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Let E be a smooth Banach spacewith a norm ‖·‖. Let V (x, y) = ‖x‖2+‖y‖2−2〈x, Jy〉 for any x, y ∈ E,
where 〈·, ·〉 stands for the duality pair and J is the normalized duality mapping. With respect to this
bifunction V (·, ·), a generalized nonexpansive mapping and a V -strongly nonexpansive mapping
are defined in E. In this paper, using the properties of generalized nonexpansive mappings, we
prove convergence theorems for common zero points of a maximal monotone operator and a V -
strongly nonexpansive mapping.

1. Introduction

Let E be a smooth Banach space with a norm ‖ · ‖ and let C be a nonempty, closed and convex
subset of E. We use the following bifunction V (·, ·) studied by Alber [1], as well as Kamimura
and Takahashi [2]. Let V (·, ·) : E×E → [0,∞) be defined by V (x, y) = ‖x‖2−2〈x, Jy〉+‖y‖2 for
any x, y ∈ E, where 〈·, ·〉 stands for the duality pair and J is the normalized duality mapping.
Note that the duality mapping is single valued in a smooth Banach space (see [3]). From the
definition of V (·, ·) the following properties are trivial.

Lemma 1.1. (a) For all a, b, c ∈ E,

V (a, b) ≤ V (a, b) + V (b, c) = V (a, c) − 2〈a − b, Jb − Jc〉. (1.1)

(b) If a sequence {xn} ⊂ E satisfies limn→∞V (xn, p) < ∞ for some p ∈ E, then {xn} is
bounded.
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Let F(T) be the fixed points set of T . Ibaraki and Takahashi defined a generalized
nonexpansive mapping in a Banach space (see [4]).

Definition 1.2. A mapping T : C → C is said to be generalized nonexpansive if F(T)/= ∅ and
V (Tx, p) ≤ V (x, p) for all x ∈ C and p ∈ F(T).

In this paper, we prove strong convergence theorem for finding common fixed points
of a family of generalized nonexpansive mappings. In addition, we prove strong convergence
theorem for finding zeroes of a generalized nonexpansive mapping and a maximal monotone
operator. Now, we define a V -strongly nonexpansive mapping as follows.

Definition 1.3. A mapping T : C → E is called V -strongly nonexpansive if there exists a
constant λ > 0 such that

V
(
Tx, Ty

) ≤ V
(
x, y
) − λV

(
(I − T)x, (I − T)y

)
, (1.2)

for all x, y ∈ C, where I is the identity mapping on E. More explicitly, if (1.2) holds, then T is
said to be V -strongly nonexpansive with λ.

If T is V -strongly nonexpansive with λ, then T is V -strongly nonexpansive with any
γ ∈ (0, λ]. It is trivial that a V -strongly nonexpansive mapping is generalized nonexpansive
if F(T)/= ∅. In the following section, we show that in a Hilbert spaceH a firmly nonexpansive
mapping is V -strongly nonexpansive with λ = 1 and a V -strongly nonexpansive mapping is
strongly nonexpansive if F(T)/= ∅. Motivated by the results of Manaka and Takahashi [5], we
prove weak convergence theorem for common zero points of a maximal monotone operator
and a V -strongly nonexpansive mapping in a Banach space.

2. Preliminaries

Let D be a nonempty subset of a Banach space E. A mapping R : E → D is said to be sunny,
if for all x ∈ E and t ≥ 0,

R(Rx + t(x − Rx)) = Rx. (2.1)

A mapping R : E → D is called a retraction if Rx = x for all x ∈ D (see [6]). It is known
that a generalized nonexpansive and sunny retraction of E onto D is uniquely determined if
E is a smooth and strictly convex Banach space (cf., [7]). Ibaraki and Takahashi proved the
following results in [4].

Lemma 2.1 (cf., [4]). Let E be a reflexive, strictly convex, and smooth Banach space, and let T be
a generalized nonexpansive mapping from E into itself. Then there exists a sunny and generalized
nonexpansive retraction on F(T).
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Lemma 2.2 (cf., [4]). Let D be a nonempty subset of a reflexive, strictly convex, and smooth Banach
space E. Let R be a retraction from E onto D. Then R is sunny and generalized nonexpansive if and
only if

〈
x − Rx, JRx − Jy

〉 ≥ 0, (2.2)

for all x ∈ E and y ∈ D.

A generalized resolvent Jr of a maximal monotone operator B ⊂ E∗ × E is defined by
Jr = (I + rBJ)−1 for any real number r > 0. It is well known that Jr : E → E is single valued
if E is reflexive, smooth, and strictly convex (see [8]). It is also known that Jr satisfies

〈
x − Jrx − (y − Jry

)
, JJrx − JJry

〉 ≥ 0, ∀x, y ∈ E. (2.3)

This implies that

〈
x − Jrx, JJrx − Jp

〉 ≥ 0, ∀x ∈ E, p ∈ F(Jr). (2.4)

Therefore, from Lemma 1.1(a), we obtain the following proposition.

Proposition 2.3. (a) If a sunny retraction R is generalized nonexpansive, then R satisfies

V (x,Rx) + V
(
Rx, y

)
= V
(
x, y
) − 2

〈
x − Rx, JRx − Jy

〉

≤ V
(
x, y
)
, ∀x, y ∈ D.

(2.5)

(b) For each r > 0, a generalized resolvent Jr satisfies

V (x, Jrx) + V
(
Jrx, p

) ≤ V
(
x, p
)
, ∀x ∈ E, p ∈ F(Jr). (2.6)

Remark 2.4. The property in Proposition 2.3(b)means that Jr is generalized nonexpansive for
any r > 0.

We recall some nonlinear mappings in Banach spaces (see, e.g., [9–12]).

Definition 2.5. Let D be a nonempty, closed, and convex subset of E. A mapping T : D → E
is said to be firmly nonexpansive if

∥∥Tx − Ty
∥∥2 ≤ 〈x − y, j

(
Tx − Ty

)〉
, (2.7)

for all x, y ∈ D and some j(Tx − Ty) ∈ J(Tx − Ty).
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In [12], Reich introduced a class of strongly nonexpansive mappings which is defined
with respect to the Bregman distance D(·, ·) corresponding to a convex continuous function
f in a reflexive Banach space E. Let S be a convex subset of E, and let T : S → S be a self-
mapping of S. A point p in the closure of S is said to be an asymptotically fixed point of T if S
contains a sequence {xn}which converges weakly to p and the sequence {xn−Txn} converges
strongly to 0. F̂(T) denotes the asymptotically fixed points set of T .

Definition 2.6. The Bregman distance corresponding to a function f : E → R is defined by

D
(
x, y
)
= f(x) − f

(
y
) − f ′(y

)(
x − y

)
, (2.8)

where f is the Gâteaux differentiable and f ′(x) stands for the derivative of f at the point x.
We say that the mapping T is strongly nonexpansive if F̂(T)/= ∅ and

D
(
p, Tx

) ≤ D
(
p, x
)
, ∀p ∈ F̂(T), x ∈ S, (2.9)

and if it holds that limn→∞D(Txn, xn) = 0 for a bounded sequence {xn} such that
limn→∞(D(p, xn) −D(p, Txn)) = 0 for any p ∈ F̂(T).

We remark that the symbols xn → u and xn ⇀ u mean that {xn} converges
strongly and weakly to u, respectively. Taking the function ‖ · ‖2 as the convex, continuous,
and Gâteaux differentiable function f , we obtain the fact that the Bregman distance D(·, ·)
coincides with V (·, ·). Especially in a Hilbert space, D(x, y) = V (x, y) = ‖x − y‖2. Bruck and
Reich defined strongly nonexpansive mappings in a Hilbert space H as follows (cf., [10]).

Definition 2.7. A mapping T : D → H is said to be strongly nonexpansive if T is
nonexpansive with F(T)/= ∅ and if it holds that

(
xn − yn

) − (Txn − Tyn

) −→ 0 (2.10)

when {xn} and {yn} are sequences in D such that {xn − yn} is bounded and limn→∞(‖xn −
yn‖ − ‖Txn − Tyn‖) = 0.

The relation among firmly nonexpansive mappings, strongly nonexpansive mappings
and V -strongly nonexpansive mappings is shown in the following proposition.

Proposition 2.8. In a Hilbert space H, the following hold.

(a) A firmly nonexpansive mapping is V -strongly nonexpansive with λ = 1.

(b) A V -strongly nonexpansive mapping T with F̂(T)/= ∅ is strongly nonexpansive.
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Proof. (a) Suppose that T is firmly nonexpansive. Since J = I in a Hilbert space, it holds that

2
〈
x − y, Tx − Ty

〉 − ∥∥Tx − Ty
∥
∥2 =

∥
∥x − y

∥
∥2 − ∥∥(I − T)x − (I − T)y

∥
∥2, (2.11)

for all x, y ∈ D. Therefore, it is obvious that T is firmly nonexpansive if and only if T satisfies

∥
∥x − y

∥
∥2 − ∥∥(T − I)x − (T − I)y

∥
∥2 ≥ ∥∥Tx − Ty

∥
∥2, (2.12)

for all x, y ∈ D. Hence we obtain (a).
(b) Suppose that T is V -strongly nonexpansive with λ. Then, it is trivial that T

is nonexpansive and (2.9) holds. Suppose that the sequences {xn} and {yn} satisfy the
conditions in Definition 2.7. Then {Txn − Tyn} is also bounded. Since T is V -strongly
nonexpansive with λ, we have that

0 ≤ λ
∥∥xn − yn −

(
Txn − Tyn

)∥∥2

= λV
(
(I − T)xn, (I − T)yn

)

≤ V
(
xn, yn

) − V
(
Txn, Tyn

)

=
∥∥xn − yn

∥∥2 − ∥∥Txn − Tyn

∥∥2

=
(∥∥xn − yn

∥∥ +
∥∥Txn − Tyn

∥∥)(∥∥xn − yn

∥∥ − ∥∥Txn − Tyn

∥∥)

−→ 0.

(2.13)

Hence, (xn−yn)− (Txn−Tyn) → 0 for λ > 0. This means that T is strongly nonexpansive.

In a Banach space, V -strongly nonexpansive mappings have the following properties.

Proposition 2.9. In a smooth Banach space E, the following hold.

(a) For c ∈ (−1, 1], T = cI is V -strongly nonexpansive. For c = 1, T = I is V -strongly
nonexpansive for any λ > 0. For c ∈ (−1, 1), T = cI is V -strongly nonexpansive for any
λ ∈ (0, (1 + c)/(1 − c)].

(b) If T is V -strongly nonexpansive with λ, then, for any α ∈ [−1, 1] with α/= 0, αT is also
V -strongly nonexpansive with α2λ.

(c) If T is V -strongly nonexpansive with λ ≥ 1, then A = I − T is V -strongly nonexpansive
with λ−1.

(d) Suppose that T is V -strongly nonexpansive with λ and that α ∈ [−1, 1] satisfies α2λ ≥ 1.
Then (I − αT) is V -strongly nonexpansive with (α2λ)−1. Moreover, if Tα = I − αT , then

V
(
Tαx, Tαy

) ≤ V
(
x, y
) − λ−1V

(
Tx, Ty

)
. (2.14)
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Proof. (a) Let T = cI for any c ∈ (−1, 1], and denote Il = V (Tx, Ty) and Ir = V (x, y) − λV ((I −
T)x, (I − T)y). Since J(cx) = cJx, we have

Il = V
(
Tx, Ty

)
= c2
{
‖x‖2 + ∥∥y∥∥2 − 2

〈
x, Jy

〉}
= c2V

(
x, y
)
,

Ir = V
(
x, y
) − λV

(
(I − T)x, (I − T)y

)

= ‖x‖2 − λ‖(1 − c)x‖2 + ∥∥y∥∥2 − λ
∥
∥(1 − c)y

∥
∥2

− 2
〈
x, Jy

〉
+ 2λ

〈
(1 − c)x, J

(
(1 − c)y

)〉

=
{
1 − λ(1 − c)2

}(
‖x‖2 + ∥∥y∥∥2

)
− 2
{
1 − λ(1 − c)2

}〈
x, Jy

〉

=
{
1 − λ(1 − c)2

}(
‖x‖2 + ∥∥y∥∥2 − 2

〈
x, Jy

〉)

=
{
1 − λ(1 − c)2

}
V
(
x, y
)
.

(2.15)

For c = 1, it holds that Il ≤ Ir for all λ > 0. For c ∈ (−1, 1), we obtain

Il ≤ Ir ⇐⇒ c2 ≤ 1 − λ(1 − c)2 ⇐⇒ 0 < λ(1 − c)2 ≤ 1 − c2

⇐⇒ 0 < λ ≤ (1 − c)(1 + c)

(1 − c)2
=

(1 + c)
(1 − c)

.
(2.16)

Therefore, T = cI is V -strongly nonexpansive for any λ ∈ (0, (1 + c)/(1 − c)].
(b) If T is V -strongly nonexpansive with λ > 0, then, for α ∈ [−1, 1] with α/= 0,

V
(
αTx, αTy

)
= ‖αTx‖2 + ∥∥αTy∥∥2 − 2

〈
αTx, J

(
αTy

)〉

= α2
{
‖Tx‖2 + ∥∥Ty∥∥2 − 2

〈
Tx, J

(
Ty
)〉}

= α2V
(
Tx, Ty

)

≤ α2{V
(
x, y
) − λV

(
(I − T)x, (I − T)y

)}

= V
(
x, y
) −
(
1 − α2

)
V
(
x, y
) − α2λV

(
(I − T)x, (I − T)y

)

≤ V
(
x, y
) − α2λV

(
(I − T)x, (I − T)y

)
.

(2.17)

This means that αT is V -strongly nonexpansive with α2λ.
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(c) Suppose that T is V -strongly nonexpansive with λ ≥ 1 and let A = I − T . Then we
have that

V
(
(I −A)x, (I −A)y

)
= V
(
Tx, Ty

)

≤ V
(
x, y
) − λV

(
(I − T)x, (I − T)y

)

= V
(
x, y
) − λV

(
Ax,Ay

)
.

(2.18)

This inequality implies that

V
(
Ax,Ay

) ≤ λ−1
{
V
(
x, y
) − V

(
(I −A)x, (I −A)y

)}

= λ−1V
(
x, y
) − λ−1V

(
(I −A)x, (I −A)y

)

≤ V
(
x, y
) − λ−1V

(
(I −A)x, (I −A)y

)
.

(2.19)

Thus A is V -strongly nonexpansive with λ−1.
(d) From (b) and the assumption, αT is V -strongly nonexpansive with α2λ ≥ 1, and

from (c) we have that (I − αT) is V -strongly nonexpansive with (α2λ)−1. Furthermore we
obtain that

V
(
Tαx, Tαy

) ≤ V
(
x, y
) −
(
α2λ
)−1

V
(
(I − Tα)x, (I − Tα)y

)

= V
(
x, y
) −
(
α2λ
)−1

V
(
αTx, αTy

)

= V
(
x, y
) −
(
α2λ
)−1

α2V
(
Tx, Ty

)

= V
(
x, y
) − λ−1V

(
Tx, Ty

)
.

(2.20)

This completes the proof.

In Banach spaces, we have the following example of V -strongly nonexpansive
mappings.

Example 2.10. Let E = R × R be a Banach space with a norm ‖ · ‖ defined by

‖x‖ = |x1| + |x2|, ∀x = (x1, x2) ∈ E. (2.21)

The normalized duality mapping J is given by

Jx = ‖x‖
(

1
|x1|x1,

1
|x2|x2

)
, ∀x ∈ E. (2.22)
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Hence, we have for x, y ∈ E that

V
(
x, y
)
= ‖x‖2 + ∥∥y∥∥2 − 2

〈
x, Jy

〉

= ‖x‖2 + ∥∥y∥∥2 − 2
∥
∥y
∥
∥
{
x1y1∣
∣y1
∣
∣ +

x2y2∣
∣y2
∣
∣

}

.
(2.23)

We define a mapping T : E → E as follows:

Tx =

⎧
⎪⎨

⎪⎩

x if ‖x‖ ≤ 1,

1
‖x‖x if ‖x‖ ≥ 1.

(2.24)

We will show that this mapping is V -strongly nonexpansive for any λ ≤ 1.
(a) Suppose that x, y ∈ E with ‖x‖ ≤ 1 and ‖y‖ ≥ 1. Then, we have

V
(
Tx, Ty

)
= V
(
x, Ty

)

= ‖x‖2 + ∥∥Ty∥∥2 − 2
∥∥Ty

∥∥
{
x1
(
Ty
)
1∣∣(Ty

)
1

∣∣ +
x2
(
Ty
)
2∣∣(Ty

)
2

∣∣

}

= ‖x‖2 + 1 − 2

{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

.

(2.25)

Since

y − Ty =

(∥∥y
∥∥ − 1
∥∥y
∥∥ y1,

∥∥y
∥∥ − 1
∥∥y
∥∥ y2

)

, (2.26)

we have that

V
(
x − Tx, y − Ty

)
= V
(
0, y − Ty

)
=
∥∥y − Ty

∥∥2

=

{(∥∥y
∥∥ − 1

)

∥∥y
∥∥

(∣∣y1
∣∣ +
∣∣y2
∣∣)
}2

=
(∥∥y
∥∥ − 1

)2
.

(2.27)
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Hence, we obtain that

V
(
x, y
) − V

(
Tx, Ty

) − λV
(
x − Tx, y − Ty

)

= ‖x‖2 + ∥∥y∥∥2 − 2
∥
∥y
∥
∥
{
x1y1∣
∣y1
∣
∣ +

x2y2∣
∣y2
∣
∣

}

− ‖x‖2 − 1 + 2

{
x1y1∣
∣y1
∣
∣ +

x2y2∣
∣y2
∣
∣

}

− λ
(∥∥y
∥
∥ − 1

)2

=
∥
∥y
∥
∥2 − 1 − 2

(∥∥y
∥
∥ − 1

)
{
x1y1∣
∣y1
∣
∣ +

x2y2∣
∣y2
∣
∣

}

− λ
(∥∥y
∥
∥ − 1

)2

≥ (∥∥y∥∥ − 1
)(∥∥y

∥
∥ + 1

) − 2
(∥∥y
∥
∥ − 1

)
{∣
∣x1y1

∣
∣

∣
∣y1
∣
∣ +

∣
∣x2y2

∣
∣

∣
∣y2
∣
∣

}

− λ
(∥∥y
∥
∥ − 1

)2

=
(∥∥y
∥
∥ − 1

){∥∥y
∥
∥ + 1 − 2‖x‖ − λ

∥
∥y
∥
∥ + λ

}

≥ (∥∥y∥∥ − 1
){

(1 − λ)
∥∥y
∥∥ + 1 − 2 + λ

}

=
(∥∥y
∥∥ − 1

){
(1 − λ)

(∥∥y
∥∥ − 1

)}

= (1 − λ)
(∥∥y
∥∥ − 1

)2 ≥ 0,
(2.28)

for any λ ∈ [0, 1]. This means that T is V -strongly nonexpansive for any λ ∈ [0, 1].
(b) Suppose that x, y ∈ E with ‖x‖ ≥ 1 and ‖y‖ ≤ 1. Then, we have

V
(
Tx, Ty

)
= V
(
Tx, y

)
= 1 +

∥∥y
∥∥2 − 2

∥∥y
∥∥

‖x‖

{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

,

V
(
x − Tx, y − Ty

)
= V

(
(‖x‖ − 1)

‖x‖ x, 0
)

= (‖x‖ − 1)2.

(2.29)

Hence, we have that

V
(
x, y
) − V

(
Tx, Ty

) − λV
(
x − Tx, y − Ty

)

= ‖x‖2 + ∥∥y∥∥2 − 2
∥∥y
∥∥
{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

− 1 − ∥∥y∥∥2 + 2

∥∥y
∥∥

‖x‖

{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

− λ(‖x‖ − 1)2

= ‖x‖2 − 1 − 2
∥∥y
∥∥
(
1 − 1

‖x‖
){

x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

≥ (‖x‖ − 1)(‖x‖ + 1 − λ‖x‖ + λ) − 2
∥∥y
∥∥
(‖x‖ − 1

‖x‖
)
‖x‖
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= (‖x‖ − 1)
{
(1 − λ)‖x‖ + 1 + λ − 2

∥
∥y
∥
∥}

≥ (‖x‖ − 1){(1 − λ)‖x‖ + 1 + λ − 2}

= (1 − λ)(‖x‖ − 1)2 ≥ 0,

(2.30)

for any λ ∈ [0, 1]. This means that T is V -strongly nonexpansive for any λ ∈ [0, 1].
(c) Suppose that x, y ∈ E with ‖x‖, ‖y‖ ≥ 1. Then, we have

V
(
Tx, Ty

)
= 1 + 1 − 2

‖x‖

{
x1y1∣
∣y1
∣
∣ +

x2y2∣
∣y2
∣
∣

}

= 2 − 2
‖x‖

{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

,

V
(
x − Tx, y − Ty

)
= (‖x‖ − 1)2 +

(∥∥y
∥∥ − 1

)2

− 2
(∥∥y
∥∥ − 1

) (‖x‖ − 1)
‖x‖

{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

.

(2.31)

Hence, we have that

V
(
x, y
) − V

(
Tx, Ty

) − λV
(
x − Tx, y − Ty

)

= ‖x‖2 + ∥∥y∥∥2 − 2
∥∥y
∥∥
{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

− 2 +
2

‖x‖

{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

− λ
{
(‖x‖ − 1)2 +

(∥∥y
∥∥ − 1

)2} + 2λ
(∥∥y
∥∥ − 1

) (‖x‖ − 1)
‖x‖

{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}

= (‖x‖ − 1)(‖x‖ + 1) +
(∥∥y
∥∥ − 1

)(∥∥y
∥∥ + 1

) − λ(‖x‖ − 1)2 − λ
(∥∥y
∥∥ − 1

)2

− 2
‖x‖

{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}
{‖x‖∥∥y∥∥ − 1 − λ

(∥∥y
∥∥ − 1

)
(‖x‖ − 1)

}

= (‖x‖ − 1){‖x‖ + 1 − λ(‖x‖ − 1)} + (∥∥y∥∥ − 1
){∥∥y

∥∥ + 1 − λ
(∥∥y
∥∥ − 1

)}

− 2
‖x‖

{
x1y1∣∣y1
∣∣ +

x2y2∣∣y2
∣∣

}
{‖x‖∥∥y∥∥ − 1 − λ(‖x‖ − 1)

(∥∥y
∥∥ − 1

)}
.

(2.32)

Now, we note that

‖x‖∥∥y∥∥ − 1 − λ(‖x‖ − 1)
(∥∥y
∥∥ − 1

) ≥ 0, (2.33)



Abstract and Applied Analysis 11

for any ‖x‖, ‖y‖ ≥ 1 and for any λ ∈ [0, 1]. Therefore, we obtain that

V
(
x, y
) − V

(
Tx, Ty

) − λV
(
x − Tx, y − Ty

)

≥ (‖x‖ − 1){‖x‖ + 1 − λ(‖x‖ − 1)} + (∥∥y∥∥ − 1
){∥∥y

∥
∥ + 1 − λ

(∥∥y
∥
∥ − 1

)}

− 2
‖x‖‖x‖

{‖x‖∥∥y∥∥ − 1 − λ(‖x‖ − 1)
(∥∥y
∥
∥ − 1

)}

= (1 − λ)
(‖x‖ − ∥∥y∥∥)2 ≥ 0,

(2.34)

for any λ ∈ [0, 1]. This means that T is V -strongly nonexpansive for any λ ∈ [0, 1].
It is clear that if ‖x‖, ‖y‖ ≤ 1 then T is V -strongly nonexpansive; therefore, from (a),

(b), and (c), we obtain the conclusion that T is V -strongly nonexpansive with λ ≤ 1.

Next, we present some lemmas which are used in the proofs of our theorems. Let N be
the set of natural numbers.

Lemma 2.11. Let {an} and {tn} be sequences of nonnegative real numbers and satisfy the inequality
an+1 ≤ (1 − tn)an + tnM for any n ∈ N and a constant M > 0. If

∑
n∈N

tn < ∞, then limn→∞an

exists.

Kamimura and Takahashi showed the following useful lemmas (see [2]).

Lemma 2.12. Let E be a smooth and uniformly convex Banach space. Then, there exists a continuous,
strictly increasing, and convex function g : [0,∞) → [0,∞) such that g(0) = 0, and for each real
number r > 0,

0 ≤ g
(∥∥x − y

∥∥) ≤ V
(
x, y
)
, (2.35)

for all x, y ∈ Br = {z ∈ E : ‖z‖ ≤ r}.

From this lemma, it is obvious that the following lemma holds.

Lemma 2.13. Let E be a smooth and uniformly convex Banach space and let {xn} and {yn}
be sequences in E such that either {xn} or {yn} is bounded. If limn→∞V (xn, yn) = 0, then
limn→∞‖xn − yn‖ = 0.

We present the following lemma which plays an important role in our theorems (cf.
Butnariu and Resmerita [13] ).

Lemma 2.14. Let E be a smooth and uniformly convex Banach space and C a nonempty, convex, and
closed subset of E. Suppose that T : C → E satisfies

V
(
Tx, Ty

) ≤ V
(
x, y
)
, ∀x, y ∈ C. (2.36)

If a weakly convergent sequence {zn}n∈N
⊂ C satisfies that limn→∞V (Tzn, zn) = 0, then zn ⇀ z ∈

F(T).
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3. Main Results

In this section, we prove three strong convergence theorems. In the first result, we prove
strong convergence theorem for finding common fixed points of a family of generalized
nonexpansive mappings. In the next result, we prove strong convergence theorem for finding
zeroes of a generalized nonexpansive mapping and a maximal monotone operator. In the
last result, we prove weak convergence theorem for finding zeroes of a maximal monotone
operator and a V -strongly nonexpansive mapping. As consequence, we prove convergence
theorem for common zeroes of a maximal monotone operator and a firmly nonexpansive
mapping in a Hilbert space.

Theorem 3.1. Let E be a reflexive, smooth, and strictly convex Banach space, and let {Tn}n∈N
be a

family of generalized nonexpansive mappings. Suppose that
⋂

n∈N
F(Tn) = F /= ∅ and that R is a sunny

and generalized nonexpansive retraction from E to F. Let a sequence {xn} be defined as follows. For
any x1 = x ∈ E,

xn+1 = RTnxn, for any n ∈ N. (3.1)

Then, {xn} converges strongly to a point x∗ in F.

Proof. Since Rxn is a point in F for all n ∈ N, from Proposition 2.3(a), we have for all n ∈ N

that

0 ≤ V (xn+1, Rxn+1) ≤ V (xn+1, Rxn+1) + V (Rxn+1, Rxn)

≤ V (xn+1, Rxn) = V (RTnxn, Rxn).
(3.2)

Since R and Tn are generalized nonexpansive, we get that

V (RTnxn, Rxn) ≤ V (Tnxn, Rxn) ≤ V (xn, Rxn). (3.3)

Hence, we have that

0 ≤ V (xn+1, Rxn+1) ≤ V (xn, Rxn), ∀n ∈ N, (3.4)

and therefore, limn→∞V (xn, Rxn) < ∞. Furthermore, Proposition 2.3(a) implies that

V (xn+k, Rxn+k) + V (Rxn+k, Rxn) ≤ V (xn+k, Rxn). (3.5)

This is equivalent to

V (Rxn+k, Rxn) ≤ V (xn+k, Rxn) − V (xn+k, Rxn+k). (3.6)
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Setting m = n + k for all n, k ∈ N, then we have that

V (Rxm,Rxn) ≤ V (xm,Rxn) − V (xm,Rxm)

≤ V (RTm−1xm−1, Rxn) − V (xm,Rxm)

≤ V (Tm−1xm−1, Rxn) − V (xm,Rxm)

≤ V (xm−1, Rxn) − V (xm,Rxm)

≤ · · ·
≤ V (xn, Rxn) − V (xm,Rxm) −→ 0, as n,m −→ ∞.

(3.7)

Since V (xn+1, p) = V (RTnxn, p) ≤ V (x, p) for any p ∈ F, Lemma 1.1(b) implies that {xn} is
bounded. Thus, from Lemma 2.12, we can take the continuous and strictly increasing function
g : [0,∞) → [0,∞) with g(0) = 0 such that

g(‖Rxm − Rxn‖) ≤ V (Rxm,Rxn)

≤ V (xn, Rxn) − V (xm,Rxm) −→ 0, as n,m −→ ∞.
(3.8)

Since Rxn = xn for all n ≥ 1, we have g(‖xm−xn‖) = g(‖Rxm−Rxn‖) → 0. Therefore, {xn} is a
Cauchy sequence. Since E is complete and F is closed, this sequence {xn} converges strongly
to point x∗ ∈ F.

Noting that the generalized resolvent Jr = (I + rBJ)−1 of amaximalmonotone operator
B for r > 0 is a generalized nonexpansive mapping (see Remark 2.4), we obtain the following
result.

Theorem 3.2. Let E be a reflexive, smooth, and strictly convex Banach space. Let T : E → E
be generalized nonexpansive and let B ⊂ E∗ × E be a maximal monotone operator. Suppose that
F(T) ∩ (BJ)−1(0)/= ∅ and that R is a sunny and generalized nonexpansive retraction from E to F =
F(T) ∩ (BJ)−1(0). Let an iterative sequence {xn} be defined as follows: for any x = x1 ∈ E,

xn+1 = RTJrnxn, ∀n ∈ N, (3.9)

where {rn} is a sequence of nonnegative real numbers. Then, the sequence {xn} converges strongly to
a point x∗ in F(T) ∩ (BJ)−1(0).

Proof. From Propositions 2.3(a) and 2.3(b), we have for all n ∈ N that

V (xn+1, Rxn+1) ≤ V (xn+1, Rxn+1) + V (Rxn+1, Rxn)

≤ V (xn+1, Rxn) = V (RTJrnxn, Rxn)

≤ V (TJrnxn, Rxn)

≤ V (Jrnxn, Rxn)

≤ V (xn, Rxn).

(3.10)
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Thus limn→∞V (xn, Rxn) < ∞. Similarly, as in the proof of the previous theorem, we show
that {xn} is a Cauchy sequence, and we obtain that {xn} converges strongly to point x∗ in
F = F(T) ∩ (BJ)−1(0).

The duality mapping J of a Banach space E with the Gâteaux differentiable norm is
said to be weakly sequentially continuous if xn ⇀ x in E implies that {Jxn} converges weak
star to Jx in E∗ (cf., [14]). This happens, for example, if E is a Hilbert space, finite dimensional
and smooth, or lp if 1 < p < ∞ (cf., [15]). Next, we prove the main theorem.

Theorem 3.3. Let E be a reflexive, smooth and strictly convex Banach space. Suppose that the duality
mapping J of E is weakly sequentially continuous. Let C be a nonempty, closed, and convex subset
of E. Let B : E∗ → 2E be a maximal monotone operator and let Jrn = (I + rnBJ)

−1 be a generalized
resolvent of B for a sequence {rn} ⊂ (0,∞). Suppose that A : C → E is a V -strongly nonexpansive
mapping with λ ≥ 1 such that C0 = A−1(0) ∩ (BJ)−1(0)/= ∅ and that RC : E → C is a sunny and
generalized nonexpansive retraction. For an α ∈ [−1, 1] such that α2λ ≥ 1, let an iterative sequence
{xn} ⊂ C be defined as follows: for any x = x1 ∈ C and n ∈ N,

yn = RC(I − αA)xn,

xn+1 = RC

(
βnx +

(
1 − βn

)
Jrnyn

)
,

(3.11)

where {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy that

∑

n≥1
βn < ∞, lim inf

n→∞
rn > 0. (3.12)

Then, there exists an element u ∈ C0 such that

xn ⇀ u, RC0(xn) −→ u. (3.13)

Proof. For simplicity, we denote RC and RC0 by R and R0, respectively. Let zn = βnx + (1 −
βn)Jrnyn for all n ∈ N. Since R is generalized nonexpansive, we have for any p ∈ C0 and all
n ∈ N that

V
(
xn+1, p

)
= V
(
Rzn, p

) ≤ V
(
zn, p

)
. (3.14)

The convexity of ‖ · ‖2 implies that

V
(
zn, p

)
= V
(
βnx +

(
1 − βn

)
Jrnyn, p

)

=
∥∥βnx +

(
1 − βn

)
Jrnyn

∥∥2 +
∥∥p
∥∥2 − 2

〈
βnx +

(
1 − βn

)
Jrnyn, Jp

〉

≤ βn‖x‖2 +
(
1 − βn

)∥∥Jrnyn

∥∥2 +
∥∥p
∥∥2 − 2βn

〈
x, Jp

〉 − 2
(
1 − βn

)〈
Jrnyn, Jp

〉

= βn
{
‖x‖2 − 2

〈
x, Jp

〉
+
∥∥p
∥∥2
}
+
(
1 − βn

){∥∥Jrnyn

∥∥2 − 2
〈
Jrnyn, Jp

〉
+
∥∥p
∥∥2
}

= βnV
(
x, p
)
+
(
1 − βn

)
V
(
Jrnyn, p

)
.

(3.15)



Abstract and Applied Analysis 15

Thus, we obtain that

V
(
zn, p

) ≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
Jrnyn, p

)
, (3.16)

and furthermore, since Jrn is generalized nonexpansive, we have that

V
(
zn, p

) ≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
yn, p

)
. (3.17)

Let Aα = (I − αA). Then, from Proposition 2.9(d), Aα is V -strongly nonexpansive with
α2λ and Aα is also generalized nonexpansive. Hence, we have that

V
(
yn, p

)
= V
(
RAαxn, p

) ≤ V
(
Aαxn, p

) ≤ V
(
xn, p

)
. (3.18)

Thus, we have from (3.14), (3.16), (3.17), and (3.18) that

V
(
xn+1, p

) ≤ V
(
zn, p

) ≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
Jrnyn, p

)

≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
yn, p

)

≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
Aαxn, p

)

≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
xn, p

)
.

(3.19)

From Lemma 2.11, there exists α = limn→∞V (xn, p) < ∞. Since limn→∞βn = 0, we have that

α = lim
n→∞

V
(
xn, p

)
= lim

n→∞
V
(
zn, p

)
, (3.20)

= lim
n→∞

V
(
Jrnyn, p

)
= lim

n→∞
V
(
yn, p

)
= lim

n→∞
V
(
Aαxn, p

)
. (3.21)

Hence, {xn}, {zn}, {Jrnyn}, {yn}, and {Aαxn} are bounded from Lemma 1.1(b). Since E is
uniformly convex, the boundedness of {xn} implies that there exists a subsequence {xnj} ⊂
{xn} such that xnj ⇀ u ∈ C. Moreover, we can take the index sequence {nj}j≥1 satisfies

limj→∞rnj−1 > 0. We will show that u ∈ (BJ)−1(0). From Proposition 2.3(a),

V
(
xn+1, p

)
= V
(
Rzn, p

) ≤ V (zn, Rzn) + V
(
Rzn, p

) ≤ V
(
zn, p

)
, (3.22)

and furthermore, from (3.16) and Proposition 2.3(b), we obtain that

V
(
zn, p

) ≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
Jrnyn, p

)

≤ βnV
(
x, p
)
+
(
1 − βn

){
V
(
yn, Jrnyn

)
+ V
(
Jrnyn, p

)}

≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
yn, p

)
.

(3.23)
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These inequalities and (3.22) imply with limn→∞βn = 0 and (3.21) that

α ≤ α + lim
n→∞

V (zn, Rzn)

≤ α ≤ lim
n→∞

V
(
yn, Jrnyn

)
+ α ≤ α,

(3.24)

that is,

lim
n→∞

V (zn, xn+1) = lim
n→∞

V (zn, Rzn) = lim
n→∞

V
(
yn, Jrnyn

)
= 0. (3.25)

Lemma 2.13 implies that

lim
n→∞

‖xn+1 − zn‖ = 0, lim
n→∞

∥∥Jrnyn − yn

∥∥ = 0. (3.26)

Furthermore, since

lim
n→∞

∥∥zn − Jrnyn

∥∥ = lim
n→∞

∥∥βnx +
(
1 − βn

)
Jrnyn − Jrnyn

∥∥

= lim
n→∞

βn
∥∥x − Jrnyn

∥∥ = 0,
(3.27)

we have from (3.26) and (3.27) that

∥∥xn+1 − Jrnyn

∥∥ ≤ ‖xn+1 − zn‖ +
∥∥zn − Jrnyn

∥∥

−→ 0 (n −→ ∞).
(3.28)

Hence, for an index sequence {nj}j≥1 of {xnj} such that xnj ⇀ u ∈ C and limj→∞rnj−1 > 0, we
obtain that

Jrnj−1ynj−1 ⇀ u, ynj−1 ⇀ u, as j ⇀ ∞. (3.29)

Since (1/r)(J−1r − I) = (1/r)(I + rBJ − I) = BJ , there exists wnj ∈ BJ(Jrnj−1ynj−1) such that

wnj =
1

rnj−1

(
ynj−1 − Jrnj−1ynj−1

)
, for any j ≥ 1. (3.30)

Since limj→∞rnj−1 > 0, (3.26) implies that

lim
j→∞

∥∥∥wnj

∥∥∥ = lim
j→∞

1
rnj−1

∥∥∥Jrnj−1ynj−1 − ynj−1
∥∥∥ = 0. (3.31)
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For (p, q) ∈ BJ ⊂ E × E, the monotonicity of B implies that

lim
j→∞

〈
q −wnj , Jp − JJrnj−1ynj−1

〉
≥ 0, (3.32)

and we have, since J is weakly sequentially continuous, that

〈
q, Jp − Ju

〉 ≥ 0. (3.33)

The maximality of B implies that u ∈ (BJ)−1(0).
Now, we will show that u ∈ A−1(0). From Proposition 2.9(d) and p ∈ F(Aα), we get

that

V
(
Aαxn, p

)
= V
(
Aαxn,Aαp

)

≤ V
(
xn, p

) − λ−1V
(
Axn,Ap

)
.

(3.34)

Thus, we have from (3.17) that

V
(
xn+1, p

) ≤ V
(
zn, p

) ≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
yn, p

)

= βnV
(
x, p
)
+
(
1 − βn

)
V
(
RAαxn, p

)

≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
Aαxn, p

)

≤ βnV
(
x, p
)
+
(
1 − βn

){
V
(
xn, p

) − λ−1V
(
Axn,Ap

)}
.

(3.35)

This implies that

0 ≤ (1 − βn
)
λ−1V

(
Axn,Ap

)

≤ βnV
(
x, p
)
+
(
1 − βn

)
V
(
xn, p

) − V
(
xn+1, p

)

= βn
{
V
(
x, p
) − V

(
xn, p

)}
+ V
(
xn, p

) − V
(
xn+1, p

)

−→ 0, as n −→ ∞.

(3.36)

Therefore we have that

lim
n→∞

V
(
Axn,Ap

)
= 0. (3.37)



18 Abstract and Applied Analysis

From Lemma 2.13, we get that limn→∞‖Axn − Ap‖ = limn→∞‖Axn‖ = 0 that is, Axn → 0 as
n → ∞. From Lemma 1.1(a) and the boundedness of {Aαxn}, we have that

0 ≤ V (xn,Aαxn)

= V
(
xn, p

) − V
(
Aαxn, p

)
+ 2
〈
xn −Aαxn, JAαxn − Jp

〉

= V
(
xn, p

) − V
(
Aαxn, p

)
+ 2α

〈
Axn, JAαxn − Jp

〉

≤ V
(
xn, p

) − V
(
Aαxn, p

)
+ 2α‖Axn‖

∥
∥JAαxn − Jp

∥
∥

≤ V
(
xn, p

) − V
(
Aαxn, p

)
+ 2α‖Axn‖M,

(3.38)

for someM > 0. From (3.21), we have that limn→∞{V (xn, p)−V (Aαxn, p)} = 0, and we obtain
that

lim
n→∞

V (xn,Aαxn) = 0, (3.39)

and this means that

lim
n→∞

‖xn −Aαxn‖ = 0. (3.40)

From Lemma 2.14, we obtain xn ⇀ u0 ∈ F(Aα). Since xnj ⇀ u, this means that xnj ⇀ u0 =
u; hence, we have u ∈ F(Aα); that is, u ∈ A−1(0). Therefore, we obtain that u ∈ A−1(0) ∩
(BJ)−1(0) = C0.

Let un = R0xn for any n ∈ N. Since R0 is a sunny generalized nonexpansive retraction,

〈
xn − un, Jun − Jy

〉 ≥ 0, ∀y ∈ C0. (3.41)

Similarly as in the proof of Theorem 3.2, we can show that {un} is a Cauchy sequence, and
therefore there exists u∗ ∈ C0 such that un → u∗. Set y = u in (3.41). Since xn ⇀ u, we get that

〈u − u∗, Ju∗ − Ju〉 ≥ 0. (3.42)

This means that u = u∗ by the strict convexity of J ; that is, R0xn → u. This completes the
proof.

In a Hilbert space, we obtain the following theorem as a corollary of the main
Theorem 3.3 by applying Proposition 2.8(a).

Corollary 3.4. Let H be a Hilbert space, and let C be a nonempty, closed, and convex subset of H.
Let B : H → 2H be a maximal monotone operator, and let Jrn = (I + rnB)

−1 be a resolvent of B
for a sequence {rn} ⊂ (0,∞). Suppose that A : C → H is a firmly nonexpansive mapping with
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C0 = A−1(0) ∩ B−1(0)/= ∅. Suppose that RC is a sunny and generalized nonexpansive retraction to C.
Let an iterative sequence {xn} ⊂ C be defined as follows: for any x = x1 ∈ C and n ∈ N,

yn = RC(I − αA)xn,

xn+1 = RC

(
βnx +

(
1 − βn

)
Jrnyn

)
,

(3.43)

where {βn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy that

∑

n≥1
βn < ∞, lim inf

n→∞
rn > 0. (3.44)

Then, there exists an element u ∈ C0 such that

xn ⇀ u, RC0(xn) −→ u. (3.45)
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