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1. Introduction

Let E be a Banach space with norm ‖ · ‖, let E∗ denote the dual of E, and let 〈x, f〉 denote
the value of f ∈ E∗ at x ∈ E. Let T : E → E∗ be an operator. The problem of finding v ∈ E
satisfying 0 ∈ Tv is connected with the convex minimization problems. When T is maximal
monotone, a well-known method for solving the equation 0 ∈ Tv in Hilbert space H is the
proximal point algorithm (see [1]): x1 = x ∈ H and

xn+1 = Jrnxn, n = 1, 2, . . . , (1.1)

where rn ⊂ (0,∞) and Jr = (I + rT)−1 for all r > 0 is the resolvent operator for T. Rockafellar
[1] proved the weak convergence of the algorithm (1.1).

The modifications of the proximal point algorithm for different operators have been
investigated bymany authors. Recently, Kohsaka and Takahashi [2] considered the algorithm
(1.2) in a smooth and uniformly convex Banach space and Kamimura et al. [3] considered the
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algorithm (1.3) in a uniformly smooth and uniformly convex Banach space E; x1 = x ∈ E, u ∈
E and

xn+1 = J−1
(
αnJu + (1 − αn)J Jrnxn

)
, n = 1, 2, . . . , (1.2)

xn+1 = J−1(αnJxn + (1 − αn)J Jrnxn), n = 1, 2, . . . , (1.3)

where Jr = (J + rT)−1J, J is the duality mapping of E. They showed that the algorithm (1.2)
converges strongly to some element of T−10 and the algorithm (1.3) converges weakly to
some element of T−10 provided that the sequences {αn} and {rn} of real numbers are chosen
appropriately. These results extend the Kamimura and Takahashi [4] results in Hilbert spaces
to those in Banach spaces.

In 2008, motivated by Kim and Xu [5], Li and Song [6] studied a combination of the
schemes of (1.2) and (1.3); x1 = x ∈ E and

yn = J−1(αnJxn + (1 − αn)J Jrnxn),

xn+1 = J−1
(
βnJx +

(
1 − βn

)
Jyn

)
,

(1.4)

for every n = 1, 2, . . . ,where Jr = (J + rT)−1J, J is the duality mapping of E. They also proved
strong and weak convergence theorems and give an estimate for the rate of convergence of
the algorithm (1.4).

Very recently, Ibaraki and Takahashi [7] introduced the Mann iteration and Harpern
iteration for new resovents of maximal monotone operator in a uniformly smooth and
uniformly convex Banach space E; x1 = x ∈ E u ∈ E and

xn+1 = αnu + (1 − αn)Jrnxn, n = 1, 2, . . . , (1.5)

xn+1 = αnxn + (1 − αn)Jrnxn, n = 1, 2, . . . , (1.6)

where Jr = (I + rBJ)−1, J is the duality mapping of E, and B ⊂ E∗ × E is maximal monotone.
They proved that Algorithm (1.5) converges strongly to some element of (BJ)−10 and
Algorithm (1.6) converges weakly to some element of (BJ)−10 provided that the sequences
{αn} and {rn} of real numbers are chosen appropriately.

Inspired and motivated by Li and Song [6] and Ibaraki and Takahashi [7], we study a
combination of the schemes of (1.5) and (1.6); x1 = x ∈ E and

yn = αnxn + (1 − αn)Jrnxn,

xn+1 = βnx +
(
1 − βn

)
yn,

(1.7)

for every n = 1, 2, . . . , where Jr = (I + rBJ)−1, J is the duality mapping of E, and B ⊂ E∗ × E
is maximal monotone. When αn ≡ 0, Algorithm (1.7) reduces to (1.5) and, when βn ≡ 0,
Algorithm (1.7) reduces to (1.6). Then, we prove strong and weak convergence theorems of
the sequence and we also estimate the rate of the convergence of algorithm (1.7). Finally, by
using our main result, we consider the problem of finding minimizes of convex functions
defined on Banach spaces.
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2. Preliminaries

Let E be a real Banach space with dual space E∗. When {xn} is a sequence in E, we denote
strong convergence of {xn} to x ∈ E by xn → x and weak convergence by xn ⇀ x,
respectively. As usual, we denote the duality pairing of E∗ by 〈x, x∗〉, when x∗ ∈ E∗ and x ∈ E,
and the closed unit ball by UE, and denote by R and N the set of all real numbers and the set
of all positive integers, respectively. The set R+ stands for [0,+∞) and R+ = R+ ∪ {+∞}. An
operator T ⊂ E×E∗ is said to be monotone if 〈x−y, x∗ −y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ T .
We denote the set {x ∈ E : 0 ∈ Tx} by T−10. A monotone T is said to be maximal if its graph
G(T) = {(x, y) : y ∈ Tx} is not properly contained in the graph of any other monotone
operator. If T is maximal monotone, then the solution set T−10 is closed and convex. If
E is reflexive and strictly convex, then a monotone operator T is maximal if and only if
R(J + λT) = E∗ for each λ > 0 (see [8, 9] for more details).

The normalized duality mapping J from E into E∗ is defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E. (2.1)

We recall [10] that E is reflexive if and only if J is surjective; E is smooth if and only if J is
single-valued.

Let E be a smooth Banach space. Consider the following function: (see [11])

φ
(
x, y
)
= ‖x‖2 − 2

〈
x, Jy

〉
+
∥∥y
∥∥2, ∀x, y ∈ E. (2.2)

It is obvious from the definition of φ that (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖ + ‖y‖)2, for all x, y ∈ E.
We also know that

φ
(
x, y
)
+ φ
(
y, x
)
= 2
〈
x − y, Jx − Jy

〉
, for each x, y ∈ E. (2.3)

We recall [12] that the functional ‖ · ‖2 is called totally convex at x if the function ν(x, t) :
[0,∞) → [0,∞] defined by

ν(x, t) = inf
{
φ
(
y, x
)
: y ∈ E,

∥∥y − x
∥∥ = t

}
, (2.4)

is positive whenever t > 0. The functional ‖ · ‖2 is called totally convex on bounded sets if
for each bounded nonempty subset A of E, the function ν(A, t) : [0,∞) → [0,∞] defined by
ν(A, t) = inf{ν(x, t) : x ∈ A} is positive on (0,∞).

It is well known that if a Banach space E is uniformly convex, then ‖ · ‖2 is totally
convex on any bounded nonempty set. It is known that (see [12]) if ‖ · ‖2 is totally convex on
a bounded set A, then ν(A, ct) ≥ cν(A, t) for c ≥ 1 and t ≥ 0, and ν(A, ·) is strictly increasing
on [0,∞).

Lemma 2.1 (see [13]). Let E be a uniformly convex, smooth Banach space, and let {xn} and {yn} be
sequences in E. If {xn} or {yn} is bounded and limn→∞φ(xn, yn) = 0, then limn→∞‖xn − yn‖ = 0.



4 Abstract and Applied Analysis

Let E be a reflexive, strictly convex, smooth Banach space, and J the duality mapping
from E into E∗. Then J−1 is also single-valued, one-to-one, surjective, and it is the duality
mapping from E∗ into E. We make use of the following mapping V studied in Alber [11]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.5)

for all x ∈ E and x∗ ∈ E∗. In other words, V (x, x∗) = φ(x, J−1(x)) for all x ∈ E and x∗ ∈ E∗.

Lemma 2.2 (see [7]). Let E be a reflexive, strictly convex, smooth Banach space, and let V be as in
(2.5). Then

V (x, x∗) + 2〈y, Jx − x∗〉 ≤ V
(
x + y, x∗) (2.6)

for all x, y ∈ E and x∗ ∈ E∗.

Let E be a smooth Banach space and let D be a nonempty closed convex subset of E.
A mapping R : D → D is called generalized nonexpansive if F(R)/= ∅ and φ(Rx, y) ≤ φ(x, y)
for each x ∈ D and y ∈ F(R), where F(R) is the set of fixed points of R. Let C be a nonempty
closed subset of E. A mapping R : E → C is said to be sunny if

R(Rx + t(x − Rx)) = Rx, ∀x ∈ E, ∀t ≥ 0. (2.7)

A mapping R : E → C is said to be a retraction if Rx = x, for all x ∈ C. If E is smooth and
strictly convex, then a sunny generalized nonexpansive retraction of E onto C is uniquely
decided if it exists (see [14]). We also know that if E is reflexive, smooth, and strictly convex
and C is a nonempty closed subset of E, then there exists a sunny generalized nonexpansive
retraction RC of E onto C if and only if J(C) is closed and convex. In this case, RC is given
by RC = J−1ΠJ(C) J see [15]. Let C be a nonempty closed subset of a Banach space E. Then
C is said to be a sunny generalized nonexpansive retract (resp., a generalized nonexpansive
retract) of E if there exists a sunny generalized nonexpansive retraction (resp, a generalized
nonexpansive retraction) of E onto C (see [14] for more detials). The set of fixed points of
such a generalized nonexpansive retraction is C. The following lemma was obtained in [14].

Lemma 2.3 (see [14]). Let C be a nonempty closed subset of a smooth and strictly convex Banach
space E. Let RC be a retraction of E onto C. Then RC is sunny and generalized nonexpansive if and
only if

〈x − RCx, JRCx − Jy〉 ≥ 0, (2.8)

for each x ∈ E and y ∈ C, where J is the duality mapping of E.

Let E be a reflexive, strictly convex, and smooth Banach space with its dual E∗. If a
monotone operator B ⊂ E∗ × E is maximal, then (BJ)−10 is closed and E = R(I + rBJ) for
all r > 0 (see [14]). So, for each r > 0 and x ∈ E, we can consider the set Jr(x) = {z ∈
E : x ∈ z + rBJz}. From [14], Jrx consists of one point. We denote such a Jr by (I + rBJ)−1.
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However Jr is called a generalized resolvent of B.We also know that (BJ)−10 = F(Jr) for each
r > 0, where F(Jr) is the set of fixed points of Jr and Jr is generalized nonexpansive for each
r > 0 (see [14]). The Yosida approximtion of B is defined by Ar = (I − Jr)/r. We know that
(J Jrx,Arx) ∈ B; (see [14] for more detials). The following result was obtained in [14].

Theorem 2.4 (see [14]). Let E be a uniformly convex Banach space with a Fréchet differentiable
norm and let B ⊂ E∗ × E be a maximal monotone operator with B−10/= ∅. Then the following hold:

(1) for each x ∈ E, limr→∞ Jrx exists and belongs to (BJ)−10,

(2) if Rx := limr→∞ Jrx for each x ∈ E, then R is a sunny generalized nonexpansive retraction
of E onto (BJ)−10.

Lemma 2.5 (see [7]). Let E be a reflexive, strictly convex, and smooth Banach space, let B ⊂ E∗ × E
be a maximal monotone operator with B−10/= ∅, and Jr = (I + rBJ)−1 for all r > 0. Then

φ(x, Jrx) + φ(Jrx, u) ≤ φ(x, u), (2.9)

for all r > 0, u ∈ (BJ)−10, and x ∈ E.

Lemma 2.6 (see [16]). Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 − αn)sn + αntn + rn, n ≥ 1, (2.10)

where {αn}, {tn}, and {rn} satisfy the conditions: {αn} ⊂ [0, 1],
∑∞

n=1 αn = ∞, lim supn→∞tn ≤ 0,
and rn ≥ 0,

∑∞
n=1 rn < ∞. Then, limn→∞sn = 0.

Lemma 2.7 (see [17]). Let {αn} and {βn} be sequence of nonnegative real numbers satisfying

αn+1 ≤ αn + βn, (2.11)

for all n ∈ N. If
∑∞

n=1 βn < +∞. Then {αn} has a limit in [0,+∞).

3. Convergence Theorems

In this section, we first prove a strong convergence theorem for the algorithm (1.7) which
extends the previous result of Ibaraki and Takahashi [7] and we next prove a weak
convergence theorem for algorithm (1.7) under different conditions on data, respectively.

Theorem 3.1. Let E be a uniformly convex Banach space whose norm is uniformly Gâteaux
differentiable. Let B ⊂ E∗ ×E be a maximal monotone operator with B−10/= ∅ and let Jr = (I + rBJ)−1

for all r > 0. Let {xn} be a sequence generated by x1 = x ∈ E and

yn = αnxn + (1 − αn)Jrnxn,

xn+1 = βnx +
(
1 − βn

)
yn,

(3.1)
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for every n = 1, 2, . . . , where {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy limn→∞αn = 0, limn→∞βn =
0,
∑∞

n=1 βn = ∞ and limn→∞rn = ∞. Then the sequence {xn} converges strongly to R(BJ)−10(x),
where R(BJ)−10 is a sunny generalized nonexpansive retraction of E onto (BJ)−10.

Proof. Note that B−10/= ∅ implies (BJ)−10/= ∅. In fact, if u∗ ∈ B−10, we obtain 0 ∈ Bu∗ and hence
0 ∈ BJ J−1u∗. So, we have J−1u∗ ∈ (BJ)−10. We denote a sunny generalized nonexpansive
retraction R(BJ)−10 of E onto (BJ)−10 by R. Let z ∈ (BJ)−10. We first prove that {xn} is bounded.
From Lemma 2.5 and the convexity of ‖ · ‖2, we have

φ
(
yn, z

)
= φ(αnxn + (1 − αn)Jrnxn, z)

≤ αnφ(xn, z) + (1 − αn)φ(Jrnxn, z)

≤ αnφ(xn, z) + (1 − αn)
{
φ(xn, z) − φ(xn, Jrnxn)

}

≤ αnφ(xn, z) + (1 − αn)φ(xn, z) = φ(xn, z),

(3.2)

for all n ∈ N. By (3.2), we have

φ(xn+1, z) = φ
(
βnx +

(
1 − βn

)
yn, z

)

≤ βnφ(x, z) +
(
1 − βn

)
φ
(
yn, z

)

≤ βnφ(x, z) +
(
1 − βn

)
φ(xn, z),

(3.3)

for all n ∈ N. Hence, by induction, we have φ(xn, z) ≤ φ(x, z) for all n ∈ N and, therefore,
{φ(xn, z)} is bounded. This implies that {xn} is bounded. Since φ(yn, z) ≤ φ(xn, z) and
φ(Jrnxn, z) ≤ φ(xn, z) for all n ∈ N, it follows that {yn} and {Jrnxn} are also bounded. We
next prove that

lim
n→∞

sup〈x − Rx, Jxn − JRx〉 ≤ 0. (3.4)

Put un = xn+1 for all n ∈ N. Since {Jun} is bounded, without loss of generality, we have a
subsequence {Juni} of {Jun} such that

lim
i→∞

〈x − Rx, Juni − JRx〉 = lim
n→∞

sup〈x − Rx, Jun − JRx〉, (3.5)

and {Juni} converges weakly to some v∗ ∈ E∗. From the definition of {xn}, we have

un − yn = βn
(
x − yn

)
, yn − Jrnxn = αn(xn − Jrnxn) (3.6)

for all n ∈ N. Since {yn} is bounded and βn → 0 as n → ∞, it follows that

lim
n→∞

‖un − yn‖ = lim
n→∞

βn‖x − yn‖ = 0. (3.7)
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Moreover, we note that

lim
n→∞

‖yn − Jrnxn‖ = lim
n→∞

αn‖xn − Jrnxn‖ = 0. (3.8)

By (3.7) and (3.8), we have

lim
n→∞

‖un − Jrnxn‖ = 0. (3.9)

Since E has a uniformly Gâteaux differentiable norm, the duality mapping J is norm toweak∗

uniformly continuous on each bounded subset of E. Therefore, we obtain from (3.9) that

Juni − JJrni xni ⇀ 0, as i −→ ∞. (3.10)

This implies that J Jrni xni ⇀ v∗ as i → ∞. On the other hand, from rn → ∞ as n → ∞, we
have

lim
n→∞

‖Arnxn‖ = lim
n→∞

1
rn
‖xn − Jrnxn‖ = 0. (3.11)

If (y∗, y) ∈ B, then it holds from the monotonicity of B that

〈y −Arni
xni , y

∗ − JJrni xni〉 ≥ 0, (3.12)

for all i ∈ N. Letting i → ∞, we get 〈y, y∗ −v∗〉 ≥ 0. Then, the maximal of B implies v∗ ∈ B−10.
Put v = J−1v∗. Applying Lemma 2.3, we obtain

lim
n→∞

sup〈x − Rx, Jun − JRx〉 = lim
i→∞

〈x − Rx, Juni − JRx〉

= 〈x − Rx, v∗ − JRx〉
= 〈x − Rx, Jv − JRx〉 ≤ 0.

(3.13)

Finally, we prove that xn → Rx as n → ∞. From Lemma 2.2, the convexity of ‖ · ‖2 and (3.2),
we have

φ(xn+1, Rx) = V
(
βnx +

(
1 − βn

)
yn, JRx

)

≤ V
(
βnx +

(
1 − βn

)
yn − βn(x − Rx), JRx

)

− 2〈−βn(x − Rx), Jxn+1 − JRx〉
= V
(
βnRx +

(
1 − βn

)
yn, JRx

)
+ 2βn〈x − Rx, Jxn+1 − JRx〉

= φ
(
βnRx +

(
1 − βn

)
yn, Rx

)
+ 2βn〈x − Rx, Jxn+1 − JRx〉

≤ βnφ(Rx,Rx) +
(
1 − βn

)
φ
(
yn, Rx

)
+ 2βn〈x − Rx, Jxn+1 − JRx〉

≤ (1 − βn
)
φ(xn, Rx) + βnσn,

(3.14)
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for all n ∈ N, where σn = 2〈x − Rx, Jxn+1 − JRx〉. It easily verified from the assumption and
(3.4) that

∑∞
n=1 βn = ∞ and lim supn→∞σn ≤ 0. Hence, by Lemma 2.6, limn→∞φ(xn, Rx) = 0.

Applying Lemma 2.1, we obtain limn→∞‖xn −Rx‖ = 0. Therefore, {xn} converges strongly to
R(BJ)−10(x).

Put αn ≡ 0 in Theorem 3.1, then we obtain the following result.

Corollary 3.2 (see Ibaraki and Takahashi [7]). Let E be a uniformly convex and uniformly smooth
Banach space and let B ⊂ E∗ × E be a maximal monotone operator with B−10/= ∅, let Jr = (I + rBJ)−1

for all r > 0, and let {xn} be a sequence generated by x1 = x ∈ E and

xn+1 = βnx +
(
1 − βn

)
Jrnxn, (3.15)

for every n = 1, 2, . . . , where {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy limn→∞βn = 0,
∑∞

n=1 βn = ∞
and limn→∞rn = ∞. Then the sequence {xn} converges strongly to R(BJ)−10(x), where R(BJ)−10 is the

generalized projection of E onto (BJ)−10.

Theorem 3.3. Let E be a uniformly convex and smooth Banach space whose duality mapping J is
weakly sequentially continuous. Let B ⊂ E∗ × E be a maximal monotone operator with B−10/= ∅ and
let Jr = (I + rBJ)−1 for all r > 0. Let {xn} be a sequence generated by x1 = x ∈ E and

yn = αnxn + (1 − αn)Jrnxn,

xn+1 = βnx +
(
1 − βn

)
yn,

(3.16)

for every n = 1, 2, . . . , where {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy
∑∞

n=1 βn < ∞,
lim supn→∞αn < 1 and lim infn→∞rn > 0. Then the sequence {xn} converges weakly to an element
of (BJ)−10.

Proof. Let v ∈ (BJ)−10. Then, from (3.3), we have

φ(xn+1, v) ≤
(
1 − βn

)
φ(xn, v) + βnφ(x, v) ≤ φ(xn, v) + βnφ(x, v), (3.17)

for all n ∈ N. By Lemma 2.7, limn→∞φ(xn, v) exists. From (‖xn‖ − ‖v‖)2 ≤ φ(xn, v) and
φ(Jrnxn, v) ≤ φ(xn, v), we note that {xn} and {Jrnxn} are bounded. From (3.3) and (3.2), we
have

φ(xn+1, v) ≤ βnφ(x, v) +
(
1 − βn

)
φ
(
yn, v

)

≤ βnφ(x, v) +
(
1 − βn

){
αnφ(xn, v) + (1 − αn)

(
φ(xn, v) − φ(xn, Jrnxn)

)}

= βnφ(x, v) +
(
1 − βn

){
φ(xn, v) − (1 − αn)φ(xn, Jrnxn)

}

= βnφ(x, v) +
(
1 − βn

)
φ(xn, v) −

(
1 − βn

)
(1 − αn)φ(xn, Jrnxn),

(3.18)
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for all n ∈ N and hence,

(
1 − βn

)
(1 − αn)φ(xn, Jrnxn) ≤ βnφ(x, v) +

(
1 − βn

)
φ(xn, v) − φ(xn+1, v)

= βn
(
φ(x, v) − φ(xn, v)

)
+ φ(xn, v) − φ(xn+1, v),

(3.19)

for all n ∈ N. Since limn→∞βn = 0 and lim supn→∞αn < 1, limn→∞φ(xn, Jrnxn) = 0. Applying
Lemma 2.1, we obtain

lim
n→∞

‖xn − Jrnxn‖ = 0. (3.20)

Since {xn} is bounded, we have a subsequence {xni} of {xn} such that xni ⇀ w ∈ E as i → ∞.
Then it follows from (3.20) that Jrni xni ⇀ w as i → ∞. On the other hand, from (3.20) and
lim infn→∞rn > 0, we have

lim
n→∞

‖Arnxn‖ = lim
n→∞

1
rn
‖xn − Jrnxn‖ = 0. (3.21)

Let (z∗, z) ∈ B. Then, it holds from monotonicity of B that

〈z −Arni
xni , z

∗ − JJrni xni〉 ≥ 0, (3.22)

for all i ∈ N. Since J is weakly sequentially continuous, letting i → ∞, we get 〈z, z∗ −Jw〉 ≥ 0.
Then, the maximality of B implies Jw ∈ B−10. Thus, w ∈ (BJ)−10.

Let {xni} and {xnj} be two subsequences of {xn} such that xni ⇀ w1 and xnj ⇀ w2.
By similar argument as above, we obtain w1, w2 ∈ (BJ)−10. Put a := limn→∞(φ(xn,w1) −
φ(xn,w2)).

Note that φ(xn,w1) − φ(xn,w2) = 2〈xn, Jw2 − Jw1〉 + ‖w1‖2 − ‖w2‖2, n = 1, 2, . . . . From
xni ⇀ w1 and xnj ⇀ w2, we have

a = 2〈w1, Jw2 − Jw1〉 + ‖w1‖2 − ‖w2‖2, (3.23)

a = 2〈w2, Jw2 − Jw1〉 + ‖w1‖2 − ‖w2‖2, (3.24)

respectively. Combining (3.23) and (3.24), we have

〈w1 −w2, Jw1 − Jw2〉 = 0. (3.25)

Since J is strictly monotone, it follows that w1 = w2. Therefore, {xn} converges weakly to an
element of (BJ)−10.

Put βn ≡ 0 in Theorem 3.3, then we obtain the following result.

Corollary 3.4 (see Ibaraki and Takahashi [7]). Let E be a uniformly convex and smooth Banach
space whose duality mapping J is weakly sequentially continuous. Let B ⊂ E∗ × E be a maximal
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monotone operator with B−10/= ∅, let Jr = (I + rBJ)−1 for all r > 0 and let {xn} be a sequence
generated by x1 = x ∈ E and

xn+1 = βnxn +
(
1 − βn

)
Jrnxn, (3.26)

for every n = 1, 2, . . . , where {αn},{βn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy
∑∞

n=1 βn < ∞,
lim supn→∞αn < 1 and lim infn→∞rn > 0. Then the sequence {xn} converges weakly to an element
of (BJ)−10.

4. Rate of Convergence for the Algorithm

In this section, we study the rate of the convergence of the algorithm (1.7). We use the
following notations in [6, 18]:

N0 :=
{
ϕ : R+ → R+ | t �→ ϕ(t) is nondecreasing for t ≥ 0, ϕ(0) = 0

}
,

Ω0 :=
{
ϕ : R+ → R+ | ϕ(0) = 0, lim

t→ 0+
ϕ(t) = 0

}
,

Γ0 :=
{
ϕ : R+ → R+ | ϕ is lsc and convex and ϕ(t) = 0 ⇐⇒ t = 0

}
,

Σ1 :=
{
ϕ : R+ → R+ | ϕ is lsc and convex, ϕ(0) = 0, lim

t→ 0+
t−1ϕ(t) = 0

}
.

(4.1)

We recall [18] that, for a function ϕ : R+ → R+ satisfying ϕ(0) = 0, its pseudoconjugate
ϕ# : R+ → R+, defined by

ϕ#(s) := sup
{
st − ϕ(t) | t ≥ 0

} ∈ R, (4.2)

is lower semicontinuous, convex and satisfies ϕ#(0) = 0, ϕ#(s) ≥ 0 for all s ≥ 0.
For a function ϕ ∈ N0, its greatest quasi-inverse ϕh : R+ → R+, defined by

ϕh(s) := sup
{
t ≥ 0 | ϕ(t) ≤ s

}
, (4.3)

is nondecreasing. It is known [18] that ϕh ∈ N0 ∩Ω0 if ϕ(t) = 0 ⇔ t = 0.
For a function ϕ : R → R, its lower semicontinuous convex hull, denoted by coϕ, is

defined by epi(coϕ) = cl(co(epiϕ)). It is obvious that coϕ is lower semicontinuous convex and
coϕ ≤ ϕ.

Proposition 4.1. Let E be uniformly convex and uniformly smooth. Then, for every r > 0, there exists
σr ∈ Σ1 such that, for all x, y ∈ rUE,

〈y − x, Jy − Jx〉 ≤ σr

(‖Jy − Jx‖). (4.4)
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Proof. Since E is uniformly convex, f(x) = (1/2)‖x‖2 is uniform convex on rUE for all r >
0. Since the norm of E is Fréchet differentiable, its Fréchet derivative ∇f(x) = Jx. In [18,
Proposition 3.6.5] for f and B = rUE, where r is an arbitrary positive real number, we get the
function ϑr(·) : [0,+∞) → [0,+∞), defined by

ϑr(t) := inf
{
1
2
∥
∥y
∥
∥2 − 1

2
‖x‖2 − 〈y − x, Jx

〉
: x ∈ rUE, y ∈ E, ‖y − x‖ = t

}
, (4.5)

satisfies that ϑr(t) = 0 if and only if t = 0, and t−1ϑr(t) is nondecreasing. Thus,

1
2
∥
∥y
∥
∥2 − 1

2
‖x‖2 − 〈y − x, Jx〉 ≥ ϑr

(‖y − x‖) (4.6)

for all x ∈ rUE, y ∈ E and hence

1
2
∥∥y + x

∥∥2 ≥ 1
2
‖x‖2 + 〈y, Jx〉 + co ϑr

(‖y‖) (4.7)

for all x ∈ rUE, y ∈ E. It follows that

〈x, Jx〉 − 1
2
‖x‖2 + 〈x, Jy − Jx〉 + 〈y, Jy − Jx〉 − coϕϑr

(‖y‖) ≥ 〈y + x, Jy〉 − 1
2
∥∥y + x

∥∥2 (4.8)

for all x ∈ rUE, y ∈ E. Since 〈x, Jx〉 = (1/2)‖x‖2 + (1/2)‖x‖2, we have

1
2
‖x‖2 + 〈y + x, Jy − Jx〉 − coϑr

(‖y‖) ≥ 〈y + x, Jy〉 − 1
2
∥∥y + x

∥∥2 (4.9)

for all x ∈ rUE and y ∈ E.
Taking the supremum on both sides of (4.9) over y ∈ E, by [18, Lemma 3.3.1(v)] (if

f(x) := ϕ(‖x‖), where ϕ ∈ N0, then f∗(x∗) = ϕ#(‖x∗‖)), we get that

1
2
‖x‖2 + 〈x, Jy − Jx〉 + (coϑr)

#(‖Jy − Jx‖) ≥ 1
2
∥∥y
∥∥2 (4.10)

for all x ∈ rUE and y ∈ E. Since ϑr(t) is nondecreasing and limt→∞t−1ϑr(t) ≥ ϑr(1) > 0, we
have coϑr ∈ Γ0. It follows from [20, Lemma 3.3.1(iii)] that (coϑr)

# ∈ Σ1.
Interchanging x and y in (4.10) for x, y ∈ rUE, it also holds that

1
2
∥∥y
∥∥2 + 〈y, Jx − Jy〉 + (coϑr)

#(‖Jy − Jx‖) ≥ 1
2
‖x‖2. (4.11)

Thus, by taking σr := 2(coϑr)
# ∈ Σ1, and adding side by side (4.10) and (4.11), we obtained

〈
y − x, Jy − Jx

〉 ≤ σr

(‖Jy − Jx‖), ∀x, y ∈ rUE. (4.12)
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Theorem 4.2. Let E be a uniformly convex and uniformly smooth Banach space. Suppose that B ⊂
E∗ × E is maximal monotone with B−10 = {v∗} and B−1 is Lipschitz continuous at 0 with modulus
l ≥ 0. Let {xn} be a sequence generated by x1 = x ∈ E and

yn = αnxn + (1 − αn)Jrnxn,

xn+1 = βnx +
(
1 − βn

)
yn,

(4.13)

for every n = 1, 2, . . . , where {αn}, {βn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfying limn→∞rn = ∞. If either∑∞
n=1 βn < ∞ and lim supn→∞αn < 1 or limn→∞βn = 0,

∑∞
n=1 βn = ∞ and limn→∞αn = 0, then

{xn} converges strongly to v := J−1v∗and φ(xn, v) converges to 0.
Moreover, there exists an integerN > 0 such that

φ(xn+1, v) ≤ τnφ(x, v) + θn + δn, ∀n ≥ N, (4.14)

where τn = βn +
∑n−1

i=N βi
∏n

j=i+1(1 − βj)αj , θn =
∏n

i=N(1 − βi)αi, δn = l((1 − αn)/rn +
∑n−1

i=N((1 −
αi)/ri)

∏n
j=i+1(1 − βj−1)αj) and limn→∞τn = limn→∞θn = limn→∞δn = 0. Also, one obtains

φ(xn+1, v) ≤ βnφ(x, v) +
(
αn + ◦

(
l

rn

))
k
(
φ(xn, v)

)
, (4.15)

for all n ≥ N, where k(t) = max{t, νhr (t)} ∈ N0 ∩ Ω0, and νr(t) := ν(rUE, t), νhr is the greatest
quasi-inverse of νr(t), and r is a positive number such that {v} ∪ {xn} ∪ {Jrnxn} ⊂ rUE.

Proof. Put v = J−1v∗. Since B−10 = {v∗}, we have (BJ)−10 = {v}. We separate the proof into
two cases.

Case 1.
∑∞

n=1 βn < ∞, and lim supn→∞ αn < 1.
According to Theorem 3.3, we have limn→∞φ(xn, v) exists, {xn} and {Jrn} are

bounded, and hence {v} ∪ {xn} ∪ {Jrnxn} ⊂ rUE for some r > 0. Since B−1 is Lipschitz
continuous at 0 with modulus l ≥ 0, for some τ > 0, we have ‖z∗ − v∗‖ ≤ l‖w‖ whenever
z∗ ∈ B−1(w) and ‖w‖ ≤ τ . Since rn → ∞, we may assume l/rn < 1 for all n ≥ 1. From
Theorem 3.3, we have ‖xn − Jrnxn‖ → 0 and ‖Arnxn‖ → 0 as n → ∞. Hence, there exists an
integer N > 0 such that ‖Arnxn‖ ≤ τ for all n ≥ N. Since J Jrnxn ∈ B−1Arnxn, we have

‖JJrnxn − v∗‖ ≤ l‖Arnxn‖, ∀n ≥ N. (4.16)

By ‖Jxn −v∗‖ ≤ ‖Jxn −JJrnxn‖+‖JJrnxn −v∗‖ for all n ∈ N. Since J is uniformly continuous on
each bounded set, (3.20), (3.21) and (4.16), we obtain limn→∞‖Jxn − v∗‖ = 0. By the uniform
smoothness of E∗, we have limn→∞‖xn − v‖ = limn→∞‖J−1Jxn − J−1v∗‖ = 0. Since φ(xn, v) +
φ(v, xn) = 2〈xn − v, Jxn − Jv〉 = 2〈xn − v, Jxn − v∗〉 for all n ∈ N, we get

φ(xn, v) ≤ 2〈xn − v, Jxn − v∗〉 ≤ 2‖xn − v‖‖Jxn − v∗‖ −→ 0, as n −→ ∞. (4.17)
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Hence, φ(xn, v) → 0 as n → ∞. It follows from Proposition 4.1 and (4.16) that there exists
σ(t) ∈ Σ1, which implies σ(lt) ≤ lσ(t) for all t ≥ 0 and l ∈ [0, 1], such that

φ(Jrnxn, v) ≤ φ(Jrnxn, v) + φ(v, Jrnxn)

= 2〈Jrnxn − v, J Jrnxn − Jv〉 ≤ σ(‖J Jrnxn − Jv‖)
= 2σ(‖J Jrnxn − v∗‖) ≤ 2σ(l‖Arnxn‖)

= 2σ
(
l

∥
∥
∥
∥
xn − Jrnxn

rn

∥
∥
∥
∥

)
≤ 2l

rn
σ(‖xn − Jrnxn‖)

(4.18)

for all n ≥ N. It follows from σ(t) ∈ Σ1 and (3.20) that

lim
n→∞

σ(‖xn − Jrnxn‖) = 0. (4.19)

From (3.3), (3.2), and (4.18), we have

φ(xn+1, v) ≤ βnφ(x, v) +
(
1 − βn

){
αnφ(xn, v) + (1 − αn)φ(Jrnxn, v)

}

≤ βnφ(x, v) +
(
1 − βn

)
αnφ(xn, v) +

(
1 − βn

)
(1 − αn)

2l
rn
σ(‖xn − Jrnxn‖)

(4.20)

for all n ≥ N. Since φ(xn, v) → 0 and (4.19), we may assume φ(xn, v) ≤ 1 and 2σ(‖xn −
Jrnxn‖) ≤ 1 for all n ≥ N. By (4.20) and induction, we obtain

φ(xn+1, v) ≤
⎛

⎝βn +
n−1∑

i=N

βi
n∏

j=i+1

(
1 − βj

)
αj

⎞

⎠φ(x, v) +

(
n∏

i=N

(
1 − βi

)
αi

)

φ(xN, v)

+
(
1 − βn

)
l

⎛

⎝ (1 − αn)
rn

+
n−1∑

i=N

(1 − αi)
ri

2σ(‖xn − Jrnxn‖)
n∏

j=i+1

(
1 − βj−1

)
αj

⎞

⎠

≤ τnφ(x, v) + θn + δn,

(4.21)

for all n ≥ N, where τn = βn +
∑n−1

i=N βi
∏n

j=i+1(1−βj)αj , θn =
∏n

i=N(1−βi)αi, δn = l((1−αn)/rn +
∑n−1

i=N((1 − αi)/ri)
∏n

j=i+1(1 − βj−1)αj).
Next, we prove τn, θn and δn tend to 0. By αn, βn ∈ [0, 1] and

∑∞
i=1 βi < ∞, we get

0 ≤ τn = βn +
n−1∑

i=N

βi
n∏

j=i+1

(
1 − βj

)
αj ≤ βn +

n−1∑

i=N

βi =
n∑

i=N

βi ≤
∞∑

i=1

βi. (4.22)
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Thus {τn} is bounded. Since αn ∈ [0, 1] and lim supn→∞αn < 1, there exists some α (0 < α < 1)
such that 0 ≤ αn ≤ α whenever n ≥ N. Then, we get

0 ≤ lim sup
n→∞

τn ≤ lim sup
n→∞

βn + lim sup
n→∞

n−1∑

i=N

βi
n∏

j=i+1

(
1 − βj

)
αj

= lim
n→∞

βn + lim sup
n→∞

(
1 − βn

)
αn

⎛

⎝βn−1 +
n−2∑

i=N

βi
n−1∏

j=i+1

(
1 − βj

)
αj

⎞

⎠

= lim sup
n→∞

(
1 − βn

)
αnτn−1 ≤ lim sup

n→∞
αnτn−1 ≤ α lim sup

n→∞
τn−1

= α lim sup
n→∞

τn,

(4.23)

which implies

lim
n→∞

τn = lim sup
n→∞

τn = 0. (4.24)

Meanwhile, we also have

0 ≤ θn =
n∏

i=N

(
1 − βi

)
αi ≤

n∏

i=N

αi ≤ αn−N+1 −→ 0. (4.25)

On the other hand,

δn = l

⎛

⎝(1 − αn)
rn

+
n−1∑

i=N

(1 − αi)
ri

n∏

j=i+1

(
1 − βj−1

)
αj

⎞

⎠

≤ (1 − αn)
l

rn
+ αnl

⎛

⎝ (1 − αn−1)
rn−1

+
n−2∑

i=N

(1 − αi)
ri

n−1∏

j=i+1

(
1 − βj−1

)
αj

⎞

⎠

= (1 − αn)
l

rn
+ αnδn−1.

(4.26)

Since lim supn→∞αn < 1,
∑∞

n=1(1 − αn) = +∞, it follows from Lemma 2.6 that δn → 0.
From σ(t) ∈ Σ1, which implies that limt→ 0+(σ(t)/t) = 0, and (3.20). It follows that

lim
n→∞

σ(‖xn − Jrnxn‖)
‖xn − Jrnxn‖ = 0. (4.27)
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By (4.18), we have

φ(Jrnxn, v) ≤ l

rn
2σ(‖xn − Jrnxn‖)

=
l

rn

2σ(‖xn − Jrnxn‖)
‖xn − Jrnxn‖ ‖xn − Jrnxn‖

= ◦
(

l

rn

)
‖xn − Jrnxn‖,

(4.28)

for all n ≥ N, where ◦( l

rn
) :=

l

rn

2σ(‖xn − Jrnxn‖)
‖xn − Jrnxn‖ .

Since E is uniformly convex, ‖ · ‖2 is uniformly totally convex on each bounded set of
E. Denote by νr(t) := ν(rUE, t) the modulus of uniformly total convexity on the bounded set
rUE. Then νr(t) ∈ N0 and satisfies ν(‖xn − Jrnxn‖) ≤ φ(xn, Jrnxn). From the definition of the
greatest quasi-inverse of ν , we deduce that

‖xn − Jrnxn‖ ≤ νhr
(
φ(xn, Jrnxn)

)
. (4.29)

From Lemma 2.5, we have

φ(xn, Jrnxn) ≤ φ(xn, v) − φ(Jrnxn, v) ≤ φ(xn, v). (4.30)

Since νhr ∈ N0, it holds by (4.28), (4.29), and (4.30) that

φ(Jrnxn, v) ≤ ◦
(

l

rn

)
‖xn − Jrnxn‖ ≤ ◦

(
l

rn

)
νhr
(
φ(xn, v)

)
, (4.31)

for all n ∈ N. Let k(t) = max{t, νhr (t)}. Since νhr ∈ N0 and νr(t) ≥ 0 for t > 0, it follows in [18,
Lemma 3.3.1(i)] that νhr (t) ∈ Ω0 and this implies that k(t) ∈ N0 ∩ Ω0. By the first inequality
of (4.20), (4.31) and the definition of k(t), we have

φ(xn+1, v) ≤ βnφ(x, v) +
(
αn + ◦

(
l

rn

))
k
(
φ(xn, v)

)
, ∀n ≥ N. (4.32)

Case 2. limn→∞βn = 0,
∑∞

n=1 βn = ∞, and limn→∞αn = 0.
From the proof of Theorem 3.1, we note that if (BJ)−10 = {v}, then {φ(xn, v)}

converges to 0, {xn} converges strongly to v, and limn→∞‖xn − Jrnxn‖ = 0. By the same
argument as in the proof of Case 1, we obtain φ(xn+1, v) ≤ τnφ(x, v) + θn + δn for all n ≥ N,
where τn, θn and δn are those of Case 1.
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It remains to show that {τn}, {θn}, and {δn} converge to 0. Since αn, βn ∈ [0, 1] and
limn→∞αn = 0, limn→∞βn = 0, it follows that

0 ≤ τn = βn +
n−1∑

i=N

βi
n∏

j=i+1

(
1 − βj

)
αj

= βn(1 − αn) + βnαn +
n−1∑

i=N

βi
n∏

j=i+1

(
1 − βj

)
αj

≤ βn + αn

⎛

⎝βn +
n−1∑

i=N

βi
n∏

j=i+1

(
1 − βj

)
⎞

⎠

= βn + αn

(

1 −
n∏

i=N

(
1 − βi

)
)

≤ βn + αn −→ 0,

0 ≤ θn =
n∏

i=N

(
1 − βi

)
αi ≤ αn

n∏

i=N

(
1 − βi

) −→ 0

(4.33)

whenever n ≥ N large enough.
On the other hand,

δn = l

⎛

⎝(1 − αn)
rn

+
n−1∑

i=N

(1 − αi)
ri

n∏

j=i+1

(
1 − βj−1

)
αj

⎞

⎠ ≤ (1 − αn)
l

rn
+ αnδn−1. (4.34)

Since limn→∞αn = 0,
∑∞

n=1(1 − αn) = +∞. It follows from Lemma 2.6 that δn → 0. Moreover,
according to the proof of Case 1, we also have that, for all n ≥ N,

φ(xn+1, v) ≤ βnφ(x, v) +
(
αn + ◦

(
l

rn

))
k
(
φ(xn, v)

)
(4.35)

where k(t) is the same as that of Case 1. Hence, the conclusion follows.

If αn ≡ 0 for all n ∈ N, then the algorithm (1.7) reduces to (1.5). Also, letting αn = 0 in
(4.15)we obtain

φ(xn+1, v) ≤ βnφ(x, v) + ◦
(

l

rn

)
k
(
φ(xn, v)

)
, ∀n ≥ N. (4.36)

Corollary 4.3 (see Li and Song [6]). Let H be a Hilbert space and let B ⊂ H × H be a maximal
monotone with B−10 = {v∗} and B−1 is Lipschitz continuous at 0 with modulus l ≥ 0. Let {xn} be a
sequence generated by x1 = x ∈ H and

xn+1 = αnxn + (1 − αn)Jrnxn, (4.37)
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for every n = 1, 2, . . . , where {αn} ⊂ [0, 1], {rn} ⊂ (0,∞) satisfy lim supn→∞αn < 1, and
limn→∞rn = ∞. Then the sequence {xn} converges strongly to v. Moreover, there exists an integer
N > 0 such that

‖xn+1 − v‖ ≤
√
θn + δn ∀n ≥ N, (4.38)

where θn =
∏n

i=Nαi, δn = l((1 − αn)/rn +
∑n−1

i=N((1 − αi)/ri)
∏n

j=i+1αj), and limn→∞θn =
limn→∞δn = 0. Meanwhile, one obtains the estimate, for all n ≥ N,

‖xn+1 − v‖ ≤
√

αn + ◦
(

l

rn

)2

‖xn − v‖. (4.39)

Proof. Note that, for x, y ∈ H, we have J = I and φ(x, y) = ‖x − y‖2. Under our assumptions,
the iterative sequence (4.37) reduces to a special case of the algorithm (1.7) where βn = 0.
From the proof of Case 1 in Theorem 4.2, we know that {xn} converges strongly to v and
there exists some N > 0 such that (4.20) and (4.21) hold for n ≥ N.

Let βn = 0 in the inequality (4.21). Then, τn = 0. It follows from (4.21) that

‖xn+1 − v‖ ≤
√
θn + δn, ∀n ≥ N. (4.40)

Since αn ∈ [0, 1] and lim supn→∞αn < 1, there exists some α(0 < α < 1) such that 0 ≤ αn ≤ α
whenever n ≥ N. Then, we get θn =

∏n
i=Nαi ≤ αn−N+1 → 0. Also,

δn = l

⎛

⎝(1 − αn)
rn

+
n−1∑

i=N

(1 − αi)
ri

n∏

j=i+1

αj

⎞

⎠

= (1 − αn)
l

rn
+ αnl

⎛

⎝ (1 − αn−1)
rn−1

+
n−2∑

i=N

(1 − αi)
ri

n−1∏

j=i+1

αj

⎞

⎠

= (1 − αn)
l

rn
+ αnδn−1.

(4.41)
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Since lim supn→∞αn < 1,
∑∞

n=1(1 − αn) = +∞. It follows from Lemma 2.6 that δn → 0.
Additionally, from (4.20), (4.16), and (4.30), we have

‖xn+1 − v‖2 ≤ αn‖xn − v‖2 + (1 − αn)‖Jrnxn − v‖2

≤ αn‖xn − v‖2 + (1 − αn)(l‖Arnxn‖)2

= αn‖xn − v‖2 + (1 − αn)l2
∥
∥∥
∥
xn − Jrnxn

rn

∥
∥∥
∥

2

≤ αn‖xn − v‖2 + (1 − αn)
(

l

rn

)2

‖xn − v‖2

≤
(

αn +
(

l

rn

)2
)

‖xn − v‖2,

(4.42)

for all n ≥ N, which implies the equality (4.39).

5. Applications

In this section, we study the problem of finding a minimizer of a proper lower
semicontinuous convex function in a Banach space.

Theorem 5.1. Let E be a uniformly convex and uniformly smooth Banach space and let f∗ : E∗ →
(−∞,∞] be a proper lower semicontinuous convex function such that (∂f∗)−10/= ∅. Let {xn} be a
sequence defined as follows: x1 = x ∈ E and

z∗n = arg min
y∗∈E∗

{
f∗(y∗) +

1
2rn

∥∥y∗∥∥2 − 1
rn
〈xn, y

∗〉
}
;

y∗
n = αnxn + (1 − αn)J−1z∗n;

xn+1 = βnx +
(
1 − βn

)
y∗
n,

(5.1)

for every n = 1, 2, . . . , where {αn}, {βn} ⊂ [0, 1], and {rn} ⊂ (0,∞) satisfy limn→∞αn = 0,
limn→∞βn = 0,

∑∞
n=1 βn = ∞, and limn→∞rn = ∞. Then the sequence {xn} converges strongly

to R(∂f∗J)−10(x), where R(∂f∗J)−10 is a sunny generalized nonexpansive retraction of E onto (∂f∗J)−10.

Proof. By Rockafellar’s theorem [19, 20], the subdifferential mapping ∂f∗ ⊂ E∗ ×E is maximal
monotone. Let Jr = (I + r∂fJ)−1 for all r > 0. As in the proof of [7, Corollary 5.1], we have
J−1z∗n = Jrnxn for all n ∈ N. Hence, by Theorem 3.1, {xn} converges strongly to R(∂f∗J)−10(x).

When αn = 0 in Theorem 5.1 we obtain the following corollary.
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Corollary 5.2 (see Ibaraki and Takahashi [7]). Let E be a uniformly convex and uniformly smooth
Banach space and let f∗ : E∗ → (−∞,∞] be a proper lower semicontinuous convex function such
that (∂f∗)−10/= ∅. Let {xn} be a sequence defined as follows: x1 = x ∈ E and

y∗
n = arg min

y∗∈E∗

{
f∗(y∗) +

1
2rn

∥
∥y∗∥∥2 − 1

rn
〈xn, y

∗〉
}
;

xn+1 = βnx +
(
1 − βn

)
J−1y∗

n,

(5.2)

for every n = 1, 2, . . . , where {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn→∞βn = 0,
∑∞

n=1 βn = ∞,
and limn→∞rn = ∞. Then the sequence {xn} converges strongly to R(∂f∗J)−10(x), where R(∂f∗J)−10 is

a sunny generalized nonexpansive retraction of E onto (∂f∗J)−10.

Acknowledgments

The first author thank the National Research Council of Thailand to Naresuan University,
2009 for the financial support. Moreover, the second author would like to thank the “National
Centre of Excellence in Mathematics,” PERDO, under the Commission on Higher Education,
Ministry of Education, Thailand.

References

[1] R. T. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM Journal on Control
and Optimization, vol. 14, no. 5, pp. 877–898, 1976.

[2] F. Kohsaka and W. Takahashi, “Strong convergence of an iterative sequence for maximal monotone
operators in a Banach space,” Abstract and Applied Analysis, no. 3, pp. 239–249, 2004.

[3] S. Kamimura, F. Kohsaka, and W. Takahashi, “Weak and strong convergence theorems for maximal
monotone operators in a Banach space,” Set-Valued Analysis, vol. 12, no. 4, pp. 417–429, 2004.

[4] S. Kamimura andW. Takahashi, “Approximating solutions of maximal monotone operators in Hilbert
spaces,” Journal of Approximation Theory, vol. 106, no. 2, pp. 226–240, 2000.

[5] T.-H. Kim and H.-K. Xu, “Strong convergence of modified Mann iterations,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 61, no. 1-2, pp. 51–60, 2005.

[6] L. Li and W. Song, “Modified proximal-point algorithm for maximal monotone operators in Banach
spaces,” Journal of Optimization Theory and Applications, vol. 138, no. 1, pp. 45–64, 2008.

[7] T. Ibaraki and W. Takahashi, “Weak and strong convergence theorems for new resolvents of maximal
monotone operators in Banach spaces,” in Advances in Mathematical Economics, vol. 10 of Advances in
Mathematical Economics, pp. 51–64, Springer, Tokyo, Japan, 2007.

[8] R. T. Rockafellar, “On the maximality of sums of nonlinear monotone operators,” Transactions of the
American Mathematical Society, vol. 149, pp. 75–88, 1970.

[9] W. Takahashi, Convex Analysis and Approximation of Fixed Points, vol. 2 of Mathematical Analysis Series,
Yokohama Publishers, Yokohama, Japan, 2000.

[10] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, Japan, 2000.
[11] Y. I. Alber, “Metric and generalized projection operators in Banach spaces: properties and

applications,” in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, A. G.
Kartsatos, Ed., vol. 178 of Lecture Notes in Pure and Applied Mathematics, pp. 15–50, Dekker, New York,
NY, USA, 1996.

[12] D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite
Dimensional Optimization, vol. 40 of Applied Optimizations, Kluwer Academic Publishers, Dordrecht,
The Netherlands, 2000.

[13] S. Kamimura and W. Takahashi, “Strong convergence of a proximal-type algorithm in a Banach
space,” SIAM Journal on Optimization, vol. 13, no. 3, pp. 938–945, 2002.



20 Abstract and Applied Analysis

[14] T. Ibaraki and W. Takahashi, “A new projection and convergence theorems for the projections in
Banach spaces,” Journal of Approximation Theory, vol. 149, no. 1, pp. 1–14, 2007.

[15] F. Kohsaka and W. Takahashi, “Generalized nonexpansive retractions and a proximal-type algorithm
in Banach spaces,” Journal of Nonlinear and Convex Analysis, vol. 8, no. 2, pp. 197–209, 2007.

[16] H.-K. Xu, “Iterative algorithms for nonlinear operators,” Journal of the London Mathematical Society,
vol. 66, no. 1, pp. 240–256, 2002.

[17] K.-K. Tan and H. K. Xu, “Approximating fixed points of nonexpansive mappings by the Ishikawa
iteration process,” Journal of Mathematical Analysis and Applications, vol. 178, no. 2, pp. 301–308, 1993.

[18] C. Zalinescu, Convex Analysis in General Vector Spaces, World Scientific, River Edge, NJ, USA, 2002.
[19] R. T. Rockafellar, “Characterization of the subdifferentials of convex functions,” Pacific Journal of

Mathematics, vol. 17, pp. 497–510, 1966.
[20] R. T. Rockafellar, “On the maximal monotonicity of subdifferential mappings,” Pacific Journal of

Mathematics, vol. 33, pp. 209–216, 1970.


