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This paper develops some new Razumikhin-type theorems on global exponential stability of
impulsive functional differential equations. Some applications are given to impulsive delay
differential equations. Compared with some existing works, a distinctive feature of this paper
is to address exponential stability problems for any finite delay. It is shown that the functional
differential equations can be globally exponentially stabilized by impulses even if it may be
unstable itself. Two examples verify the effectiveness of the proposed results.

1. Introduction

Functional differential equations (FDEs) which include delay differential equations (DDEs)
play a very important role in formulation and analysis in mechanical, electrical, control
engineering and physical sciences, economic, and social sciences [1, 2]. Therefore, the theory
of FDEs has been developed very quickly. The investigation for FDEs has attracted the
considerable attention of researchers and many qualitative theories of FDEs have been
obtained. A large number of stability criteria of FDEs have been reported.

In addition to the delay effect, as is well known, impulsive effect is likely to exist in
a wide variety of evolutionary processes in which states are changed abruptly at certain
moments of time in the fields such as medicine and biology, economics, electronics, and
telecommunications [3]. So far, a lot of interesting results on stability have been reported
that have focused on the impulsive effect of FDEs (see, e.g., [4–16] and the references cited
therein).
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In particular, several papers devoted to the study of exponential stability of impulsive
functional differential equations (IFDEs) have appeared during the past years. In [14, 15], the
authors have investigated exponential stability of IFDEs by using the method of Lyapunov
functions and Razumikhin techniques. In [16], the authors have also studied exponential
stability by using the method of Lyapunov functional. However, some results in [15, 16]
imposed a restrictive condition on time delays which were less than the length of all the
impulsive intervals (see, e.g., [15, Theorems 3.1-3.2] and [16, Theorem3.1]). The aim of
this paper is to establish global exponential stability criteria for IFDEs by employing the
Razumikhin technique which illustrate that impulses do contribute to the stability of some
IFDEs and the restrictive condition that the time delays are less than the length of all the
impulsive intervals can be removed in this paper.

2. Preliminaries

Throughout this paper, unless otherwise specified, we use the following notations. Let R =
(−∞,+∞), R

+ = [0,+∞), N = {1, 2, . . .}, I be the identity matrix, λmax(·) and λmin(·) be the
maximal eigenvalue and the minimal eigenvalue of a matrix, respectively. If A is a vector or
matrix, its transpose is denoted by AT . For x ∈ R

n and A ∈ R
n×n, let |x| =

√
xTx be Euclidean

vector norm, and denote the induced matrix norm by

‖A‖ = sup
x /= 0

|Ax|
|x| =

√
λmax

(
ATA

)
. (2.1)

Let τ > 0 and C = C([−τ, 0];Rn) denote the family of all bounded continuous R
n-

valued functions φ defined on [−τ, 0]. PC(I;Rn) = {ψ : I → R
n | ψ(s) is continuous for

all but at most countable points s ∈ I and at these points s ∈ I, ψ(s+) and ψ(s−) exist and
ψ(s+) = ψ(s)}, where I ⊂ R is an interval, ψ(s+) and ψ(s−) denote the right-hand and left-
hand limits of the function ψ(s) at time s, respectively. Especially, let PC � PC([−τ, 0];Rn)
with norm ‖ψ‖ = sup−τ�s�0|ψ(s)|.

In this paper, we consider the following IFDEs:

x′(t) = f(t, xt), t /= tk, t � 0,

Δx(tk) = x
(
t+k
) − x(t−k

)
= Ik
(
x
(
t−k
))
, t = tk, k ∈ N,

x(s) = φ(s), −τ � s � 0,

(2.2)

where f : R
+ × PC → R

n, xt(θ) = x(t + θ), θ ∈ [−τ, 0]. The initial function φ ∈ PC. The
impulsive function Ik ∈ C(Rn;Rn) (k ∈ N), and the impulsive moments tk (k = 1, 2, . . .)
satisfy 0 = t0 < t1 < t2 < · · · , and limk→∞tk = ∞.

In this paper, we assume that functions f and Ik, k ∈ N, satisfy all necessary conditions
for the global existence and uniqueness of solutions for all t � t0. Denote by x(t) = x(t, t0, φ)
the solution of (2.2) such that xt0 = φ. For the purpose of stability in this paper, we also
assume that f(t, 0) = 0 and Ik(0) = 0, k ∈ N. So system (2.2) admits a zero solution or trivial
solution x(t, t0, 0) = 0. We further assume that all the solutions x(t) of (2.2) are continuous
except at tk, k ∈ N, at which x(t) is right continuous, that is, x(t+

k
) = x(tk), k ∈ N.
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Definition 2.1. The trivial solution of system (2.2) is said to be globally exponentially stable, if
there exist numbers λ > 0 andM � 1 such that

∣∣x(t, t0, φ
)∣∣ � M

∥∥φ∥∥e−λt, t � 0, (2.3)

whenever φ ∈ PC.

Definition 2.2. V : [−τ,∞)×R
n → R

+ is said to belong to the class ν0, ifV is continuous on each
of the sets [tk−1, tk) × R

n, lim(t,y)→ (t−
k
,x)V (t, y) = V (t−k, x) exists, V (t, x) is locally Lipschitzian

in all x ∈ R
n, and V (t, 0) ≡ 0 for all t ≥ −τ .

Definition 2.3. V : [−τ,∞) × R
n → R

+ is said to belong to the class ν1, if V is continuous on
each of the sets [tk−1, tk) × R

n, V (t, 0) ≡ 0 for all t ≥ −τ , lim(t,y)→ (t−
k
,x)V (t, y) = V (t−

k
, x) exists,

Vt(t, x), Vx(t, x) are continuous, where (t, x) ∈ [tk−1, tk) × R
n, k ∈ N,

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) =

(
∂V (t, x)
∂x1

, . . . ,
∂V (t, x)
∂xn

)
. (2.4)

Definition 2.4. Given a function V : [−τ,+∞) × R
n → R

+, the upper right-hand derivative of
V with respect to system (2.2) is defined by

D+V
(
t, ϕ(0)

)
= lim sup

h→ 0+

1
h

[
V
(
t + h, ϕ(0) + hF

(
t, ϕ
)) − V (t, ϕ(0))] (2.5)

for (t, ϕ) ∈ R
+ × PC.

3. Razumikhin-Type Theorems

In this section, we will present some Razumikhin-type theorems on global exponential
stability for system (2.2) based on the Lyapunov-Razumikhin method.

Theorem 3.1. Let ρ = supk∈N
{tk − tk−1} < ∞ and c1, c2, p, q, γ all be positive numbers, c a real

number, q > 1/γ > 1, and c < ln(1/γ)/ρ. Suppose that there exists a function V ∈ ν0 such that
(i) c1|x|p � V (t, x) � c2|x|p for all t � t0 − τ , and x ∈ R

n;

(ii) D+V (t, ϕ(0)) � cV (t, ϕ(0)) for all t ∈ [tk−1, tk), k ∈ N, whenever qV (t, ϕ(0)) � V (t +
θ, ϕ(θ)) for all θ ∈ [−τ, 0];

(iii) V (tk, x + Ik(x)) � γV (t−k, x), k ∈ N, x ∈ R
n.

Then the trivial solution of system (2.2) is globally exponentially stable.

Proof. For any φ ∈ PC, we denote the solution x(t, t0, φ) of (2.2) by x(t). Without loss of
generality, we assume that ‖φ‖/= 0.

Since q > 1/γ and c < −(ln γ/ρ), there exist positive numbers μ and h such that

q >
eμτ

γ
>

1
γ
, c < c + μ < − ln

(
γ + h

)

ρ
. (3.1)

Set γ1 = − ln(γ + h/ρ), then γ < e−γ1ρ < 1.
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SetW(t) = eμtV (t, x(t)), we have

D+W(t) = μW(t) + eμtD+V (t, x(t)), t ∈ [tk−1, tk), k ∈ N. (3.2)

LetM > c2/c1γ be a fixed number. In the following, we will prove that

W(t) < c1M
∥∥φ∥∥p, t � t0 − τ. (3.3)

We first prove that

W(t) < c1M
∥∥φ∥∥p, t ∈ [t0 − τ, t1). (3.4)

It is noted that W(t0 + θ) � c2‖φ‖p < γc1M‖φ‖p < c1M‖φ‖p, θ ∈ [−τ, 0]. So, it only needs to

prove that W(t) < c1M‖φ‖p for t ∈ (t0, t1). On the contrary, there exist some t ∈ (t0, t1) such

that W(t) � c1M‖φ‖p. Set t∗ = inf{t ∈ (t0, t1) : W(t) � c1M‖φ‖p}, then we have t∗ ∈ (t0, t1)

and W(t∗) � c1M‖φ‖p. Set t = sup{t ∈ [t0, t∗) : W(t) � γc1M‖φ‖p}. Then t ∈ (t0, t∗) and

W(t) = γc1M‖φ‖p. For t ∈ [t, t∗], we have

W(t) � γc1M
∥∥φ∥∥p � γW(t + θ), ∀θ ∈ [−τ, 0]. (3.5)

Hence

V (t, x(t)) � γe−μτV (t + θ, x(t + θ)) � 1
q
V (t + θ, x(t + θ)), ∀θ ∈ [−τ, 0]. (3.6)

By condition (ii) and (3.2), it follows that for t ∈ [t, t∗]

D+W(t ) = μW(t) + eμtD+V (t, x(t)) �
(
μ + c

)
W(t) � γ1W(t). (3.7)

So, we obtain W(t∗) � W(t)eγ1(t
∗−t) � γc1M‖φ‖peγ1ρ < c1M‖φ‖p. This is a contradiction, so

(3.4) holds.
Now, we assume that for somem ∈ N,

W(t) < c1M
∥∥φ∥∥p, t ∈ [t0 − τ, tm). (3.8)

We will prove that

W(t) < c1M
∥∥φ∥∥p, t ∈ [tm, tm+1). (3.9)
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Suppose not, there exist some t ∈ [tm, tm+1) such that W(t) � c1M‖φ‖p. Set t∗ = inf{t ∈
[tm, tm+1) : W(t) � c1M‖φ‖p}. From condition (iii) and (3.8), we have W(tm) � γW(t−m) �
γc1M‖φ‖p < c1M‖φ‖p. Hence t∗ ∈ (tm, tm+1) and W(t∗) = c1M‖φ‖p. Set t = sup{t ∈
[tm, t∗) : W(t) � γc1M‖φ‖p}. Then we have W(t) = γc1M‖φ‖p. Furthermore, we have
W(t) � γc1M‖φ‖p � γW(t+θ) for t ∈ [t, t∗]. Thus, (3.7) holds. ThenW(t∗) � γc1M‖φ‖peγ1ρ <
c1M‖φ‖p, which yields a contradiction. Therefore, (3.9) holds.

By mathematical induction, we have

W(t) < c1M
∥∥φ∥∥p, t � 0. (3.10)

Hence

|x(t)| < M∥∥φ∥∥e−λt, t � 0, (3.11)

whereM =M
1/p

, λ = μ/p. The proof is therefore complete.

Theorem 3.2. Let � = infk∈N{tk − tk−1} > 0 and c1, c2, p, q, γ, c all be positive numbers, q > γ � 1,
and c > ln γ/�. Suppose that there exists a function V ∈ ν0 such that

(i) c1|x|p � V (t, x) � c2|x|p for all t � t0 − τ , and x ∈ R
n,

(ii) D+V (t, ϕ(0)) � −cV (t, ϕ(0)) for all t ∈ [tk−1, tk) (k ∈ N), whenever qV (t, ϕ(0)) �
V (t + θ, ϕ(θ)) for all θ ∈ [−τ, 0];

(iii) V (tk, x + Ik(x)) � γV (t−k, x), k ∈ N, x ∈ R
n.

Then the trivial solution of system (2.2) is globally exponentially stable.

Proof. Since q > γ and c > ln γ/�, there exist positive numbers μ and h such that

q >
(
γ + h

)
eμτ > γ, c > c − μ > ln

(
γ + 2h

)

�
. (3.12)

Set q = γ + h and γ2 = ln(γ + 2h)/�, then 1 � γ < q < eγ2�. SetW(t) = eμtV (t, x(t)), where x(t)
is defined as in the proof of Theorem 3.1.

Now, letM > qc2/c1, we will prove that (3.3) holds.
We first prove that (3.4) holds. In fact, it is noticed that W(t0 + θ) � c2‖φ‖p <

(1/q)c1M‖φ‖p < c1M‖φ‖p, for θ ∈ [−τ, 0]. So it only needs to prove W(t) < c1M‖φ‖p
for t ∈ (t0, t1). On the contrary, there exists t ∈ (t0, t1) such that W(t) � c1M‖φ‖p. Set
t∗ = inf{t ∈ (t0, t1) : W(t) � c1M‖φ‖p}, then we have t∗ ∈ (t0, t1). Set t = sup{t ∈ [t0, t∗) :
W(t) � (1/q)c1M‖φ‖p}. Then t ∈ (t0, t∗) andW(t) = (1/q)c1M‖φ‖p. For t ∈ [t, t∗], we have

qW(t) � c1M
∥∥φ∥∥p � W(t + θ), ∀θ ∈ [−τ, 0]. (3.13)

Hence

V (t, x(t)) � 1
q
e−μτV (t + θ, x(t + θ)) � 1

q
V (t + θ, x(t + θ)), ∀θ ∈ [−τ, 0]. (3.14)
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It follows that for t ∈ [t, t∗]

D+W(t) �
(
μ − c)W(t) � −γ2W(t), (3.15)

which leads to W(t∗) � W(t). This is a contradiction to the fact W(t∗) = c1M‖φ‖p >

(1/q)c1M‖φ‖p =W(t), so (3.4) holds.
Now, we assume that for some m ∈ N, (3.8) holds. We will prove that (3.9) holds. In

order to do this, we first claim that

W
(
t−m
)

� 1
q
c1M

∥∥φ∥∥p. (3.16)

Suppose not, then we haveW(t−m) > (1/q)c1M‖φ‖p. There are two cases to be considered.
Case 1. W(t) > (1/q)c1M‖φ‖p for all t ∈ [tm−1, tm).

By (3.8), we have qW(t) > c1M‖φ‖p > W(t + θ) for θ ∈ [−τ, 0] and t ∈ [tm−1, tm). Thus,
we get D+W(t) � −γ2W(t) for t ∈ [tm−1, tm) which leads to W(t−m) � W(tm−1)e−γ2(tm−tm−1) <

c1M‖φ‖pe−γ2� < (1/q)c1M‖φ‖p. This is a contradiction.
Case 2. There is some t ∈ [tm−1, tm) such thatW(t) � (1/q)c1M‖φ‖p.

Set t = sup{t ∈ [tm−1, tm) : W(t) � (1/q)c1M‖φ‖p}. Then t ∈ [tm−1, tm) and W(t) =
(1/q)c1M‖φ‖p. Since for t ∈ [t, tm), qW(t) � c1M‖φ‖p � W(t + θ), θ ∈ [−τ, 0]. By (3.15), we
have D+W(t) � 0 for t ∈ [t, tm), which gives W(t−m) � W(t) = (1/q)c1M‖φ‖p. This is also a
contradiction.

Hence, (3.16) holds. It follows from (iii) that W(tm) � γW(t−m) � (γ/q)c1M‖φ‖p <

c1M‖φ‖p. Now, we assume that (3.9) is not true, set t∗ = inf{t ∈ [tm, tm+1) :W(t) � c1M‖φ‖p}.
Hence t∗ ∈ (tm, tm+1) and W(t∗) = c1M‖φ‖p. If W(t) > (1/q)c1M‖φ‖p for t ∈ [tm, t∗], set
t = tm, otherwise, set t = sup{t ∈ [tm, t∗) : W(t) � (1/q)c1M‖φ‖p}. Thus, we have qW(t) �
c1M‖φ‖p � W(t + θ) for t ∈ [t, t∗]. Hence, by (3.15), D+W(t) � 0 for t ∈ [t, t∗]. ThenW(t∗) �
W(t) < c1M‖φ‖p, which yields a contradiction. Therefore, (3.9) holds. The rest is the same as
in the proof of Theorem 3.1.

Remark 3.3. By Theorems 3.1 and 3.2, we can design impulsive control {Ik(x(t−k)), k ∈ N} for
the following FDEs

x′(t) = f(t, xt), t � t0,

xt0(s) = φ(s), −τ � s � 0, φ ∈ C,
(3.17)

such that the system can be impulsively stabilized to its trivial solution. In Theorem 3.1,
the constant c may be chosen as a positive number. In the stability theory of FDEs, the
condition D+V (t, ϕ(0)) � cV (t, ϕ(0)) allows the derivative of the Lyapunov function to be
positive whichmay not even guarantee the stability of functional differential system (see, e.g.,
[4, 15]). However, as we can see fromTheorem 3.1, impulses play an important role inmaking
a functional differential system globally exponentially stable even if it may be unstable
itself.
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Remark 3.4. It is important to emphasize that, in contrast with some existing exponential
stability results for IFDEs in the literature [15, 16], Theorems 3.1 and 3.2 are also valid for
any finite delay. Therefore, our new results are more practically applicable than those in the
literature, since the restrictive condition that the supper bound of time delay is less than the
length of all the impulsive intervals is actually removed here.

4. Applications and Examples

Now, we will apply the general Razumikhin-type theorems established in Section 3 to deal
with the global exponential stability of impulsive delay differential equations (IDDEs).

Consider a delay system of the form

x′(t) = F(t, x(t), x(t − δ1(t)), . . . , x(t − δm(t))), t /= tk, t � 0,

Δx(tk) = x
(
t+k
) − x(t−k

)
= Ik
(
x
(
t−k
))
, t = tk, k ∈ N,

x(s) = φ(s), −τ � s � 0,

(4.1)

where φ ∈ PC, δi : R
+ → [0, τ], 1 � i � m, are all continuous, and

F : R
+ × R

n × R
n×m −→ R

n (4.2)

is continuous. We also assume that (4.1) has a global solution which is again denoted by
x(t) = x(t, t0, φ), F(t, 0, . . . , 0) = 0 and Ik(0) = 0, k ∈ N.

Theorem 4.1. Let ρ = supk∈N
{tk − tk−1} < ∞, λ0 be a real number, and λ1, . . . , λm, c1, c2, p, γ be all

positive numbers, 0 < γ < 1. Suppose that there exists a function V ∈ ν1 such that
(i) c1|x|p � V (t, x) � c2|x|p for all t � t0 � −τ , and x ∈ R

n;

(ii)

Vt(t, x) + Vx(t, x)F
(
t, x, y

)
� λ0V (t, x) +

m∑
i=1

λiV
(
t − δi(t), yi

)
(4.3)

for all t ∈ [tk−1, tk) (k ∈ N), x ∈ R
n, y = (y1, . . . , ym) ∈ R

n×m;

(iii) V (tk, x + Ik(x)) � γV (t−k, x), k ∈ N, x ∈ R
n.

If λ0 +
∑m

i=1 λi/γ + ln γ/ρ < 0, then the trivial solution of (4.1) is globally exponentially stable.

Proof. For t ∈ [tk−1, tk), (k ∈ N), φ ∈ PC, let

f
(
t, φ
)
= F
(
t, φ(0), φ(−δ1(t)), . . . , φ(−δm(t))

)
. (4.4)

Then system (4.1) becomes system (2.2), and D+V (t, φ(0)) becomes

D+V
(
t, φ(0)

)
= Vt
(
t, φ(0)

)
+ Vx

(
t, φ(0)

)
F
(
t, φ(0), φ(−δ1(t)), . . . , φ(−δm(t))

)
. (4.5)



8 Abstract and Applied Analysis

If λ0 +
∑m

i=1 λi/γ + ln γ/ρ < 0, then there exists a constant q > 1/γ , such that

λ0 + q
m∑
i=1

λi +
ln γ
ρ

< 0. (4.6)

So, if t ∈ [tk−1, tk) (k ∈ N) and qV (t, ϕ(0)) � V (t + θ, ϕ(θ)) for all θ ∈ [−τ, 0], then

D+V
(
t, ϕ(0)

)
� λ0V

(
t, ϕ(0)

)
+

m∑
i=1

λiV
(
t − δi(t), ϕ(−δi(t))

)

�
(
λ0 + q

m∑
i=1

λi

)
V
(
t, ϕ(0)

)
= cV

(
t, ϕ(0)

)
,

(4.7)

where c = λ0 + q
∑m

i=1 λi < − ln γ/ρ. By Theorem 3.1, the trivial solution of (4.1) is globally
exponentially stable.

Corollary 4.2. Let ρ = supk∈N
{tk − tk−1} <∞. Assume that there exist scalar numbers αi � 0 (1 �

i � m), 0 < α < 1 and η such that

xTF(t, x, 0) � η|x|2, (4.8)

∣∣F(t, x, y) − F(t, x, 0)∣∣ �
m∑
i=1

αi
∣∣yi
∣∣, (4.9)

|x + Ik(x)| � α|x| (4.10)

for all t � t0, x ∈ R
n, y = (y1, . . . , ym) ∈ R

n×m, k ∈ N.
If

η +
∑m

i=1 αi
α

+
lnα
ρ

< 0, (4.11)

then the trivial solution of (4.1) is globally exponentially stable.

Proof. Let V (t, x) = xTx = |x|2, then we can easily see that condition (i) of Theorem 4.1 holds.
For x ∈ R

n and y = (y1, . . . , ym) ∈ R
n×m, from (4.8) and (4.9), we can calculate that

Vt(t, x) + Vx(t, x)F
(
t, x, y

)
= 2xTF

(
t, x, y

)
= 2xTF(t, x, 0) + 2xT

[
F
(
t, x, y

) − F(t, x, 0)]

� 2η|x|2 + 2
m∑
i=1

αi|x| ·
∣∣yi
∣∣.

(4.12)

Let γ = α2, by the inequality ab � (a2 + b2)/2, we have

|x| · ∣∣yi
∣∣ =
(
γ−1/4|x|

)(
γ1/4
∣∣yi
∣∣) �

γ−1/2|x|2 + γ1/2∣∣yi
∣∣2

2
. (4.13)
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Substituting (4.13) into (4.12), we obtain

Vt(t, x) + Vx(t, x)F
(
t, x, y

)
�
(
2η +

∑m
i=1 αi
α

)
|x|2 + γ1/2

m∑
i=1

αi
∣∣yi
∣∣2 = λ0|x|2 +

m∑
i=1

λi
∣∣yi
∣∣2,

(4.14)

where λ0 = 2η +
∑m

i=1 αi/α, λi = γ
1/2αi, i = 1, . . . , m.

From (4.11), we have

λ0 +
∑m

i=1 λi
γ

+
ln γ
ρ

< 0. (4.15)

The conclusion follows from Theorem 4.1 immediately and the proof is completed.

Remark 4.3. Let � = infk∈N{tk − tk−1} > 0. If γ � 1, by Theorem 3.2, we can also give some
other results on global exponential stability for (4.1). For the details, we omit them here.

Example 4.4. Consider a scalar nonlinear impulsive delay differential equation

x′(t) = F(t, x(t), x(t − δ(t))), t /= tk,

Δx(tk) = ckx
(
t−k
)
, t = tk, k ∈ N,

x(s) = φ(s), s ∈ [−τ, 0]
(4.16)

on t � 0, where δ : R+ → [0, τ] is a continuous function, ck ∈ R, and

F
(
t, x, y

)
= bx − 1

10
x3 − y cos t, (4.17)

with x = x(t), y = x(t − δ(t)), b > 0.
From (4.8)-(4.9), we can see η = b, α1 = 1. By Corollary 4.2, if there exists a scalar

number 0 < α < 1, such that

|1 + ck| � α, b +
1
α
+
lnα
ρ

< 0, (4.18)

then the trivial solution of (4.16) is global exponentially stable.

Example 4.5. Consider the following linear impulsive delay system:

x′(t) = Ax(t) + Bx(t − δ(t)), t /= tk, t � 0,

Δx(tk) = Ckx
(
t−k
)
, t = tk, k ∈ N,

x(s) = φ(s), −τ � s � 0, φ ∈ PC,
(4.19)
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where

A =

⎡
⎢⎢⎣
0.1 0.2 −0.1
0.2 0.15 0.3

0 0.24 0.1

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣
−0.12 0.03 0

0.12 −0.2 0.05

0 0.14 −0.1

⎤
⎥⎥⎦, Ck =

⎡
⎢⎢⎣
−0.5 0 0

0 −0.8 0

0 0 −0.4

⎤
⎥⎥⎦, (4.20)

δ : R
+ → [0, τ] is a continuous function. Since λmin(A) = −0.2315 and λmax(A) = 0.4388, we

can not use the results in [5, 14] to determine the exponential stability. From Corollary 4.2,
we can choose η = λmax((A+AT)/2) = 0.4409, α1 = ‖B‖ = 0.2905, α = ‖I +Ck‖ = 0.6, by (4.11),
we obtain that if supk∈N

{tk − tk−1} < −α lnα/(α1 + αλ1) = 0.5521, then trivial solution of (4.19)
is globally exponentially stable.

Remark 4.6. For (4.19), the authors in [15] chose δ(t) = (1/40)(1 + e−t), τ = 0.05, supk∈N
{tk −

tk−1} � 0.2 such that τ � tk − tk−1 � 0.2. However, if τ > supk∈N
{tk − tk−1}, the results in

[15, 16] fail to determine the global exponential stability.

5. Conclusion

In this paper, some new Razumikhin-type theorems on global exponential stability for IFDEs
are obtained by employing Lyapunov-Razumikhin technique. Some applications to IDDEs
are also given. It should be mentioned that our results may allow us to develop an effective
impulsive control strategy to stabilize an underlying delay dynamical system even if it may
be unstable in practice, which is particularly meaningful for applications in engineering and
technology. Two examples are also given to demonstrate the effectiveness of the theoretical
results.
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