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The qualitative behavior of a perturbed fractional-order differential equation with Caputo’s
derivative that differs in initial position and initial time with respect to the unperturbed fractional-
order differential equation with Caputo’s derivative has been investigated. We compare the
classical notion of stability to the notion of initial time difference stability for fractional-order
differential equations in Caputo’s sense. We present a comparison result which again gives the null
solution a central role in the comparison fractional-order differential equation when establishing
initial time difference stability of the perturbed fractional-order differential equation with respect
to the unperturbed fractional-order differential equation.

1. Introduction

We have investigated that the stability of perturbed solution with respect to unperturbed
solution with initial time difference of the nonlinear differential equations of fractional-
order. The differential operators are taken in the Riemann-Liouville and Caputo’s sense and
the initial conditions are specified according to Caputo’s suggestion [1], thus allowing for
interpretation in a physically meaningful way [2].

Lyapunov’s secondmethod is a standard technique used in the study of the qualitative
behavior of differential systems [3–6] along with a comparison result [2, 7] that allows the
prediction of behavior of a differential system when the behavior of the null solution of a
comparison system is known. However, there has been difficulty with this approach when
trying to apply it to unperturbed fractional differential systems [2, 6, 8] and associated
perturbed fractional differential systems with an initial time difference. The difficulty arises
because there is a significant difference between initial time difference (ITD) stability [7, 9–
16] and the classical notion of stability for fractional differential systems [2, 6]. The classical
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notions of stability [2–6, 8, 17] are with respect to the null solution, but ITD stability [7, 9–16]
is with respect to the unperturbed fractional-order differential system where the perturbed
fractional-order differential system and the unperturbed fractional-order differential system
differ both in initial position and initial time [7, 9–16].

In this paper, we have dissipated this complexity and have a new comparison
result which again gives the null solution a central role in the comparison fractional-
order differential system. This result creates many paths for continuing research by direct
application and generalization [13, 15, 16].

In Section 2, we present basic definitions and necessary rudimentary material. In
Section 3, we discuss and compare the differences between the classical notion of stability
and the recent notion of initial time difference (ITD) stability by means of fractional-
order differential systems. In Section 4, we have a comparison result in which the
stability properties of the null solution of the comparison system imply the corresponding
stability properties of the unperturbed fractional-order differential system. In Section 5,
we have an other comparison result in which the stability properties of the null solution
of the comparison system imply the corresponding (ITD) stability properties of the
perturbed fractional-order differential system with respect to the unperturbed fractional-
order differential system.

2. Preliminaries

In this section we give relation among the fractional-order derivatives: Caputo, Reimann-
Liouville and Grünwald-Letnikov fractional-order derivatives and necessary definition of
initial value problems of fractional-order differential equations with these sense.

2.1. Fractional-Order Derivatives: Caputo, Reimann-Liouville and
Grünwald-Letnikov

Caputo’s and Reimann-Liouville’s definitions of fractional derivatives, are namely,

cDqx =
1

Γ
(
1 − q

)
∫ t

τ0

(t − s)−qx′(s)ds, τ0 ≤ t ≤ T, (2.1)

Dqx =
1

Γ
(
p
)

(
d

dt

∫ t

τ0

(t − s)p−1x(s)ds

)

, τ0 ≤ t ≤ T, (2.2)

respectively, order of 0 < q < 1 and p + q = 1, where Γ denotes the Gamma function.
The most important advantage for fractional-order differential equations with

Caputo’s derivative is the initial conditions that are the same form as that of ordinary
differential equations with integer derivatives. Another difference is that the Caputo
derivative for a constant C is zero, while the Riemann-Liouville fractional derivative for a
constant C is not zero but equals to DqC = C(t − τ0)

−q/Γ(1 − q). By using (2.1), therefore,

cDqx(t) = Dq[x(t) − x(τ0)],

cDqx(t) = Dqx(t) − x(τ0)
Γ
(
1 − q

)(t − τ0)−q.
(2.3)
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In particular, if x(τ0) = 0, we obtain

cDqx(t) = Dqx(t). (2.4)

Hence, we can see that Caputo’s derivative is defined for functions for which Riemann-
Liouville fractional-order derivative exists.

Let us write that Grünwald-Letnikov’s notion of fractional-order derivative in a
convenient form

D
q

0x(t) = lim lim
h→ 0
nh=t−τ0

1
hq

[
x(t) − S

(
x, h, r, q

)]
, (2.5)

where S(x, h, r, q) =
∑n

r=1 (−1)r+1
(

q

r

)
x(t − rh). If we know that x(t) is continuous and

dx(t)/dt exist and integrable, then Riemann-Liouville and Grünwald-Letnikov fractional-
order derivatives are connected by the relation

Dqx(t) = D
q

0x(t) =
x(τ0)(t − τ0)−q

Γ
(
1 − q

) +
∫ t

τ0

(t − s)−q

Γ
(
1 − q

)
d

ds
x(s)ds. (2.6)

Using (2.3) implies that we have the following relations among the Caputo, Riemann-
Liouville and Grünwald-Letnikov fractional derivatives

cDqx(t) = Dq[x(t) − x(τ0)] = D
q

0[x(t) − x(τ0)] =
1

Γ
(
1 − q

)
∫ t

τ0

(t − s)−q
dx(s)
ds

ds. (2.7)

The foregoing equivalent expressions are very useful in the study of qualitative properties of
solutions of fractional differential equations.

2.2. Existence of Euler Solution

We consider the initial value problem of the fractional-order differential equation with
Reimann-Liouville’s derivative

Dqx = f(t, x), x(t)(t − t0)1−q|t=t0 = x0 for t ≥ t0, t0 ∈ R+, (2.8)

where f is any function from [t0, T] × R
n → R

n. Let

π = [t0, t1, . . . , tN] (2.9)

be a partition of [t0, T].
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Consider the interval [t0, t1] and observe that the right hand side of the initial value
problem of fractional-order differential equation with Reimann-Liouville’s derivative

Dqx = f
(
t0, x

0
)
, x(t)(t − t0)1−q|t=t0 = x0 for t ≥ t0 (2.10)

on [t0, t1] is constant.
Therefore, the initial value problem has a unique solution of (2.10) of the fractional-

order differential equation with Reimann-Liouville’s derivative given by

x(t) =
x0(t − t0)q−1

Γ
(
q
) + f

(
t0, x

0
) (t − t0)q

Γ
(
1 + q

) , t ∈ [t0, t1]. (2.11)

Define the node x1 = x(t1) and iterate next by considering on [t1, t2] the initial value problem

Dqx = f(t1, x1), x1(t)(t − t1)1−q|t=t1 = x0
1 for t ≥ t1. (2.12)

The next node is x2 = x(t2) and we proceed this way till an arc xπ = xπ(t) has been defined
on all [t0, T]. Let us employ the notation xπ to emphasize the role played by the particular
partition π in determining xπ which is the Euler curved arc corresponding to the partition π.
The diameter of the partition π is given by

μπ = max[ti − ti−1 : 1 ≤ i ≤ N]. (2.13)

Definition 2.1. An Euler solution is any curved arc x = x(t) which is the uniform limit of
Euler curved arcs xπ, corresponding to some sequence πj such that πj → 0, which means the
convergence of the diameter μπj → 0 as j → ∞.

Now, we can give the following result on existence of an Euler solution of the initial
value problem of fractional-order differential equation with Reimann-Liouville’s derivative
for (2.8).

Theorem 2.2. Assume that

(i) ‖f(t, x)‖ ≤ g(t, ‖x‖), (t, x) ∈ [t0, T] × R
n, where g ∈ C[[t0, T] × R+,R+], g(t, u) is

nondecreasing in (t, u);

(ii) The maximal solution r(t) = r(t, t0, u0) of the fractional-order scalar differential equation
with Reimann-Liouville’s derivative

Dqu = g(t, u), u(t)(t − t0)1−q|t=t0 = u0 ≥ 0 for t ≥ t0, t0 ∈ R+ (2.14)

exists on [t0, T].

Then

(a) there exists at least one Euler solution x(t) = x(t, t0, x0) to the initial value problem (2.8),
which satisfies a Hölder condition;



Abstract and Applied Analysis 5

(b) any Euler solution x(t) of (2.8) satisfies the relation

∥
∥
∥x(t) − x0(t)

∥
∥
∥ ≤ r

(
t, t0, u

0
)
− u0, t ∈ [t0, T], (2.15)

where u0 = ‖x0‖ and x0(t) = x0(t − t0)
q−1/Γ(q).

For proof of Theorem 2.2, please see in [6].
If f(t, x) in (2.8) is assumed to be continuous, then x(t) = x(t, t0, x0), an Euler solution,

is actually a solution of the initial value problem (2.8).

Theorem 2.3. Under the assumptions of Theorem 2.2 and if we suppose that f ∈ C[[t0, t0 + T] ×
R

n,Rn], then x(t) is a solution of initial value problem (2.8).

For proof Theorem 2.3, please see in [6].

2.3. Fractional-Order Differential Equations with Caputo’s Derivative

Consider the initial value problems of the fractional-order differential equations with
Caputo’s derivative

cDqx = f(t, x), x(t0) = x0 for t ≥ t0, t0 ∈ R+, (2.16)

cDqx = f(t, x), x(τ0) = y0 for t ≥ τ0, τ0 ∈ R+, (2.17)

where x0 = limt→ t0D
q−1x(t) and y0 = limt→ τ0D

q−1x(t) exist, and the perturbed system of
initial value problem of the fractional-order differential equation with Caputo’s derivative of
(2.17)

cDqy = F
(
t, y

)
, y(τ0) = y0 for t ≥ τ0 ≥ t0, (2.18)

where y0 = limt→ τ0D
q−1y(t), exists, and f, F ∈ C[[t0, τ0 + T] ×R

n,Rn]; satisfy a local Lipschitz
condition on the set R+×Sρ, Sρ = [x ∈ R

n : ‖x‖ < ρ < ∞] and f(t, 0) = 0 for t ≥ 0. In particular,
F(t, y) = f(t, y)+R(t, y),we have a special case of (2.18) and R(t, y) is said to be perturbation
term.

Corollary 2.4. Let 0 < q < 1, and f : (t0, t0+T]×Sρ → R a function such that f(t, x) ∈ L(t0, t0+T)
for any x ∈ Sρ. If x(t) ∈ L(t0, t0+T), then x(t) satisfies a.e. the initial value problems of the fractional-
order differential equations with Reimann-Liouville’s derivative (2.19) if, and only if, x(t) satisfies a.e.
the Volterra fractional-order integral equation (2.20).

For proof of Corollary 2.4, please see in [2].
We assume that we have sufficient conditions to the existence and uniqueness of

solutions through (t0, x0) and (τ0, y0). If f ∈ C[[t0, t0 + T] × R
n,Rn] and x(t) is the solution of

Dqx = f(t, x), x(t)(t − t0)1−q|t=t0 = x0 for t ≥ t0, t0 ∈ R+, (2.19)
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where Dqx is the Reimann-Liouville fractional-order derivative of x as in (2.2), then it also
satisfies the Volterra fractional-order integral equation

x(t) =
x0(t − t0)q−1

Γ
(
q
) +

1
Γ
(
q
)
∫ t

t0

(t − s)q−1f(s, x(s))ds, t0 ≤ t ≤ t0 + T (2.20)

that is, every solution of (2.20) is also a solution of (2.19); for detail please see [2].
We will only give the basic existence and uniqueness result with the Lipschitz

condition by using contraction mapping theorem and a weighted norm with Mittag-Leffler
function in [6].

Theorem 2.5. Assume that

(i) f ∈ C[R,Rn] and bounded byM on R, where R = [(t, x) : t0 ≤ t ≤ t0 + T, ‖x − x0‖ ≤ b];

(ii) ‖f(t, x)−f(t, y)‖ ≤ L‖x−y‖, L > 0, (t, x) ∈ R, where the inequalities are componentwise.

Then there exists a unique solution x(t) = x(t, t0, x0) on [t0, t0 + α] for the initial value
problem of the fractional-order differential equation with Caputo’s derivative of (2.16), where α =
min[T, (bΓ(q + 1)/M)1/q].

For proof of Theorem 2.5, please see in [6].

2.4. Stability Criteria with ITD and Lyapunov-Like Function

Before we can establish our comparison theorem and Lyapunov stability criteria for initial
time difference, we need to introduce the following definitions of ITD stability and Lyapunov-
like functions.

Definition 2.6. The solution y(t, τ0, y0) of the initial value problems of fractional-order
differential equation with Caputo’s derivative of (2.18) through (τ0, y0) is said to be initial
time difference stable with respect to the solution x̃(t, τ0, x0) = x(t−η, t0, x0),where x(t, t0, x0)
is any solution of the initial value problems of fractional-order differential equation with
Caputo’s derivative of (2.16) for t ≥ τ0, τ0 ∈ R+ and η = τ0 − t0 if and only if given any ε > 0
there exist δ1 = δ1(ε, τ0) > 0 and δ2 = δ2(ε, τ0) > 0, such that

∥∥y
(
t, τ0, y0

) − x
(
t − η, t0, x0

)∥∥ < ε, whenever
∥∥y0 − x0

∥∥ < δ1, |τ0 − t0| < δ2 for t ≥ τ0.
(2.21)

If δ1, δ2 are independent of τ0, then the solution y(t, τ0, y0) of the initial value problems
of fractional-order differential equation with Caputo’s derivative of (2.18) is initial time
difference uniformly stable with respect to the fractional solution x(t−η, t0, x0). If the solution
of initial value problems of fractional-order differential equation with Caputo’s derivative of
y(t, τ0, y0) of the fractional system (2.18) through (τ0, y0) is initial time difference stable and
there exist γ1(τ0) > 0 and γ2(τ0) > 0 such that

lim
t→∞

∥∥y
(
t, τ0, y0

) − x
(
t − η, t0, x0

)∥∥ = 0 (2.22)



Abstract and Applied Analysis 7

for all y(t, τ0, y0) and x(t − η, t0, x0) with ‖y0 − x0‖ < γ1 and |τ0 − t0| < γ2 for t ≥ τ0, then it is
said to be initial time difference asymptotically stable with respect to the fractional solution
x(t − η, t0, x0). It is initial time difference uniformly asymptotically stable with respect to the
fractional solution x(t − η, t0, x0) if γ1 and γ2 are independent of τ0.

Definition 2.7. A function φ(r) is said to belong to the class K if φ ∈ C[(0, ρ),R+], φ(0) = 0,
and φ(r) is strictly monotone increasing in r.

Definition 2.8. For any Lyapunov-like function V (t, x) ∈ C[R+ × R
n,R+], we define the

fractional-order Dini derivatives in Caputo’s sense cD
q
+V (t, x) and cDqV (t, x) as follows

cD
q
+V (t, x) = lim

h→ 0+
sup

1
hq

[
V (t, x) − V

(
t − h, x − hqf(t, x)

)]
, (2.23)

cDqV (t, x) = lim
h→ 0−

inf
1
hq

[
V (t, x) − V

(
t − h, x − hqf(t, x)

)]
(2.24)

for (t, x) ∈ R+ × R
n.

Definition 2.9. For a real-valued function V (t, x) ∈ C[R+ × R
n,R+], we define the generalized

fractional-order derivatives (Dini-like derivatives) in Caputo’s sense c
∗D

q
+V (t, y − x̃) and

c
∗D

qV (t, y − x̃) as follows

c
∗D

q
+V

(
t, y − x̃

)
= lim

h→ 0+
sup

1
hq

[
V
(
t, y − x̃

)−V
(
t − h, y −x̃ − hq

(
F
(
t, y

)− f̃(t, x̃)
))]

, (2.25)

c
∗D

qV
(
t, y − x̃

)
= lim

h→ 0−
inf

1
hq

[
V
(
t, y − x̃

) − V
(
t − h, y − x̃ − hq

(
F
(
t, y

) − f̃(t, x̃)
))]

(2.26)

for (t, x) ∈ R+ × R
n.

3. Comparing Fractional Stability with Fractional (ITD) Stability

3.1. Fractional Classical Notion of Stability

Let x(t, t0, x0) and x(t, t0, y0) be any solutions of the initial value problems of fractional-order
differential equations with Caputo’s derivative of (2.16) and of (3.1), respectively,

cDqx = f(t, x), x(t0) = y0 for t ≥ t0, t0 ∈ R+, (3.1)

where f ∈ C[[t0, T] × R
n,Rn].

Assume that f(t, 0) = 0, t ∈ R+ so that x = 0 is a null solution of fractional-order
differential equation with Caputo’s derivative of (3.1) through (t0, 0). Now, we can state the
well-known definitions concerning the stability of the null solution.



8 Abstract and Applied Analysis

Definition 3.1. The null solution x = 0 of fractional-order differential equation with Caputo’s
derivative of (3.1) is said to be stable if and only if for each ε > 0 and for all t0 ∈ R+, there
exists a positive function δ = δ(ε, t0) that is continuous in t0 for each ε such that

‖x0‖ ≤ δ implies ‖x(t, t0, x0)‖ < ε for t ≥ t0. (3.2)

If δ is independent of t0, then the null solution x = 0 of initial value problems of fractional-
order differential equation with Caputo’s derivative of (3.1) is said to be uniformly stable.

Definition 3.2. The solution x(t, t0, y0) of initial value problems of fractional-order differential
equation with Caputo’s derivative of (3.1) through (t0, y0) is said to be stable with respect
to the solution x(t, t0, x0) of fractional-order differential equation with Caputo’s derivative of
(3.1) for t ≥ t0 ∈ R+ if and only if given any ε > 0 there exists a positive function δ = δ(ε, t0)
that is continuous in t0 for each ε such that

∥∥y0 − x0
∥∥ ≤ δ implies

∥∥x
(
t, t0, y0

) − x(t, t0, x0)
∥∥ < ε for t ≥ t0. (3.3)

If δ is independent of t0 , then the solution of the fractional-order differential equation with
Caputo’s derivative of (3.1) is uniformly stable with respect to the solution x(t, t0, x0) of
(2.16).

We remark that for the purpose of studying the classical stability of a given solution
x(t, t0, y0) of the initial value problem of fractional-order differential equation with Caputo’s
derivative of (3.1), it is convenient to make a change of variable. Let x(t, t0, x0) and x(t, t0, y0)
be the unique solutions of the fractional-order differential equations with Caputo’s derivative
(2.16) and (3.1), respectively, and set z(t, t0, y0 − x0) = x(t, t0, y0) − x(t, t0, x0) for t ≥ t0.
Then

cDqz
(
t, t0, y0 − x0

)
= cDq x

(
t, t0, y0

)−cDqx(t, t0, x0), (3.4)

cDqz
(
t, t0, y0 − x0

)
= f

(
t, z

(
t, t0, y0 − x0

)
+ x(t, t0, x0)

) − f(t, x(t, t0, x0)),

cDqz
(
t, t0, y0 − x0

)
= f̃

(
t, z

(
t, t0, y0 − x0

))
.

(3.5)

It is easy to observe that z(t, t0, y0 − x0) ≡ 0 is a solution of the transformed initial value
problems of the fractional differential equation with Caputo’s derivative if y0 − x0 = 0
which implies f(t, 0) = 0. Since cDqz(t) = 0 and z(t, t0, 0) = 0 is the null solution, the
solution of x(t, t0, x0) initial value problems of the fractional-order differential equation with
Caputo’s derivative of (2.16) corresponds to the identically null solution of cDqz = f̃(t, z),
where f̃(t, z(t, t0, y0 − x0)) = f(t, z(t, t0, y0 − x0) + x(t, t0, x0)) − f(t, x(t, t0, x0)). Hence, we
can always assume, without any loss of generality, that x(t, t0, x0) ≡ 0 is the null solution
of the given fractional-order differential equation with Caputo’s derivative of (3.1) and
we can limit our study of stability to that of the null solution [2, 6, 8]. However, it is
impossible to do the same transformation for fractional (ITD) stability which we deal
with it.
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3.2. New Notion of Fractional (ITD) Stability

Let x(t, τ0, y0) be a fractional solution of (2.17) and x̃(t, τ0, x0) = x(t−η, t0, x0),where x(t, t0, x0)
is any solution of initial value problems of the fractional-order differential equations with
Caputo’s derivative of the system (2.16) for t ≥ τ0 ≥ 0. Let us make a transformation similar
to that in (3.5). Set z(t, τ0, y0 − x0) = x(t, τ0, y0) − x(t − η, t0, x0) for t ≥ τ0. Then

cDqz
(
t, τ0, y0 − x0

)
=cDqx

(
t, τ0, y0

)−cDqx
(
t − η, t0, x0

)
,

cDqz
(
t, τ0, y0 − x0

)
= f̃

(
η; t, z

(
t, τ0, y0 − x0

))
.

(3.6)

One can observe that even if y0 = x0, z(t, τ0, 0) is not zero and is not the null solution of the
initial value problems of transformed fractional-order differential equation with Caputo’s
derivative and the solution. x(t−η, t0, x0) does not correspond to the identically zero solution
of cDqz = f̃(η; t, z). Therefore, we cannot use stability properties of the fractional-order
differential equationwith Caputo’s derivative of null solution in order to find fractional (ITD)
stability properties using this approach.

4. A Fractional Comparison Result

In our earlier work and in the work of others [4–6], the differences between the classical
notion of fractional stability and fractional ITD stability did not allow the use of the behavior
of the null solution in our fractional ITD stability analysis. The main result presented in this
section resolves those difficulties with a new approach that allows the use of the fractional
stability of the null solution of the comparison system to predict the Caputo’s fractional
stability properties of y(t, τ0, y0) the solution of fractional-order differential equation with
Caputo’s derivative of (2.18) with respect to x̃(t) = x(t − η, t0, x0), where x(t, t0, x0) is any
solution of the fractional-order differential equation with Caputo’s derivative of (2.16).

Let 0 < q < 1 and p + q = 1. The function space is denoted by Cp[[τ0, T],R] as follows:

Cp[[τ0, T],R] =
[
u ∈ C[(τ0, T],R], (t − τ0)1−qu(t) ∈ C[[τ0, T],R]

]
. (4.1)

The Riemann-Liouville fractional derivative is defined by

Dqx(t) =
x(τ0)(t − τ0)−q

Γ
(
1 − q

) +
∫ t

τ0

(t − s)−q

Γ
(
1 − q

)
d

ds
x(s)ds. (4.2)

Now, we will prove the following comparison result.

Theorem 4.1. Assume that m ∈ Cp[[τ0, T],R+] is locally Hölder continuous, g ∈ Cp[[τ0, T] ×
R+,R] and

Dqm(t) ≤ g(t,m(t)), τ0 ≤ t ≤ T. (4.3)
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Let r(t) be the maximal solution of the initial value problem of fractional-order scalar differential
equation with Riemann-Liouville’s derivative

Dqu(t) = g(t, u(t)), u(t)(t − τ0)1−q|t=τ0 = u0 ≥ 0 (4.4)

existing on [τ0, T] such thatm0 ≤ u0, wherem0 = m(t)(t − τ0)
1−q|t=τ0 . Then we have

m(t) ≤ r(t), τ0 ≤ t ≤ T. (4.5)

Proof. In view of the definition of the maximal solution r(t) of the fractional-order differential
equation with Riemann-Liouville’s derivative of (4.4), it is enough to prove that

m(t) < u(t, ε), τ0 ≤ t ≤ T, (4.6)

where u(t, ε) is any solution of the initial value problem of fractional-order scalar differential
equation with Riemann-Liouville’s derivative

Dqu = g(t, u) + ε with initial value u0 + ε, ε > 0. (4.7)

Now it follows from (4.7) that

Dqu(t, ε) > g(t, u(t, ε)). (4.8)

Then by applying the comparison result [2, Theorem 2.1 in page 23], we get (4.6) and since
limε→ 0u(t, ε) = r(t) uniformly on each compact set τ0 ≤ t ≤ T0 < T.Hence,

m(t) ≤ lim
ε→ 0

u(t, ε) = r(t), τ0 ≤ t ≤ T. (4.9)

The proof is complete.

Theorem 4.2. Assume that f ∈ C[[τ0, T] × S(ρ),Rn] and [x, f(t, x)]+ ≤ g(t, ‖x‖], (t, x) ∈
[τ0, T]×S(ρ), where [x, f(t, x)]+ = limh→ 0+ sup(1/hq)[‖x‖−‖x−hqf(t, x)‖] and g ∈ C[[τ0, T]×
R+,R], g(t, 0) ≡ 0. Then the stability properties of the trivial solution of the comparison initial value
problem of fractional-order differential equation with Caputo’s derivative

cDqu = g(t, u(t)), u(τ0) = u0 ≥ 0 (4.10)

imply the corresponding stability results of the solution x(t, τ0, y0) of the initial value problem of the
fractional-order differential equation with Caputo’s derivative of (2.17), respectively.

Proof. Let u ≡ 0 of (4.10) be stable. Then given 0 < ε < ρ and τ0 ≥ 0, there exists for a
δ = δ(ε, τ0) > 0 with the property that

0 ≤ u0 < δ implies u(t, τ0, u0) < ε, t ≥ τ0. (4.11)
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We claim that the trivial solution of (2.17) is stable for these ε and δ. If this was false, then
there would exists a solution x(t) of (2.17) and t1 > τ0 such that

‖x(t1)‖ = ε, ‖x(t)‖ ≤ ε for τ0 ≤ t ≤ t1. (4.12)

For [τ0, t1], we set m(t) = ‖x(t)‖ and choose ‖y0‖ ≤ u0. Then we have

x(t) − S
(
x, h, r, q

)
= hqf(t, x(t)) + ε(hq) (4.13)

which shows that S(x, h, r, q) = x(t)−hqf(t, x(t))−ε(hq)where ε(hq)/hq → 0 as h → 0+.Now,
by using the fractional-order Dini derivatives in Caputo’s sense cD

q
+m(t) in Definition 2.8 as

in (2.23), we have

cD
q
+m(t) = lim

h→ 0+
sup

1
hq

[‖x(t)‖ − ∥∥x(t) − hqf(t, x(t))
∥∥] ≤ g(t,m(t)) (4.14)

for τ0 ≤ t ≤ t1 andm(τ0) = ‖y0‖.
This yields by comparison Theorem 4.1, the estimate

∥∥x
(
t, τ0, y0

)∥∥ ≤ r
(
t, τ0,

∥∥y0
∥∥), τ0 ≤ t ≤ t1, (4.15)

where r(t, τ0, u0) is themaximal solution of (4.4). At t = t1,we therefore arrive at the following
contradiction

ε =
∥∥x

(
t1, τ0, y0

)∥∥ ≤ r
(
t1, τ0,

∥∥y0
∥∥) < ε. (4.16)

Therefore, this do justify our claim. Hence the trivial solution of initial value problem of the
fractional-order differential equation with Caputo’s derivative of (2.17) is stable.

Next suppose that u ≡ 0 is asymptotically stable. Since this implies by definition of the
stability of u ≡ 0, the stability of the trivial solution of (4.10) is the foregoing argument. This
means the inequality (4.15) holds for all τ0 ≤ t and hence, it is clear, by hypothesis, that if
‖x0‖ < δ0, then limt→∞‖x(t, τ0, x0)‖ = 0. The proof is therefore complete.

5. An Initial Time Difference Fractional Comparison Result

In this section, we have an other comparison result in which the stability properties of the null
solution of the comparison system imply the corresponding initial time difference stability
properties of the perturbed fractional-order differential system in Caputo’s sense with respect
to the unperturbed fractional-order differential system in Caputo’s sense.

Theorem 5.1. Let f, F ∈ C[[t0, T] × R
n,Rn], and let

G(t, r) = max
x̃,y∈B(x0;r)

∥∥∥F
(
t, y

) − f̃(t, x̃)
∥∥∥, (5.1)
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where G(t, r) ∈ C[R+ × R+,R+] and B is closed ball with center at x0 and radius r. Assume that
r∗(t, τ0, ‖y0 − x0‖) is the maximal solution of initial value problem of fractional-order differential
equation with Caputo’s derivative cDqu = G(t, u), u(τ0) = ‖y0 − x0‖ through (τ0, ‖y0 − x0‖).
x̃(t, τ0, x0) = x(t − η, t0, x0), where x(t, t0, x0) is any solution of fractional-order differential equation
of (2.16) for t ≥ τ0 ≥ 0, t0 ∈ R+, and η = τ0 − t0, and y(t, τ0, y0) is the solution of fractional-order
differential equation (2.18) with Caputo’s derivatives. Then

∥
∥y

(
t, τ0, y0

) − x
(
t − η, t0, x0

)∥∥ ≤ r∗
(
t, τ0,

∥
∥y0 − x0

∥
∥) for t ≥ τ0. (5.2)

Proof. Let m(t) = ‖y(t, τ0, y0) − x̃(t, τ0, x0)‖ for t ≥ τ0. Then by using the fractional-order Dini
derivatives in Caputo’s sense cD

q
+m(t) in Definition 2.8 as in (2.23), we obtain

cD
q
+m(t) = cD

q
+
[∥∥y

(
t, τ0, y0

) − x̃(t, τ0, x0)
∥
∥]

≤
∥∥∥F

(
t, y

(
t, τ0, y0

)) − f̃(t, x̃(t, τ0, x0))
∥∥∥

≤ max
x̃,y∈B(x0;m(t))

∥∥∥F
(
t, y

) − f̃(t, x̃)
∥∥∥

= G(t,m(t)).

(5.3)

Therefore, cDq
+m(t) ≤ G(t,m(t)), m(τ0) = ‖y0 − x0‖ and by using a standard result in [6], we

get m(t) ≤ r∗(t, τ0, ‖y0 − x0‖).

Now, we can formulate the comparison results via Lyapunov-like functions.

Theorem 5.2. Let V (t, z) ∈ C[R+ × R
n,R+] and V (t, z) be locally Lipschitzian in z. Assume that

the generalized fractional-order derivatives (Dini-like derivatives) in Caputo’s sense

c
∗D

q
+V

(
t, y − x̃

)
= lim

h→ 0+
sup

1
hq

[
V
(
t, y − x̃

) − V
(
t − h, y − x̃ − hq

(
F
(
t, y

) − f̃(t, x̃)
))]

(5.4)

satisfies c
∗D

q
+V (t, y − x̃) ≤ G(t, V (t, y − x̃)) with (t, x̃), (t, y) ∈ R+ × R

n, where G(t, u) ∈ C[R+ ×
R+,R]. Let r(t) = r(t, τ0, u0) be the maximal solution of the fractional-order differential equation
c
D

qu = G(t, u), u(τ0) = u0 ≥ 0, for t ≥ t0. If x̃(t) = x(t − η, t0, x0), where x(t, t0, x0) is any solution
of the system (2.16) for t ≥ τ0 ≥ 0, t0 ∈ R+ and η = τ0 − t0 and y(t) = y(t, τ0, y0) is any solution of
(2.18) for t ≥ τ0 such that V (τ0, y0 − x0) ≤ u0, then V (t, y(t) − x̃(t)) ≤ r(t) for t ≥ τ0.

Proof. Let x̃(t) = x(t−η, t0, x0),where x(t, t0, x0) is any solution of the system fractional-order
differential equation (2.16) for t ≥ τ0 ≥ 0, t0 ∈ R+, and η = τ0 − t0 and y(t) = y(t, τ0, y0) is any
solution of fractional-order differential equation (2.18) for t ≥ τ0 such that V (τ0, y0 − x0) ≤ u0

holds. Define m(t) = V (t, y(t) − x̃(t)) for t ≥ τ0 so that m(t0) ≤ u0. Then for small enough
h > 0, we get

m(t) −m(t − h) = V
(
t, y(t) − x̃(t)

) − V
(
t − h, y(t − h) − x̃(t − h)

)
. (5.5)
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Since V is locally Lipschitzian in x̃ and fractional-order Dini derivatives in Caputo’s sense
cD

q
+m(t)

V
(
t, y(t) − x̃(t)

) − V
(
t − h, S

(
y − x̃, h, r, q

))

≤ V
(
t, y(t) − x̃(t)

) − V
(
t − h,

(
y(t) − x̃(t)

) − hq
(
F
(
t, y

) − f̃(t, x̃)
))

+ V
(
t − h,

(
y(t) − x̃(t)

) − hq
(
F
(
t, y

) − f̃(t, x̃)
))

− V
(
t − h, S

(
y − x̃, h, r, q

))
,

(5.6)

where L > 0 is the Lipschitz constant, S(y− x̃, h, r, q) = y− x̃−hq[(F(t, y)− f̃(t, x̃))]− [ε1(hq)−
ε2(hq))] and ε1 and ε2 are error terms

cD
q
+m(t) ≤ lim

h→ 0+
sup

1
hq

[
V
(
t, y(t)−x̃(t)) − V

(
t−h, (y(t)−x̃(t))−hq

(
F
(
t, y

)−f̃(t, x̃)
))]

+ lim
h→ 0+

sup
1
hq

[
V
(
t−h, (y(t)−x̃(t))−hq

(
F
(
t, y

)−f̃(t, x̃)
))
−V (

t−h, S(y−x̃, h, r, q))
]
,

cD
q
+m(t) ≤ lim

h→ 0+
sup

1
hq

[L(ε1(hq) − ε2(hq))]

+ lim
h→ 0+

sup
1
hq

[
V
(
t, y(t) − x̃(t)

) − V
(
t − h,

(
y(t) − x̃(t)

)) − hq
(
F
(
t, y

) − f̃(t, x̃)
)]

,

(5.7)

where limh→ 0+ supL[(ε1(hq) − ε2(hq))/hq] → 0. Since c
∗D

q
+V (t, y − x̃) is the generalized

fractional-order derivatives (Dini-like derivatives) in Caputo’s sense, we have

cD
q
+m(t) ≤ c

∗D
q
+V

(
t, y(t) − x̃(t)

) ≤ G
(
t, V

(
t, y(t) − x̃(t)

))
= G(t, V (t,m(t))),

cD
q
+m(t) ≤ G(t, V (t,m(t))), m(τ0) = V

(
τ0, y(τ0) − x̃(τ0)

) ≤ u0.
(5.8)

By using Theorem 5.1, this implies

m(t) = V
(
t, y(t) − x̃(t)

) ≤ r
(
t, τ0,

∥∥y0 − x0
∥∥), (5.9)

where r is the maximal solution of cDqu = G(t, u), u(τ0) = u0 ≥ 0 for t ≥ t0.
Now, we present the main comparison result that yields knowledge of initial time

difference fractional stability properties if we know the stability properties of the null solution
of the fractional comparison system.

Theorem 5.3. Assume that
(i) let V (t, z) ∈ C[R+ × R

n,R+] be locally Lipschitzian in z, positive definite and decrescent
where the fractional-order Dini derivatives in Caputo’s sense cD

q
+m(t)

cD
q
+m(t) ≤ lim

h→ 0+
sup

1
hq

[
V
(
t, y(t) − x̃(t)

) − V
(
t − h,

(
y − x̃

) − hq
(
F
(
t, y

) − f̃(t, x̃)
))]

(5.10)
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satisfies c
∗D

q
+V (t, y − x̃) ≤ G(t, V (t, y − x̃)) for (t, x̃) and (t, y) ∈ R+ × R

n, where G(t, u) ∈ C[R+ ×
R+,R] and the generalized fractional-order (Dini-like) derivatives in Caputo’s sense c

∗D
q
+V (t, x),

a(‖x‖) ≤ V (t, x) ≤ b(‖x‖), (t, x) ∈ R+ × R
n, a, b ∈ K. (5.11)

(ii) Let r(t) = r(t, τ0, u0) be the maximal solution of the fractional-order differential equation
with Caputo’s derivative

cDqu = G(t, u), u(τ0) = u0 ≥ 0 for t ≥ τ0. (5.12)

Then the stability properties of the null solution of the fractional-order differential system with
Caputo’s derivative (5.12) with G(t, 0) = 0 imply the corresponding stability properties of y(t, τ0, y0)
any solution of fractional-order differential system with Caputo’s derivative (2.18) with respect to
x̃(t, τ0, x0) = x(t − η, t0, x0), where x(t, t0, x0) is any solution of fractional-order differential system
with Caputo’s derivative of (2.16).

Proof. Let x̃(t) = x(t − η, t0, x0), where x(t, t0, x0) is any solution of the fractional-order
differential system with Caputo’s derivative of (2.16) for t ≥ t0 ≥ 0, t0 ∈ R+, and η = τ0 − t0
and y(t) = y(t, τ0, y0) is any solution of fractional-order differential system with Caputo’s
derivative of (2.18) for t ≥ t0 such that V (τ0, y0−x0) holds. If we definem(t) = V (t, y(t)− x̃(t))
for t ≥ τ0 so that m(τ0) ≤ u0, then Theorems 5.1 and 5.2 imply that

cD
q
+m(t) ≤ G(V (t,m(t))), m(τ0) = V

(
τ0, y(τ0) − x̃(τ0)

) ≤ u0, (5.13)

where the fractional-order Dini derivatives in Caputo’s sense cD
q
+m(t) and the generalized

fractional-order (Dini-like) derivatives in Caputo’s sense c
∗D

q
+V (t, x) have been used. Thus,

m(t) = V (t, y(t) − x̃(t)) ≤ r(t, τ0, ‖y0 − x0‖), where r is the maximal solution of the fractional
comparison system of (5.12) with Caputo’s derivative. Let the null solution of the fractional
comparison system of (5.12) with Caputo’s derivative be stable. Given any ε > 0, since V is
positive definite and a ∈ K by (i) we have

a
(∥∥y − x̃

∥∥) ≤ V
(
t, y − x̃

)
for (t, x̃),

(
t, y

) ∈ R+ × R
n,

V
(
t, y(t) − x̃(t)

) ≤ r
(
t, τ0,

∥∥y0 − x0
∥∥) < a(ε) for t ≥ τ0 provided that

∥∥y0 − x0
∥∥ < δ(ε, τ0).

(5.14)

Hence

V
(
t, y(t) − x̃(t)

) ≤ r
(
t, τ0,

∥∥y0 − x0
∥∥) < a(ε). (5.15)

Since a−1 exists, we have ‖y(t) − x̃(t)‖ < ε and ‖y0 − x0‖ < δ(ε, τ0). Therefore, y(t, τ0, y0) the
solution of fractional-order differential equation of (2.18) with Caputo’s derivative is stable
with respect to x̃(t) = x(t − η, t0, x0), where x(t, t0, x0) is any solution of the fractional-order
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differential equation of (2.16) with Caputo’s derivative. If the null solution of the fractional
comparison system of (5.12)with Caputo’s derivative is asymptotically stable, then

a
(∥∥y(t) − x̃(t)

∥
∥) ≤ r

(
t, τ0,

∥
∥y0 − x0

∥
∥) holds for t ≥ τ0,

∥
∥y0 − x0

∥
∥ small enough. (5.16)

That implies

lim
t→∞

∥
∥y

(
t, τ0, y0

) − x
(
t − η, t0, x0

)∥∥ = 0 (5.17)

since a ∈ K. Hence, y(t, τ0, y0) the solution of fractional differential equation (2.18) is
asymptotically stable with respect to x̃(t) = x(t − η, t0, x0),where x(t, t0, x0) is any solution of
the system (2.16). Since V is decrescent and b ∈ K by (i) we have

V
(
t, y − x̃

) ≤ b
(∥∥(y − x̃

)∥∥) for (t, x̃),
(
t, y

) ∈ R+ × R
n (5.18)

and the choice of δ = δ(ε) is independent of τ0.
Thus, uniform stability and uniform asymptotic stability of the fractional comparison

system of (5.12) with Caputo’s derivative imply the corresponding uniform stability and
uniform asymptotic stability of the fractional solution of (2.18) in Caputo’s sense with respect
to x̃(t) = x(t − η, t0, x0), where x(t, t0, x0) is any solution of the fractional system of (2.16) in
Caputo’s sense. Hence, x(t, t0, x0) is any solution of the fractional system of (2.16) in Caputo’s
sense that is uniformly stable and uniformly asymptotically stable.
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