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We consider resonance problems for the one-dimensional p-Laplacian assuming Dirichlet bound-
ary conditions. In particular, we consider resonance problems associated with the first three curves
of the Fučı́k Spectrum. Using variational arguments based on linking theorems,we prove sufficient
conditions for the existence of at least one solution. Our results are related to the classical Fredholm
Alternative for linear operators. We also provide a new variational characterization for points on
the third Fučı́k curve.

1. Introduction

In this paper, we study the solvability of the problem

−
(
|u′|p−2u′

)′
− α(u+)p−1 + β(u−)p−1 = f in (0, T),

u(0) = u(T) = 0,
(1.1)

where p > 1, T > 0, (α, β) ∈ �
2 , and f ∈ L1(0, T). A solution of (1.1) is defined as a function

u ∈ C1
0[0, T], such that |u′|p−2u′ is absolutely continuous and satisfies (1.1) a.e. in (0, T).
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It is helpful to restate the given problem as an operator equation. Let X := W1,p(0, T)
and let 〈·, ·〉 represent the duality pairing between X and X∗. Define the operators J, S : X →
X∗ by

〈J(u), v〉 =
∫T

0

∣∣u′∣∣p−2u′v′, 〈S(u), v〉 =
∫T

0
|u|p−2uv, for u, v ∈ X. (1.2)

In [1, page 306], it is proved that J is an isomorphism (in particular, J−1 exists and is con-
tinuous) and that S is continuous and compact. Using an integration by parts argument, it
is easy to verify [2, page 120] that solutions of (1.1) are in a one-to-one correspondence with
solutions of the operator equation

J(u) − αS(u+) + βS
(
u−) = F, (1.3)

where F ∈ X∗ is defined by

〈F, v〉 =
∫T

0
fv, v ∈ X. (1.4)

We are interested in the case where (α, β) ∈ Σp which represents the Fučı́k Spectrum
associated with (1.1), that is, the set of all (α, β) ∈ �2 such that

J(u) − αS(u+) + βS
(
u−) = 0 (1.5)

has a nontrivial solution. An explicit form of Σp is given in [2, page 132]. For convenience, we
recall the first parts of it. First we note that for α = β = λ, we have (λ, λ) ∈ Σp if and only if λ
is an eigenvalue of

J(u) − λS(u) = 0. (1.6)

These eigenvalues can be expressed explicitly as

λ = λk =
(
p − 1

)
(

kπp

T

)p

, k = 1, 2, . . . , (1.7)

where πp := 2π/p sin(π/p). The associated eigenfunctions are scalar multiples of

uk(t) = sinp

(
kπpt

T

)
, k = 1, 2, . . . , (1.8)

where sinp is defined by the implicit formula

τ =
∫ sinp(τ)

0

ds

(1 − sp)1/p
, τ ∈

[
0,

πp

2

]
, (1.9)



Abstract and Applied Analysis 3

which is extended to [0, πp] and then [0, 2πp] by symmetry, and then to all of � as a 2πp

periodic function. See, for example, [3, 4]. Note that, we have u1 > 0 in (0, T), and u1 is a
nontrivial solution of (1.5) for (α, β) = (λ1, β), with arbitrary β ∈ �. Obviously, this implies
that λ1 × � ⊂ Σp. Similarly, � × λ1 ⊂ Σp with a corresponding nontrivial solution, −u1 < 0 in
(0, T). It is helpful to separate this so-called trivial part of the Fučı́k Spectrum into

C−
1 :=
{(
λ1, β
) ∈ �2 : β ≤ λ1

} ∪ {(α, λ1) ∈ �2 : α ≥ λ1
}
,

C+
1 :=
{(
λ1, β
) ∈ �2 : β ≥ λ1

} ∪ {(α, λ1) ∈ �2 : α ≤ λ1
}
.

(1.10)

We set C1 = C−
1 ∪ C+

1 . The set C1 is the component, that is, maximal connected subset, of Σp

which contains (λ1, λ1). The other components of Σp lie in the first quadrant. Hence, from
now on we assume α > 0, β > 0.

The next component of Σp, which contains (λ2, λ2), is called C2. It is a curve
(p-hyperbola) which passes through (λ2, λ2) and has the asymptotes α = λ1 and β = λ1.
More precisely,

C2 :=

{
(
α, β
) ∈ �2 :

1
α1/p

+
1

β1/p
=
(
p − 1

)−1/p T

πp

}
. (1.11)

For (α, β) ∈ C2, a corresponding nontrivial solution, uαβ, of (1.5) is a two-bump function in
(0, T)which can be constructed in a piecewise fashion using appropriately shifted and scaled
sinp functions as the pieces. In particular, for α > β, uαβ is a positive multiple of either φ21

or φ22, both Lp normalized, as shown in Figure 1. We note that φ22(t) = φ21(T − t), t ∈ [0, T].
For α < β, the situation is similar but the positive bump is now bigger than the negative one.
For further reference, we denote

C−
2 :=
{(
α, β
) ∈ C2 : α ≥ β

}
,

C+
2 :=
{(
α, β
) ∈ C2 : α ≤ β

}
.

(1.12)

In the special case where α = β = λ2, we have φ21 = cu2 and φ22 = −cu2, where c > 0 is an Lp

normalizing constant. C2 is called the first nontrivial part of the Fučı́k Spectrum.
The component of Σp containing (λ3, λ3) is denoted by C3 and consists of two

p-hyperbolas which intersect at (λ3, λ3).

C1
3 :=

{
(
α, β
) ∈ �2 :

2
α1/p

+
1

β1/p
=
(
p − 1

)−1/p T

πp

}
,

C2
3 :=

{
(
α, β
) ∈ �2 :

1
α1/p

+
2

β1/p
=
(
p − 1

)−1/p T

πp

}
.

(1.13)

Note that the asymptote for C1
3 as α → ∞ is β = λ1, while as β → ∞ the asymptote is

α = λ2. The set C2
3 is just the reflection of C1

3 with respect to the diagonal line α = β. In
Theorem 1.4 below we will consider (α, β) ∈ C1

3 with α > β, with a corresponding normalized
eigenfunction, φ31, as depicted in Figure 2.
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(a) φ21 (b) φ22

Figure 1: Eigenfunctions for (α, β) ∈ C2 with α > β.

Figure 2: Eigenfunction for (α, β) ∈ C1
3 with α > β, that is, φ31.

Components Cn of Σp containing the points (λn, λn), n > 3, are obtained similarly
(see [2]). Note that a nontrivial solution of (1.5) associated with (α, β) ∈ Cn consists of n
bumps in the interval (0, T), and can be expressed explicitly in terms of the sinp function.

We adopt a convention used in [5] to identify the Fučı́k eigenvalues and eigenfunc-
tions referred to in our theorems and proofs. Fix a positive constant s and consider the
intersection of the line (λ + s, λ) with Σp. This produces a sequence 0 < λ11 < λ12 < λ21 =
λ22 < λ31 < λ32 < · · · with associated normalized eigenfunctions φ11, φ12, φ21, φ22, φ31, φ32, . . ..
See Figure 3.

There is an interesting literature developing for problems such as (1.1). There are two
different cases which have to be distinguished: (α, β)/∈Σp, the so-called nonresonance case;
(α, β) ∈ Σp, the so-called resonance case.

The nonresonance case is well understood. If (α, β) belongs to a component of �2 \Σp

containing a point (λ, λ), then (1.1) has a solution for arbitrary f ∈ L1(0, T). (The proof is
based on the homotopy invariance property of Leray-Schauder degree.) On the other hand,
if the component of �2 \Σp does not contain a point (λ, λ), then there exists f ∈ L1(0, T) for
which (1.1) does not have a solution (see, e.g., [2]).
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Figure 3: First few components in the Fučı́k Spectrum.

The resonance case is much more involved. The case where p /= 2 and (α, β) = (λ1, λ1)
was studied in detail in [4] and generalized to the PDE case by [6–10]. The case where
(α, β) = (λ2, λ2) was studied in [11] and there are no generalizations of their results to the
PDE case available so far. It is particularly interesting to note that these papers show that in
some respects the semilinear (p = 2) and quasilinear (p /= 2) cases can be quite different.

Our work is also related to results in [12–15], where solvability conditions in the spirit
of Landesman and Lazer, [16], or Ahmad et al. [17], are derived for nonlinear perturbations
of (1.1). Theorem 6.1 on page 334 of [12] is identical to our Theorem 1.2. In this case the
novelty of our theorem is that it is proved using variational techniques rather than the
method of upper and lower solutions. Problem (1.1) represents a subcase of the problems
considered in [13–15]. We note that [13, 15] deal with the semilinear case, p = 2, and [14]
deals with the general quasilinear case, 1 < p < ∞. Moreover, the solvability conditions
in these papers reduce to the solvability conditions in our theorems. However, the given
papers make significant use of the additional assumption that (α, β) ∈ (λk−1, λk+1)

2 for some
λk−1 < λk < λk+1. Our arguments do not rely on this local restriction and thus allow us
to consider any point on the first three curves of Σp. More specifically, we can consider
λ = λ11, λ12, λ21, and λ31 with no further restriction.

We proceed with the statements of our main theorems, assuming throughout that
(α, β) = (λ + s, λ) ∈ Σp, where s > 0 is fixed. The theorems do not apply if s = 0. Our
assumption that s > 0 restricts attention to those points of Σp which are below the diagonal
α = β. If we consider s < 0, then the part of Σp above the diagonal is considered and
(1.14), (1.15), and (1.18) are reversed by the symmetry of the problem. The assumption (1.17)
remains unchanged for both cases.
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Theorem 1.1. Suppose that λ = λ11 (λ12) and assume

∫T

0
fφ11 < 0 ·

(∫T

0
fφ12 > 0

)
. (1.14)

Then (1.1) has at least one solution.

In the special case p = 2, this theorem can be significantly strengthened.

Theorem 1.2. Suppose that p = 2 and that λ = λ11 (λ12). Then (1.1) has a solution if and only if

∫T

0
fφ11 ≤ 0 ·

(∫T

0
fφ12 ≥ 0

)
. (1.15)

The statements above are written so as to keep notation consistent. Notice that φ21 =
−φ11, so the given inequalities in (1.14) are actually the same and can be restated as

∫T

0
fu1 < 0. (1.16)

The inequalities in (1.15) are also identical.

Theorem 1.3. Suppose that λ = λ21 and assume

(∫T

0
fφ21

)
·
(∫T

0
fφ22

)
> 0. (1.17)

Then (1.1) has at least one solution.

Notice that this theorem contains two cases, one where both integrals in (1.17) are
positive and one where both integrals are negative. These cases correspond in some sense to
resonance above and below the Fučı́k Spectrum.

Our last theorem is the following.

Theorem 1.4. Suppose that λ = λ31 and assume

∫T

0
fφ31 < 0. (1.18)

Then (1.1) has at least one solution.
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The proofs of our theorems will be variational. Note that (1.1) is the Euler-Lagrange
equation associated with the functional

E(u) : =
1
p

∫T

0

∣∣u′∣∣p − α

p

∫T

0
(u+)p − β

p

∫T

0

(
u−)p −

∫T

0
fu

=
1
p

∫T

0

∣∣u′∣∣p − λ

p

∫T

0
|u|p − s

p

∫T

0
(u+)p −

∫T

0
fu, u ∈ X.

(1.19)

Solutions of (1.1) are critical points of E. One part of the proof of Theorem 1.1 will locate a
critical point via minimization. All other arguments will characterize critical points as saddle
points. This requires us to establish the appropriate compactness and geometric properties
of the functional. In particular, saddle point arguments require the appropriate geometry on
linked sets.

In order to understand the functional E it is important to first understand the func-
tional

I(u) :=
∫T

0

∣∣u′∣∣p − s

∫T

0
|u+|p, u ∈ X. (1.20)

It is well known that λ11, λ12, λ21, . . . are critical values of I restricted to the Lp unit sphere
S := {u ∈ X :

∫T
0 |u|p = 1}. The corresponding critical points are φ11, φ12, φ21, . . .. In

particular, φ11 is a global minimum, φ12 is a local minimum, and φ21 is a saddle point with λ21

characterized as the minimax over continuous curves on S connecting φ11 and φ12. See [5] for
details. Throughout the paperwewill make use of the notations Ic := {u ∈ X : I(u) ≥ c

∫T
0 |u|p}

and Ic := {u ∈ X : I(u) ≤ c
∫T
0 |u|p}, to describe super- and sub-level sets.

The linking property that is crucial for the proofs of Theorems 1.3 and 1.4 also leads
to a new variational characterization of λ31, which we discuss in the last section. A similar
characterization was proved in [18], but we note that this was assuming (λ31 + s, λ31) ∈
(λ2, λ4)2, that is, λ31 + s < λ4. Let us emphasize that our characterization does not restrict
the value of s.

Finally, since our arguments rely on variational structures that are also available in the
related PDE case, it should be clear that the given theorems generalize under appropriate
circumstances. For example, Theorems 1.1 and 1.2 generalize to the PDE case with no further
assumptions. Generalizing Theorem 1.3 is more complicated. We would need for λ21 to be
isolated, and to have an associated set of solutions, that is, an eigenspace, composed of positive
multiples of a pair of two-bump solutions such as φ21, φ22. We note that it is known that
eigenfunctions associated with λ21 have only two nodes, see [5] or [19], but it is not true in
general that the solution set can be spanned by just the two given solutions. It is not known
if λ21 is necessarily isolated in the PDE case.
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2. A Discussion of the Semilinear Case

We provide a brief discussion of the special properties of the semilinear case, that is, p = 2,
with (α, β) ∈ C1. In this case (1.1) becomes

−u′′ − αu+ + βu− = f in (0, T),
u(0) = u(T) = 0.

(2.1)

For the first case we assume that λ = λ11, so α = λ1 and β = λ1 − s for some s > 0. If we
multiply equation (2.1) by the positive eigenfunction φ11 and integrate by parts, we obtain

−s
∫T

0
u−φ11 =

∫T

0
fφ11, (2.2)

and the necessity of (1.15) follows. A similar argument applies if λ = λ12. In this case it is
important to recall that φ12 = −φ11 < 0.

On the other hand let us assume that

∫T

0
fφ11 =

∫T

0
fu1 = 0. (2.3)

Then the linear problem

−u′′ − λ1u = f in (0, T),
u(0) = u(T) = 0,

(2.4)

has a solution u. If we choose c > 0 large enough then u = u + cφ11 is a positive solution of
this linear problem. It follows that u is a solution of

−u′′ − λ1u+ + βu− = f in (0, T),
u(0) = u(T) = 0,

(2.5)

for arbitrary β ∈ �. Similarly, we can choose c < 0 large enough so that u = u + cφ11 < 0 in
(0, T), and u is then a solution of

−u′′ − αu+ + λ1u− = f in (0, T),
u(0) = u(T) = 0

(2.6)

for arbitrary α ∈ �. Hence (2.3) is a sufficient condition. The sufficiency of the strict
inequalities is postponed until a later section where it will be proved for the more general
case, p > 1. We note that our proof of Theorem 1.1, in a later section, will also complete the
proof of Theorem 1.2.



Abstract and Applied Analysis 9

3. The Palais-Smale Condition on Σp

In this section, we prove that under conditions (1.14), (1.17), and (1.18) the energy functional
E satisfies the Palais-Smale condition (PS), that is, if {un} ⊂ X such that {E(un)} is bounded
and E′(un) → 0 in X∗, then {un} contains a converging subsequence. In fact, we prove the
more general result stated below.

Proposition 3.1. Let (α, β) ∈ Σp and let f ∈ L1(0, T) such that

∫T

0
uαβf /= 0, (3.1)

for any uαβ which is a nontrivial solution of (1.5). Then E satisfies (PS).

Proof. Let {un} ⊂ X be a sequence such that E(un) is bounded and E′(un) → 0 in X∗. (Wewill
refer to such a sequence as a PS-sequence.) We proceed in two steps. First we will show that
{un} is bounded in X. Then we will select a converging subsequence.

We argue by contradiction, so assume ‖un‖X → ∞. Let wn := un/‖un‖X , and, without
loss of generality, assume that wn ⇀ w in X. Our assumptions imply

0 = lim
n→∞

E′(un)

‖un‖p−1X

= lim
n→∞

⎛
⎝J(wn) − αS(w+

n) + βS
(
w−

n

) − F

‖un‖p−1X

⎞
⎠. (3.2)

The compactness of S and (3.2) yield

lim
n→∞

J(wn) = αS(w+) − βS
(
w−), (3.3)

and the continuity of J−1 subsequently leads to

w = lim
n→∞

wn = J−1
(
αS(w+) − βS

(
w−)), (3.4)

that is,

J(w) − αS(w+) + βS
(
w−) = 0. (3.5)

In order to rule out the case w = 0, we observe in (3.2) that

lim
n→∞
(
J(wn) − αS(w+

n) + βS
(
w−

n

))
= 0. (3.6)

This together withw = 0 would imply

0 = lim
n→∞

〈J(wn), wn〉 = lim
n→∞

∫T

0

∣∣w′
n

∣∣p = 1, (3.7)
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a contradiction. Thus w is a nontrivial solution of (3.5), that is, w = uαβ. Our assumptions
also imply that

∫T

0
fun = pE(un) −

〈
E′(un), un

〉
= o(‖un‖X) (3.8)

as n → ∞. Dividing through by ‖un‖X we get that

0 = lim
n→∞

∫T

0
fwn =

∫T

0
fuαβ /= 0, (3.9)

a contradiction. We have proved that {un} is bounded.
Without loss of generality we assume that there is a u ∈ X such that un ⇀ u in X and

un → u in Lp(0, T). Our assumptions imply that

0 = lim
n→∞

E′(un) = lim
n→∞
(
J(un) − αS(u+

n) + βS
(
u−
n

) − F
)
. (3.10)

Using the continuity of J−1 and the compactness of Swe now have

u = lim
n→∞

un = J−1
(
αS(u+) − βS

(
u−) + F

)
. (3.11)

Hence every PS-sequence has a converging subsequence and the proof is finished.

4. Proof of Theorems 1.1 and 1.2

We will treat two cases.

Case 1 (λ = λ11 = λ1 − s). If λ = λ11, then

E(u) =
1
p

∫T

0

∣∣u′∣∣p − λ1

p

∫T

0
|u|p + s

p

∫T

0

(
u−)p −

∫T

0
fu. (4.1)

Lemma 4.1. E is bounded below.

Proof. Assume the contrary, that is, there exists a sequence {un} ⊂ X such that

lim
n→∞

E(un) = −∞. (4.2)
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As a consequence, ‖un‖X → ∞. Letwn = un/‖un‖X . Then

0 ≥ lim inf
n→∞

E(un)

‖un‖pX

= lim inf
n→∞

(
1
p

∫T

0

∣∣w′
n

∣∣p − λ1

p

∫T

0
|wn|p + s

p

∫T

0

(
w−

n

)p − 1

‖un‖pX

∫T

0
fun

)

= lim inf
n→∞

(
1
p

∫T

0

∣∣w′
n

∣∣p − λ1

p

∫T

0
|wn|p + s

p

∫T

0

(
w−

n

)p
)
.

(4.3)

Without loss of generality we assume that there exists w ∈ X such that wn ⇀ w in X and
wn → w in Lp(0, T). Thus

0 ≥ lim inf
n→∞

(
1
p

∫T

0

∣∣w′
n

∣∣p
)

− λ1

p

∫T

0
|w|p + s

p

∫T

0

(
w−)p. (4.4)

Ifw = 0, then (4.4) yields limn→∞ ‖wn‖X = 0, a contradiction. Hencew/= 0. By the weak lower
semicontinuity of the norm we deduce from (4.4) that

0 ≥ 1
p

∫T

0

∣∣w′∣∣p − λ1

p

∫T

0
|w|p + s

p

∫T

0

(
w−)p. (4.5)

The variational characterization and simplicity of λ1 yield that w must be a positive
multiple of u1, and thus it follows thatw = φ11. Since

lim
n→∞

∫T

0
fwn =

∫T

0
fφ11 < 0, (4.6)

there exists n0 ∈ � such that for n ≥ n0, we have
∫T
0 fun < 0. Using this and the variational

characterization of λ1, we see that

1
p

∫T

0

∣∣u′
n

∣∣p − λ1

p

∫T

0
|un|p + s

p

∫T

0

(
u−
n

)p −
∫T

0
fun ≥ 0, (4.7)

for n ≥ n0, and thus we arrive at a contradiction with (4.2).
The boundedness of E from below together with the (PS) condition yields the existence

of a critical point, that is, a minimizer, of E, and thus of a solution to (1.1). The proof of the
first case is finished.

Case 2 (λ = λ12 = λ1). If λ = λ12, then we can write (1.19) as

E(u) =
1
p

∫T

0

∣∣u′∣∣p − λ1

p

∫T

0
|u|p − s

p

∫T

0
(u+)p −

∫T

0
fu. (4.8)
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We will show that E has a saddle point.
For t > 0, we have

E(tu1) = −st
p

p

∫T

0
(u1)p − t

∫T
0
fu1, (4.9)

and for t < 0, we have

E(tu1) = −t
∫T

0
fu1 = −tc

∫T

0
fφ11, (4.10)

for some c > 0, so it is clear that

lim
|t|→∞

E(tu1) = −∞. (4.11)

Observe that for u ∈ Iλ21 , we have

E(u) ≥ λ21 − λ1

p

∫T

0
|u|p −

∫T

0
fu. (4.12)

Since λ21 > λ1, the functional E is bounded below by some K on Iλ21 . Hence, we obtain from
(4.11) that, for R > 0 large enough,

max{E(Ru1), E(−Ru1)} < K ≤ inf
u∈Iλ21

E(u). (4.13)

Let Γ := {h : [−1, 1] → X : h is continuous, and h(±1) = ±Ru1}. We claim that if h ∈ Γ,
then h([−1, 1]) ∩ Iλ21 is nonempty. If h(t) = 0 for some t, then the conclusion is immediate. If
h(t)/= 0 for all t, then it follows from the variational characterization of λ21 in [5] that

max
t∈[−1,1]

I

(
h(t)

‖h(t)‖Lp

)
≥ λ21, (4.14)

and so our claim is established. It follows that

max
t∈[−1,1]

E(h(t)) ≥ K ∀h ∈ Γ, (4.15)

and so

c = inf
h∈Γ

max
t∈[−1,1]

E(h(t)) ≥ K. (4.16)

Since the (PS) condition has already been established, we can conclude that c is a critical
value and thus (1.1) has a solution.

The proof of the second case is finished, and thus both Theorems 1.1 and 1.2 have been
proved.
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5. Proof of Theorem 1.3

Consider two cases.

Case 1 (
∫T
0 fφ21 > 0 and

∫T
0 fφ22 > 0). This is the most interesting case. The plan is to construct

a copy of S1, the unit circle in �
2 , in X that links with Iλ31 . We will then argue that these

sets enjoy the appropriate saddle-point geometry. Since the (PS) condition has already been
established for our functional, we will have proved the existence of a saddle point.

The construction is accomplished via the union of six curves. Let

γ1 :=

{
αφ+

21 − βφ−
21 : α ≥ 0, β ≥ 0, αp

∫T

0

∣∣φ+
21

∣∣p + βp
∫T

0

∣∣φ−
21

∣∣p = 1

}
, (5.1)

a curve in S connecting φ+
21/‖φ+

21‖Lp and −φ−
21/‖φ−

21‖Lp . A straight-forward calculation shows
that I ≡ λ21 on γ1. (See [19].)

Let

γ2 :=

⎧
⎨
⎩

(
(1 − t)

(
φ+
21∥∥φ+

21

∥∥
Lp

)p

+ tφ
p

11

)1/p

: 0 ≤ t ≤ 1

⎫
⎬
⎭, (5.2)

a curve in S connecting φ+
21/‖φ+

21‖Lp to φ11. Another straight-forward calculation shows that
I|γ2 decreases from λ21 to λ11 as t goes from 0 to 1. Similarly, we construct γ3 connecting
−φ−

21/‖φ−
21‖Lp to φ12 = −φ11.

The curves γ4, γ5 and γ6 are constructed similarly to γ1, γ2, and γ3 using φ22 in place of
φ21. Let ∂Q := γ1 ∪ · · · ∪ γ6. It is clear that ∂Q is homeomorphic to S1, and for convenience we
name a homeomorphism h0 : S1 → ∂Q such that h0(0,−1) = φ11, h0(0, 1) = φ12, h0(−1, 0) =
φ21, and h0(1, 0) = φ22.

Before proceeding it is useful to modify ∂Q by lowering its I-energy in a way that will
help with later estimates. The construction so far shows that I ≤ λ21 on ∂Q, but it will be
convenient to have a strict inequality on most of the curve ∂Q. We begin with the following
lemma whose proof is clear.

Lemma 5.1. There exists an ε > 0 and a δ > 0 such that

∫T

0
fu > ε, (5.3)

for any u ∈ Bδ(φ21) ∪ Bδ(φ22).

Now let C := ∂Q \ (Bδ/2(φ21) ∪ Bδ/2(φ22)), let B := ∅, and apply the basic deformation
lemma for C1-manifolds from [20, Lemma 3.7, page 55], where I is the C1 functional in
question and S is the Finsler manifold. Let α(t, x) be the deformation guaranteed by the
lemma and let ∂Q′ := α(t, ∂Q) for any small fixed t > 0. We have I(α(t, u)) ≤ I(u) for all
u, so I ≤ λ21 on all of ∂Q′. It also follows that there is a κ > 0 such that I(u) ≤ λ21 − κ on
∂Q′ \(Bδ(φ21) ∪ Bδ(φ22)). For convenience, we rename ∂Q′ as ∂Q again.



14 Abstract and Applied Analysis

− φ−
21

||φ−
21|| Lp

φ+
21

||φ+
21|| Lp

φ+
22

||φ+
22|| Lp

− φ−
22

||φ−
22|| Lp

φ12

φ22φ21

φ11

Figure 4: ∂Q.

Recall that

E(u) =
1
p

∫T

0

∣∣u′∣∣p − s

p

∫T

0
(u+)p − λ21

p

∫T

0
|u|p −

∫T

0
fu, u ∈ X. (5.4)

The following lemmas establish the desired saddle geometry.

Lemma 5.2. E is bounded below on Iλ31 by some constant K.

Proof. Observe that for u ∈ Iλ31 , we have

E(u) ≥ λ31 − λ21

p

∫T

0
|u|p −

∫T

0
fu. (5.5)

The lemma follows.

Lemma 5.3. There is an R > 0 such thatmaxR∂QE(u) < K, where R∂Q := {Ru : u ∈ ∂Q}.

Proof. For u ∈ ∂Q ∩ (Bδ(φ21) ∪ Bδ(φ22)) and t > 0, we have

E(tu) ≤ −t
∫T

0
fu < −tε. (5.6)

For u ∈ ∂Q \ (Bδ(φ21) ∪ Bδ(φ22)) and t > 0, we have

E(tu) ≤ −tp κ
p
− t

∫T

0
fu. (5.7)

The lemma follows.
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Now we prove a linking lemma. It is clear that ∂Q ∩ Iλ31 = ∅, so what remains to be
proved is the following. For convenience we setD := {(x, y) ∈ �2 : x2 + y2 ≤ 1}.
Lemma 5.4. Given any continuous h : D → X such that h|S1 ≡ h0, we have h(D) ∩ Iλ31 /= ∅.
Proof. Suppose not. If 0 ∈ h(D), then we are done. If 0/∈h(D), then without loss of generality
we may replace h by its projection onto S and restrict the remainder of the argument to that
surface. If h(D) ∩ Iλ31 = ∅ then there is a δ > 0 such that maxDI(h(x)) ≤ λ31 − δ. Using the
results of Corvellec, [21], there exists a strong deformation retract η : Iλ31−δ/2 × [0, 1] → Iλ21 .
(See the proof of Theorem 4 in [21] where the existence of a strong deformation retract is
proved as one step towards proving the existence of a weak deformation retract.) Replacing
hwith η(h(·), 1), and calling it h again, we may now assume that maxDI(h(x)) ≤ λ21. Observe
that η has not changed the values of h on S1, and so h ≡ h0 on S1.

We will now establish the existence of a path, γ , in D connecting (0,±1). The image,
via h, of this path will connect φ11 to φ12 in (Iλ21 ∩ S)\{φ21, φ22}. This will be a contradiction
of the variational characterization of λ21 established in [5], and so the lemma will be proved.

Our tool for constructing γ is the Hex Theorem as stated in [22]. Let E := {(a, b) ∈ S1 :
a > 0,−√2/2 ≤ b ≤ √

2/2}, and W := {(a, b) ∈ S1 : a < 0,−√2/2 ≤ b ≤ √
2/2}. The other two

components of S1 are N, the component containing (0, 1), and S, the component containing
(0,−1). It is clear that given any n there is a homeomorphism from D to the standard n × n
Hex board with edges corresponding to E, W , N, and S in a natural way. We will refer to
such a homeomorphism as an n × n hexagonal tiling ofD. It is also clear that given any d > 0
there is an n × n hexagonal tiling of D such that the maximum diameter of the hexagons is
less than d.

Since h(E) ∩ h(W) = ∅, we have r := dist(h(E), h(W)) > 0. Choose δ > 0 such that
|x − y| < δ implies ‖h(x) − h(y)‖X < r. Now tile D with an n × n collection of hexagons with
maximum diameter δ/3. If a hexagon contains a point in h−1(φ21) ∪ h−1(φ22), then color it
red. Otherwise color the hexagon blue. By the Hex Theorem, we either have a path of red
hexagons connecting E andW , or a path of blue hexagons connectingN and S. Suppose that
there is a path of red hexagons connecting E and W . Consider a hexagon at the beginning of
the path so that it is touching E. Since all of the points of this hexagon are within distance δ/3
of E, the image of this hexagon via h cannot intersect h(W), and in particular cannot contain
φ21. Hence this first red hexagon contains a point in h−1(φ22). Similarly, the last hexagon in the
path contains a point of h−1(φ21). Somewhere along this path there must be a pair of hexagons
that share an edge and where one hexagon contains a point x ∈ h−1(φ22) and the other a point
y ∈ h−1(φ21). However, this implies that |x − y| < δ with ‖h(x) − h(y)‖X = ‖φ22 − φ21‖X > r,
a contradiction. Hence theremust be a path of blue hexagons connectingN andS. This clearly
implies that there is a continuous path in D connecting (0, 1) to (0,−1)where no point on the
path is in h−1(φ22) ∪ h−1(φ21). The image of this path via h is the γ that we were looking for.
The lemma is proved, and hence the theorem is proved.

It is important to observe that a similar argument establishes the linking of R∂Q and
Iλ31 for any R ≥ 1.

Case 2 (
∫T
0 fφ21 < 0 and

∫T
0 fφ22 < 0).

Lemma 5.5. E is bounded below by some K on Iλ21 .

Proof. Let ε > 0 and δ > 0 such that for u ∈ (Bδ(φ21)∪Bδ(φ22)), we have
∫T
0 fu < −ε. There is a

κ > 0 such that I(u) ≥ λ21 + κ for u ∈ (S ∩ Iλ21) \ (Bδ(φ21) ∪ Bδ(φ22)). Therefore E(tu) ≥ εt for
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u ∈ (S ∩ Iλ21) ∩ (Bδ(φ21) ∪Bδ(φ22)) and E(tu) ≥ (κ/p)tp − t
∫T
0 fu for u ∈ (S ∩ Iλ21) \ (Bδ(φ21) ∪

Bδ(φ22)). The lemma follows.

Lemma 5.6. There is an R > 0 such thatmax{E(Rφ11), E(Rφ12)} < K.

Proof. For t > 0, we have E(tφ12) = ((λ12−λ21)/p)tp− t
∫T
0 φ12f and E(tφ11) = ((λ11−λ21)/p)tp−

t
∫T
0 φ11f , so the lemma follows easily.

Lemma 5.7. Every continuous path connecting Rφ11 to Rφ21 must intersect Iλ21 .

Proof. This is a direct consequence of the variational characterization of λ21 proved in [5].
Hence the theorem is proved.

6. Proof of Theorem 1.4

In this section we assume that λ = λ31. Once again we must establish the appropriate saddle
geometry and linking. Most of the arguments follow from work done in previous sections.
The one exception is the following lemma.

Lemma 6.1. E is bounded below by some K on Iλ31 .

Proof. There is an ε > 0 and a δ > 0 such that if u ∈ Bδ(φ31), then
∫T
0 fu < −ε. For u ∈

(S ∩ Iλ31) \ Bδ(φ31) there is a κ > 0 such that I(u) ≥ λ31 + κ. It follows that E(tu) ≥ εt for
u ∈ Bδ(φ31)∩S ∩ Iλ31 and that E(tu) ≥ (κ/p)tp − t

∫T
0 uf for u ∈ (S ∩ Iλ31) \Bδ(φ31). The lemma

follows.

Once again we consider ∂Q as constructed in the previous section. We can employ the
∂Q with or without the modifying flow.

Lemma 6.2. There is an R > 0 such thatmaxR∂QE(u) < K, where R∂Q := {Ru : u ∈ ∂Q}.

Proof. This follows easily from the fact that for u ∈ ∂Q, we have I(u) ≤ λ21 and so E(tu) ≤
((λ21 − λ31)/p)tp − t

∫T
0 fu.

The linking of Iλ31 and R∂Q has already been established in Lemma 5.4. Hence the
theorem is proved.

7. Variational Characterization of λ31

LetQ := {Q ⊂ S : there exists a continuous h : D → S such that h(D) = Q, h : S1 → h(S1)
is a homeomorphism into Iλ21 , and h(S1) contains φ11, φ21, φ12, φ22 in that order}. For con-
venience we refer to h(S1) as ∂Q.

Lemma 5.4 shows that

c := inf
Q∈Q

max
u∈Q

I(u) ≥ λ31. (7.1)
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β = 0

α = 0

·φ31

γ = 0

Figure 5: P .

− φ−
21

||φ−
21|| Lp

φ+
21

||φ+
21|| Lp

φ21

Figure 6: P ′.

The setQ is clearly preserved by pseudogradient flows on S associated with I, and I satisfies
the (PS) condition. Hence c is a critical value of I. To show that c = λ31, and thus that λ31

has the given variational characterization, it suffices to construct an element Q ∈ Q such that
maxQI(u) = λ31.

We begin by constructing a triangle using the positive and negative parts of φ31. For
convenience we write

φ31 :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u(x), x ∈ [0, a],

v(x), x ∈ [a, b],

w(x), x ∈ [b, T],

(7.2)
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− φ−
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21|| Lp

φ+
21

||φ+
21|| Lp

φ+
22

||φ+
22|| Lp

− φ−
22

||φ−
22|| Lp

φ22φ21

Figure 7: P ′′.

where u, w are the positive parts of φ31 and v is the negative part. Each of u, v, w is an
appropriately scaled multiple of sinp on the appropriate interval, and is 0 everywhere else.
Now let P = {αu + βv + γw : α, β, γ ≥ 0, αp

∫T
0 |u|p + βp

∫T
0 |v|p + γp

∫T
0 |w|p = 1}. See Figure 5.

A straight forward computation shows that I ≡ λ31 on P .
Consider a point z = αu+βv ∈ ∂P , that is, a point on the boundary of P such that γ = 0.

We construct the curve {t1/pz(tx) : b/T ≤ t ≤ 1}. For convenience we denote zt(x) = t1/pz(tx)
and zt(x) = αut(x) + βvt(x). Elementary computations show that

∫T
0 |zt|p = 1 and

∫T
0 |(zt)′|p =

tp
∫T
0 |(z1)′|p. Hence I(zt) decreases as t goes from 1 to b/T . Observe that if α = β then z is a

positive multiple of φ31 on the interval [0, b], and is thus a solution of

−
(∣∣y′∣∣p−2y′

)′ − (λ31 + s)
(
y+)p−1 + λ31

(
y−)p−1 = 0 in (0, b),

y(0) = y(b) = 0.
(7.3)

It follows that zt is a normalized two-node Fučı́k eigenfunction on [0, b/t] with positive first
node. In particular we must have zb/T = φ21. Moreover, if we now consider {αub/T + βvb/T :
α, β ≥ 0 and αp

∫T
0 |ub/T |p + βp

∫T
0 |vb/T |p = 1}we see that this must be identical to {αφ+

21 − βφ−
21 :

α, β ≥ 0 and αp
∫T
0 |φ+

21|p + βp
∫T
0 |φ−

21|p = 1}, which is precisely the segment that we used to
construct ∂Q in a previous section. Note that, we have a new figure P ′ = P ∪ {αut + βvt :
αv + βu ∈ P, b/T ≤ t ≤ 1}, which is still homeomorphic to D, but now includes φ21 on its
boundary. See Figure 6. A similar construction is possible on the edge of P where α = 0, so
that we arrive at P ′′ which is homeomorphic toD and contains both φ21 and φ22. See Figure 7.

Observe that the component of the boundary of P ′′ between φ+
21/‖φ+

21‖Lp and
φ+
22/‖φ+

22‖Lp contains only nontrival nonnegative elements. For convenience call this part of
the boundary (∂P ′′)+. For each z ∈ (∂P ′′)+ we form {(tzp+(1−t)φp

11)
1/p : 0 ≤ t ≤ 1}. It is easy to

see that this is a curve on S connecting z to φ11 such that I decreases from z to φ11. A similar
construction is possible along the boundary of P ′′ between −φ−

21/‖φ−
21‖Lp and −φ−

22/‖φ−
22‖Lp ,

which we call (∂P ′′)−.
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φ12

φ22φ21

φ11

Figure 8: P ′′′.

Hence we can form P ′′′ = P ′′ ∪ {(tzp + (1 − t)φp

11)
1/p : z ∈ (∂P ′′)+, 0 ≤ t ≤ 1} ∪ {(−t|z|p −

(1 − t)|φ12|p)1/p : z ∈ (∂P ′′)−, 0 ≤ t ≤ 1}. See Figure 8. Once again this set is homeomorphic
to D. Moreover, its boundary contains the points φ11, φ21, φ12, and φ22 in that order. Hence
P ′′′ ∈ Q. Since with each addition to P , we have decreased energy we see that maxP ′′′I(u) =
maxP I(u) = I(φ31) = λ31. Hence

inf
Q∈Q

max
u∈Q

I(u) = λ31, (7.4)

and, we have the desired variational characterization.
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[11] R. F. Manásevich and P. Takáč, “On the Fredholm alternative for the p-Laplacian in one dimension,”
Proceedings of the London Mathematical Society, vol. 84, no. 2, pp. 324–342, 2002.

[12] C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, vol. 205 of
Mathematics in Science and Engineering, Elsevier, Amsterdam, The Netherlands, 2006.

[13] M. Struwe, Variational Methods, vol. 34, Springer, Berlin, Germany, 2nd edition, 1996.
[14] K. Perera, “Resonance problems with respect to the Fučı́k spectrum of the p-Laplacian,” Electronic
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[18] K. Perera, “On the Fučı́k spectrumof the p-Laplacian,”Nonlinear Differential Equations and Applications,
vol. 11, no. 2, pp. 259–270, 2004.
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