p−1)

dr +
∫δ0
0

o
(
rβ
)
rN−1

rpN/(p−1)
dr

=
(
p − 1

)
ωNδ

−N/(p−1)
0 g(0) +

o(1)δβ−(N/(p−1))0

β − (N/(p − 1
)) ≤ C1 = Const.,

(4.24)
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which leads to

0 ≤ 1 − ∣∣g+∣∣−1
∞
∣∣∣(gχB(0,2ρ0)

)1/p∗
uε
∣∣∣
p∗

p∗
|U|−p∗

Lp
∗ (RN)

≤ C1
∣∣g+∣∣−1

∞ |U|−p∗
Lp

∗ (RN)
εN/p, (4.25)

that is,

1 − C1
∣∣g+∣∣−1

∞ |U|−p∗
Lp

∗ (RN)
εN/p ≤ ∣∣g+∣∣−1

∞
∣∣∣(gχB(0,2ρ0)

)1/p∗
uε
∣∣∣
p∗

p∗
|U|−p∗

Lp
∗ (RN)

≤ 1. (4.26)

Now, let ε be small enough such that C1|g+|−1∞ |U|−p∗p∗ ε
N/p < 1, then from (4.26) we can deduce

that

1 − C1
∣∣g+∣∣−1

∞ |U|−p∗
Lp

∗ (RN)
εN/p ≤

(
1 − C1

∣∣g+∣∣−1
∞ |U|−p∗

Lp
∗(RN)ε

N/p

)p/p∗

≤ ∣∣g+∣∣−(N−p)/N
∞

∣∣∣(gχB(0,2ρ0)
)1/p∗

uε
∣∣∣
p

p∗
|U|−p

Lp
∗ (RN)

≤ 1,

(4.27)

which yields that

∣∣g+∣∣(N−p)/N
∞ |U|p

Lp
∗ (RN)

−C1
∣∣g+∣∣−p/N

∞ |U|p−p∗
Lp

∗ (RN)
εN/p≤

∣∣∣(gχB(0,2ρ0)
)1/p∗

uε
∣∣∣
p

p∗
≤∣∣g+∣∣(N−p)/N

∞ |U|p
Lp

∗ (RN)
,

(4.28)

equivalently, equality (4.18) is valid.
Combining (4.18) and (4.19), we obtain that

Q(uε) =
|∇U|p

Lp(RN) +O
(
ε(N−p)/p)

∣∣g+
∣∣(N−p)/N
∞ |U|p

Lp
∗ (RN)

+O
(
εN/p

)

=
∣∣g+∣∣−(N−p)/N

∞
|∇U|p

Lp(RN) +O
(
ε(N−p)/p)

|U|p
Lp

∗ (RN)
+O

(
εN/p

) .

(4.29)

Hence

Q(uε) −
∣∣g+∣∣−(N−p)/N

∞ S =
∣∣g+∣∣−(N−p)/N

∞

⎡
⎣
|∇U|p

Lp(RN) +O
(
ε(N−p)/p)

|U|p
Lp

∗(RN) +O
(
εN/p

) −
|∇U|p

Lp(RN)

|U|p
Lp

∗(RN)

⎤
⎦

=
∣∣g+∣∣−(N−p)/N

∞

⎡
⎢⎢⎣
|U|p

Lp
∗(RN)O

(
ε(N−p)/p) − |∇U|p

Lp(RN)O
(
εN/p

)
(
|U|p

Lp
∗(RN) +O

(
εN/p

))|U|p
Lp

∗(RN)

⎤
⎥⎥⎦

= O
(
ε(N−p)/p

)
.

(4.30)
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Using the fact that

max
t≥0

(
tp

p
a − tp∗

p∗
b

)
=

1
N

(
a

bp/p
∗

)N/p

for any a, b > 0, (4.31)

we can deduce that

sup
t≥0

I(tuε) =
1
N

(Q(uε))N/p. (4.32)

From (4.30), we conclude that supt≥0 I(tuε) ≤ (1/N)|g+|−(N−p)/p
∞ SN/p +O(ε(N−p)/p).

Step 2. We claim that for any λ > 0 there exists a constant ελ > 0 such that supt≥0 Jλ(tuελ) <
(1/N)|g+|−(N−p)/p

∞ SN/p.
Using the definitions of Jλ, uε and by (f2), (g3), we get

Jλ(tuε) ≤ tp

p
|∇uε|pp, ∀t ≥ 0, ∀λ > 0. (4.33)

Combining this with (4.19), let ε ∈ (0, 1), then there exists t0 ∈ (0, 1) independent of ε such
that

sup
0≤t≤t0

Jλ(tuε) <
1
N

∣∣g+∣∣−(N−p)/p
∞ SN/p, ∀λ > 0, ∀ε ∈ (0, 1). (4.34)

Using the definitions of Jλ, uε, and by the results in Step 1 and (f2), we have

sup
t≥t0

Jλ(tuε) = sup
t≥t0

(
I(tuε) − tq

q
λ

∫
f(x)|uε|qdx

)

≤ 1
N

∣∣g+∣∣−(N−p)/p
∞ SN/p +O

(
ε(N−p)/p

)
− t

q

0

q
β0λ

∫

B(0,δ0)
|uε|qdx.

(4.35)

Let 0 < ε ≤ δp/(p−1)0 , we have

∫

B(0,δ0)
|uε|qdx =

∫

B(0,δ0)

εq(N−p)/p2

(
ε + |x|p/(p−1)

)((N−p)/p)q dx

≥
∫

B(0,δ0)

εq(N−p)/p2

(
2δp/(p−1)0

)((N−p)/p)q dx

= C2
(
N,p, q, δ0

)
ε(q(N−p))/p2 .

(4.36)
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Combining (4.35) and (4.36), for all ε ∈ (0, δp/(p−1)0 ), we get

sup
t≥t0

Jλ(tuε) ≤ 1
N

∣∣g+
∣∣−(N−p)/p
∞ SN/p +O

(
ε(N−p)/p) − t

q

0

q
β0C2λε

q(N−p)/p2 . (4.37)

Hence, for any λ > 0, we can choose small positive constant ελ < min{1, δp/(p−1)0 } such that

O
(
ελ

(N−p)/p
)
− t

q

0

q
β0C2λελ

q(N−p)/p2 < 0. (4.38)

From (4.34), (4.37), (4.38), we can deduce that for any λ > 0, there exists ελ > 0 such that

sup
t≥0

Jλ(tuελ) <
1
N

∣∣g+∣∣−(N−p)/p
∞ SN/p. (4.39)

Step 3. Prove that α−
λ
< (1/N)SN/p for all λ ∈ (0,Λ1).

By (f2), (g2), and the definition of uε, we have

∫

Ω
f(x)|uε|qdx > 0,

∫

Ω
g(x)|uε|p

∗
dx > 0. (4.40)

Combining this with Lemma 2.7(ii), from the definition of α−λ and the results in Step 2, for
any λ ∈ (0,Λ1), we obtain that there exists tελ > 0 such that tελuελ ∈ N−

λ and

α−λ ≤ Jλ(tελuελ) ≤ sup
t≥0

Jλ(tuελ) <
1
N

∣∣g+∣∣−(N−p)/p
∞ SN/p. (4.41)

This completes the proof.

Now, we establish the existence of a local minimum of Jλ on N−
λ .

Theorem 4.4. If λ ∈ (0, (q/p)Λ1), then Jλ satifies the (PS)α−
λ
condition. Moreover, Jλ has a minimizer

Uλ inN−
λ
and satisfies that

(i)Jλ(Uλ) = α−λ ;
(ii)Uλ is a positive solution of (Eλf,g) in C1,α(Ω) for some α ∈ (0, 1),

where Λ1 is as in (1.5).

Proof. If λ ∈ (0, (q/p)Λ1), then by Theorem 2.6(ii), Proposition 3.3(ii), and Lemma 4.3, there
exists a (PS)α−

λ
-sequence {un} ⊂ N−

λ in W for Jλ with α−λ ∈ (0, (1/N)|g+|−(N−p)/p
∞ SN/p). From

Lemma 4.2, there exists a subsequence still denoted by {un} and nontrivial solution Uλ ∈ W
of (Eλf,g) such that un ⇀ Uλ weakly inW . Now we prove that un → Uλ strongly inW and
Jλ(Uλ) = α−λ . By (3.29), if u ∈ Nλ, then

Jλ(u) =
p∗ − p
p∗p

‖u‖p − p∗ − q
p∗q

λ

∫

Ω
f |u|qdx. (4.42)
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First, we prove that Uλ ∈ N−
λ . On the contrary, if Uλ ∈ N+

λ , then by N−
λ closed inW , we have

‖Uλ‖ < lim infn→∞‖un‖. By Lemma 2.7, there exists a unique t−
λ
such that t−

λ
Uλ ∈ N−

λ
. Since

un ∈ N−
λ
, Jλ(un) ≥ Jλ(tun) for all t ≥ 0 and by (4.42), we have

α−λ ≤ Jλ
(
t−λUλ

)
< lim

n→∞
Jλ
(
t−λun

) ≤ lim
n→∞

Jλ(un) = α−λ, (4.43)

and this is contradiction.
In order to prove that Jλ(Uλ) = α−

λ
, it suffices to recall that un,Uλ ∈ N−

λ
for all n, by

(4.42), and applying Fatou’s lemma to get

α−λ ≤ Jλ(Uλ) =
p∗ − p
p∗p

‖Uλ‖p −
p∗ − q
p∗q

λ

∫

Ω
f |Uλ|qdx

≤ lim inf
n→∞

(
p∗ − p
p∗p

‖un‖p −
p∗ − q
p∗q

λ

∫

Ω
f |un|qdx

)

≤ lim inf
n→∞

Jλ(un) = α−λ.

(4.44)

This implies that Jλ(Uλ) = α−
λ
and limn→∞‖un‖p = ‖Uλ‖p. Let vn = un −Uλ, then Brézis and

Lieb lemma [15] implies that

‖vn‖p = ‖un‖p − ‖Uλ‖p + on(1). (4.45)

Therefore, un → Uλ strongly inW .
Since Jλ(Uλ) = Jλ(|Uλ|) and |Uλ| ∈ N−

λ
, by Lemma 2.3 we may assume that Uλ is

a nontrivial nonnegative solution of (Eλf,g). Finally, by using the same arguments as in the
proof of Theorem 3.4, for all λ ∈ (0, (q/p)Λ1), we have thatUλ is a positive solution of (Eλf,g)
in C1,α(Ω) for some α ∈ (0, 1).

Now, we complete the proof of Theorem 1.5. By Theorems 3.4 and 4.4, if λ ∈
(0, (q/p)Λ1), then we obtain (Eλf,g) that has two positive solutions uλ and Uλ such that
uλ ∈ N+

λ
, Uλ ∈ N−

λ
, and uλ,Uλ ∈ C1,α(Ω) for some α ∈ (0, 1). Since N+

λ
∩ N−

λ
= ∅, this

implies that uλ andUλ are distinct.
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and global multiplicity for some quasilinear elliptic equations,” Communications in Contemporary
Mathematics, vol. 2, no. 3, pp. 385–404, 2000.

[4] S. Prashanth and K. Sreenadh, “Multiplicity results in a ball for p-Laplace equation with positive
nonlinearity,” Advances in Differential Equations, vol. 7, no. 7, pp. 877–896, 2002.

[5] M. Tang, “Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex
nonlinearities,” Proceedings of the Royal Society of Edinburgh, vol. 133, no. 3, pp. 705–717, 2003.



24 Abstract and Applied Analysis

[6] T.-F. Wu, “On semilinear elliptic equations involving concave-convex nonlinearities and sign-
changing weight function,” Journal of Mathematical Analysis and Applications, vol. 318, no. 1, pp. 253–
270, 2006.

[7] T. S. Hsu, “On a class of quasilinear elliptic problems involving concave-convex nonlinearities and
sign-changing weight functions,” submitted.

[8] N. Hirano, C. Saccon, and N. Shioji, “Existence of multiple positive solutions for singular elliptic
problems with concave and convex nonlinearities,” Advances in Differential Equations, vol. 9, no. 1-2,
pp. 197–220, 2004.

[9] D. G. de Figueiredo, J.-P. Gossez, and P. Ubilla, “Local “superlinearity” and “sublinearity” for the
p-Laplacian,” Journal of Functional Analysis, vol. 257, no. 3, pp. 721–752, 2009.

[10] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations,
vol. 65 of CBMS Regional Conference Series in Mathematics, American Mathematical Society,
Washington, DC, USA, 1986.

[11] G. Tarantello, “On nonhomogeneous elliptic equations involving critical Sobolev exponent,” Annales
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