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This paper is concerned with a mean-variance hedging problem with partial information, where
the initial endowment of an agent may be a decision and the contingent claim is a random variable.
This problem is explicitly solved by studying a linear-quadratic optimal control problemwith non-
Markov control systems and partial information. Then, we use the result as well as filtering to
solve some examples in stochastic control and finance. Also, we establish backward and forward-
backward stochastic differential filtering equations which are different from the classical filtering
theory introduced by Liptser and Shiryayev (1977), Xiong (2008), and so forth.

1. Introduction and Problem Formulation

We begin with a finite time horizon [0, T] for T > 0, a complete filtered probability
space (Ω,F, (Ft),P) on which an Rm-valued standard Brownian motion (W(·)) is defined.
Moreover, we let the natural filtration Ft = σ{W(s); 0 ≤ s ≤ t}, 0 ≤ t ≤ T , and F = FT .

Suppose there is a financial market in which m + 1 securities can be continuously
traded. One of them is a bond whose price B(·) satisfies

dB(t) = r(t)B(t)dt, (1.1)

where r(t) is the interest rate of the bond at time t. The other m assets are stocks whose
dynamicses are subject to the following stochastic differential equations (SDEs):

dSi(t) = μi(t)Si(t)dt + σi(t)Si(t)dWi(t), (1.2)

where μi(t) and σi(t) are called the appreciation rate of return and volatility coefficient of the
ith stock.
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Suppose there is an agent who invests in the bond and stocks, whose decision cannot
influence the prices in the financial market. We assume that the trading of the agent is self-
financed, that is, there is no infusion or withdrawal of funds over [0, T]. We denote by πi(t)
the amount that the agent invests in the ith stock and by xπ(t) the wealth of the agent with
an initial endowment x0 > 0. Then the agent has xπ(t) −∑m

i=1 πi(t) savings in a bank. Under
the forgoing notations and interpretations, the wealth xπ(·) is modeled by

dxπ(t) =

[

r(t)xπ(t) +
m∑

i=1

(
μi(t) − r(t)

)
πi(t)

]

dt +
m∑

i=1

σi(t)πi(t)dWi(t),

xπ(0) = x0.

(1.3)

Generally speaking, it is impossible for the agent to know all the events occurred in
the financial market. For instance, if the agent has not enough time or great vigor to observe
all the prices of the m + 1 assets, then the agent will only observe some data of all the prices.
Without loss of generality, we denote by Zt the information available to the agent at time
t, which is a subfiltration of Ft. Suppose a process only adapted to Zt is called observable.
Therefore, the agent has to choose a portfolio strategy according to the observable filtration
Zt. A portfolio strategy π(·) = (π1(·), . . . , πm(·)) is called admissible if πi(t) is a Zt-adapted,
square-integrable process with values in R. The set of the admissible portfolio strategies is
denoted by Uad.

We give the following hypothesis.

(H1) The coefficients r(·), μi(·), σi(·), and σi(·)−1 are uniformly bounded and deterministic
functions with values in R.

For any π(·) ∈ Uad, (1.3) admits a unique solution under Hypothesis (H1). If we define
vi(·) = σi(·)πi(·), then (1.3) is rewritten as

dxv(t) =

[

r(t)xv(t) +
m∑

i=1

μi(t) − r(t)
σi(t)

vi(t)

]

dt +
m∑

i=1

vi(t)dWi(t),

xv(0) = x0.

(1.4)

Let ξ > 0 be a given contingent claim, which is a ZT -measurable, square-integrable
random variable. Furthermore, we suppose ξ is larger than or equal to x0e

∫T
0 r(t)dt, where the

value x0e
∫T
0 r(t)dt coincides with the amount that the agent would earn when the initial wealth

x0 was invested in the bond at the interest rate r(·) for the entire investment period.
Define a cost functional

J(v(·);x0) =
1
2

E|xv(T) − ξ|2. (1.5)

Note that the above ξ can contain E[xv(T) | ZT ] as a special case. For a priori given initial
wealth x0, (1.5) measures the risk that the contingent claim ξ cannot be reached. The agent’s
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objective is

min J(v(·);x0)

subject to v(·) ∈ Uad,

(xv(·);v(·)) satisfies (1.3) or (1.4).

(PIMV)

The above problem formulates a mean-variance hedging problem with partial info-
rmation. For simplicity, hereinafter we denote it by the notation “Problem (PIMV)”, short for
the “partial information mean-variance hedging problem”. In particular, if we let Ft = Zt,
0 ≤ t ≤ T , then Problem (PIMV) reduces to the case with complete information. See, for
example, Kohlmann and Zhou [1] for more details.

Because the contingent claim ξ in (1.5) is random and the initial endowment x0 in (1.3)
may be a decision, our Problem (PIMV) is distinguished from the existing literature. See,
for example, Pham [2], Xiong and Zhou [3], Hu and Øksendal [4], and so forth. Motivated
by Problem (PIMV), we study a general linear-quadratic (LQ) optimal control problem
with partial information in Section 2. By a combination of the martingale representation
theorem, the technique of “completing the square”, and conditional expectation, we derive a
corresponding optimal control which is denoted by a related optimal state equation, a Riccati
differential equation and a backward stochastic differential equation (BSDE). To demonstrate
the applications of our results, we work out some partial information LQ examples and
obtain some explicitly observable optimal controls by filtering for BSDEs. Also, we establish
some backward and forward-backward stochastic differential filtering equations which are
different from the classical ones.

In Section 3, we use the result established in Section 2 to derive an optimal portfolio
strategy of Problem (PIMV), which is denoted by the sum of a replicating portfolio strategy
for the contingent claim ξ and a Merton’s portfolio strategy. To explicitly illustrate Problem
(PIMV), we provide a special but nontrivial example in this section. In terms of filtering
theory, we derive the corresponding risk measure. Furthermore, we use some numerical
simulations and three figures to illustrate the risk measure and the optimal portfolio strategy.

In Section 4, we compare our results with the existing ones.
Finally, for the convenience of the reader, we state a classical filtering equation for

SDEs which is used in Section 3 of this paper.

2. An LQ Optimal Control Problem with Partial Information

In this section, we study a partial information LQ optimal control problem, which is a
generalization of Problem (PIMV).

Let us now begin to formulate the LQ problem. Consider a stochastic control system

dxv(t) =

[

A(t)xv(t) +
m∑

i=1

Bi(t)vi(t) + g(t)

]

dt +
m∑

i=1

vi(t)dWi(t),

xv(0) = x0.

(2.1)

Here xv(t), x0, vi(t), g(t) ∈ Rn, A(t) and Bi(t) ∈ Rn×n; v(·) = (v1(·), . . . , vm(·)) is a
control (process) with values in Rn×m. We suppose v(t) is Zt-adapted, where Zt is a given
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subfiltration of Ft representing the information available to a policymaker at time t. We say
that the control v(·) is admissible and write v(·) ∈ Uad if v(·) ∈ L2

Z(0, T ;R
n×m), that is, v(t) is

a Zt-adapted process with values in Rn×m and satisfies

E

∫T

0
|v(t)|2dt < +∞. (2.2)

The following basic hypothesis will be in force throughout this section.

(H2) A(·), Bi(·) are uniformly bounded and deterministic functions, x0 isF0-adapted, and g(·) ∈
L2
F(0, T ;R

n).

For any v(·) ∈ Uad, control system (2.1) admits a unique solution under Hypothesis
(H2). The associated cost functional is

J(v(·);x0) =
1
2

E|xv(T) − ξ|2, (2.3)

where ξ is a givenFT -measurable, square-integrable random variable. The LQ optimal control
problem with partial information is

min J(v(·);x0)

subject to v(·) ∈ Uad,

(xv(·);v(·)) satisfies (2.1).

(PILQ)

An admissible control u(·) is called optimal if it satisfies

J(u(·);x0) = min
v(·)∈Uad

J(v(·);x0). (2.4)

The solution x(·) and cost functional (2.3) along with u(·) are called the optimal state and the
value function, respectively.

Problem (PILQ) is related to the recent work by Hu and Øksendal [4], where
an LQ control for jump diffusions with partial information is investigated. Due to some
characteristic setup, our Problem (PILQ) is not covered by [4]. See, for example, Section 4
in this paper for some detailed comments. Since the nonhomogeneous term in the drift
of (2.1) is random and the observable filtration Zt is very general, it is not easy to solve
Problem (PILQ). To overcome the resulting difficulty, we shall adopt a combination method
of the martingale representation theorem, the technique of “completing the square”, and
conditional expectation. This method is inspired by Kohlmann and Zhou [1], where an LQ
control problem with complete information is studied.

To simplify the cost functional (2.3), we define

yv(t) = xv(t) − E[ξ | Ft]. (2.5)
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Since E[ξ | Ft] is anFt-martingale, by the martingale representation theorem (see e.g., Liptser
and Shiryasyev [5]), there is a unique zi(·) ∈ L2

F(0, T ; R
n) such that

E[ξ | Ft] = Eξ +
m∑

i=1

∫ t

0
zi(s)dWi(s). (2.6)

Applying Itô’s formula to (2.1) and (2.5)-(2.6), we have

dyv(t) =

[

A(t)yv(t) +
m∑

i=1

Bi(t)vi(t) + h(t)

]

dt +
m∑

i=1

(vi(t) − zi(t))dWi(t),

yv(0) = y0 = x0 − Eξ

(2.7)

with

h(t) = g(t) +A(t)E[ξ | Ft], (2.8)

and cost functional (2.3) reduces to

J
(
v(·);y0

)
=

1
2

E
∣
∣yv(T)

∣
∣2. (2.9)

Then Problem (PILQ) is equivalent to minimize (2.9) subject to (2.6)-(2.7) and Uad. To
solve the resulting problem, we first introduce a Riccati differential equation on Rn×n

Ṗ(t) + P(t)A(t) +A(t)τP(t) −
m∑

i=1

P(t)Bi(t)P(t)−1Bi(t)τP(t) = 0,

P(T) = I,

P(t) > 0, 0 ≤ t ≤ T.

(2.10)

Note that (2.7) contains a nonhomogeneous term h(·). For this, we also introduce a BSDE on
Rn,

−dα(t) =
{[

A(t)τ −
m∑

i=1
P(t)Bi(t)P(t)−1Bi(t)τ

]

α(t) −
m∑

i=1
P(t)Bi(t)P(t)−1βi(t)

+P(t)
(

h(t) +
m∑

i=1
Bi(t)zi(t)

)}

dt −
m∑

i=1
βi(t)dWi(t),

α(T) = 0.

(2.11)

Assume that the following hypothesis holds.
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(H3) For any 0 ≤ t ≤ T ,

A(t) +A(t)τ ≥
m∑

i=1

Bi(t)Bi(t)τ . (2.12)

Under Hypotheses (H2) and (H3), according to [1, Theorem4.2], it is easy to see that
(2.10) admits a unique solution, and then (2.11) admits a unique Ft-adapted solution
(α(·), β1(·), . . . , βm(·)).

For any admissible pair (v(·), yv(·)), using Itô’s formula to (1/2)yv(·)τP(·)yv(·) +
α(·)τyv(·), integrating from 0 to T , taking the expectations and trying to complete a square,
then we have

J
(
v(·);y0

)
= JF

(
y0
)
+
1
2

E

∫T

0

m∑

i=1

(
vi(t) + Lv

i (t)
)τ
P(t)
(
vi(t) + Lv

i (t)
)
dt

= JF
(
y0
)
+
1
2

E

∫T

0

m∑

i=1

E
[(
vi(t) + Lv

i (t)
)τ
P(t)
(
vi(t) + Lv

i (t)
) | Zt

]
dt,

(2.13)

where

JF
(
y0
)
=

1
2
yτ
0P(0)y0 + yτ

0α(0)

+
1
2

E

∫T

0

[

2α(t)τh(t) − 2
m∑

i=1

βi(t)zi(t) +
m∑

i=1

zi(t)τP(t)zi(t)

−
m∑

i=1

(
P(t)−1Bi(t)τα(t) + P(t)−1βi(t) − zi(t)

)τ

×P(t)
(
P(t)−1Bi(t)τα(t) + P(t)−1βi(t) − zi(t)

)
]

dt,

(2.14)

Lv
i (t) = P(t)−1Bi(t)τP(t)yv(t) + P(t)−1Bi(t)τα(t) + P(t)−1βi(t) − zi(t). (2.15)

Since JF(y0) is independent of vi(·), the integrand in (2.13) is quadratic with respect to vi(·)
and P(·) > 0, then it follows from the property of conditional expectation that the minimum
of

1
2

E

∫T

0

m∑

i=1

E
[(
vi(t) + Lv

i (t)
)τ
P(t)
(
vi(t) + Lv

i (t)
) | Zt

]
dt (2.16)

over all Zt-adapted vi(t) is attained at

ui(t) = −E[Li(t) | Zt]

= −P(t)−1Bi(t)τ
{
P(t)E

[
y(t) | Zt

]
+ E[α(t) | Zt]

}

− P(t)−1E
[
βi(t) | Zt

]
+ E[zi(t) | Zt],

(2.17)
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where

Li(t) = P(t)−1Bi(t)τP(t)y(t) + P(t)−1Bi(t)τα(t) + P(t)−1βi(t) − zi(t) (2.18)

and y(·) is the solution of the SDE with ui(·) replaced by (2.17)

dy(t) =

[

A(t)y(t) +
m∑

i=1

Bi(t)ui(t) + h(t)

]

dt +
m∑

i=1

(ui(t) − zi(t))dWi(t),

y(0) = y0 = x0 − Eξ.

(2.19)

Now, we are in the position to derive an optimal feedback control in terms of the
original optimal state variable x(·). Substituting (2.5) into (2.17), we get

ui(t) = −E[Li(t) | Zt]

= −P(t)−1Bi(t)τ{P(t)E[x(t) | Zt] − P(t)E[ξ | Zt] + E[α(t) | Zt]}

− P(t)−1E
[
βi(t) | Zt

]
+ E[zi(t) | Zt],

(2.20)

where x(·) satisfies the SDE with ui(·) replaced by (2.20)

dx(t) =

[

A(t)x(t) +
m∑

i=1

Bi(t)ui(t) + g(t)

]

dt +
m∑

i=1

ui(t)dWi(t),

x(0) = x0.

(2.21)

Furthermore, we define for any 0 ≤ t ≤ T

p(t) = E[ξ | Ft] − P(t)−1α(t),

qi(t) = zi(t) − P(t)−1βi(t).
(2.22)

Applying Itô’s formula to (2.6) and (2.10)-(2.11), we can check that (p(·), q1(·), . . . , qm(·)) is
the unique solution of the BSDE

dp(t) =

[

A(t)p(t) +
m∑

i=1

Bi(t)qi(t) + g(t)

]

dt +
m∑

i=1

qi(t)dWi(t),

p(T) = ξ.

(2.23)
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Finally, substituting (2.17) into (2.13), we get the value function

JZ
(
y0
)
= JF

(
y0
)
+
1
2

E

∫T

0

m∑

i=1

{
E
[
Li(t)τP(t)Li(t) | Zt

] − E
[
Li(t)τ | Zt

]
P(t)E[Li(t) | Zt]

}
dt,

(2.24)

where JF(y0) and Li(·) are defined by (2.14) and (2.18), respectively.

Theorem 2.1. Let Hypotheses (H2) and (H3) hold. Then the optimal control of Problem (PILQ) is

ui(t) = −P(t)−1Bi(t)τP(t)
{
E[x(t) | Zt] − E

[
p(t) | Zt

]}
+ E
[
qi(t) | Zt

]
, (2.25)

where x(·) and (p(·), q1(·), . . . , qm(·)) are the solutions of (2.21) and (2.23), respectively; the
corresponding value function is given by (2.24).

Remark 2.2. Note that the dynamics of BSDE (2.23) is similar to control system (2.1) except
for the state constraint, which shows a perfect relationship between stochastic control and
BSDE. This interesting phenomenon is first found by [1], to our best knowledge. Also, [1]
finds that the solution (p(·), q1(·), . . . , qm(·)) of (2.23) can be regarded as the optimal state-
control pair (x(·), u(·)) of an LQ control problem with complete information, in which the
initial state x0 is an additional decision. That is, p(·) = x(·) and qi(·) = ui(·) with u(·) =
(u1(·), . . . , um(·)). However, this conclusion is not true in our partial information case. For
clarity, we shall illustrate it by the following example.

Example 2.3. Without loss of generality, we let Hypothesis (H2) hold and n = 1 in Problem
(PILQ).

Since P(·) defined by (2.10) is a scalar, it is natural that (2.10) admits a unique solution.
Consequently, (2.11) also admits a unique solution. Note that Hypothesis (H3) is not used in
this setup. Define

Δ(·) = x(·) − p(·). (2.26)

From Itô’s formula, (2.21)-(2.23) and (2.25), we get

dΔ(t) =

{

A(t)Δ(t) −
m∑

i=1

Bi(t)2E[Δ(t) | Zt] +
m∑

i=1

Bi(t)
(
E
[
qi(t) | Zt

] − qi(t)
)
}

dt

+
m∑

i=1

{
Bi(t)

(
E
[
qi(t) | Zt

] − qi(t)
) − Bi(t)E[Δ(t) | Zt]

}
dWi(t),

Δ(0) = x0 − p(0).

(2.27)

Hereinafter, we set

Ŷ (t) = E[Y (t) | Zt], Y (·) = x(·), p(·), q1(·), q2(·), g(·), X(·) or Δ(·), 0 ≤ t ≤ T, (2.28)
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where the signal Y (t) is an Ft-adapted and square-integrable stochastic progress, while the
observation is the component of them-dimensional Brownian motion (W(·)). Without loss of
generality, we let the observable filtration Zt be

Zt = σ{(W1(s), . . . ,Wl(s)); 0 ≤ s ≤ t}, 0 ≤ t ≤ T, 1 ≤ l ≤ m − 1. (2.29)

In this setting, we call (2.28) the optimal filtering of the signal Y (t) with respect to the
observable filtration Zt in the sense of square error. See, for example, [5, 6] for more details.

Note that (W1(·), . . . ,Wl(·)) is independent of (Wl+1(·), . . . ,Wm(·)), x0 and p(0) are
deterministic. Taking the conditional expectations on both sides of (2.27), we get the optimal
filtering equation of Δ(t)with respect to Zt

dΔ̂(t) =

[

A(t) −
m∑

i=1

Bi(t)2
]

Δ̂(t)dt −
l∑

i=1

Bi(t)Δ̂(t)dWi(t),

Δ̂(0) = x0 − p(0).

(2.30)

Note that Δ̂(·) satisfies a homogeneous linear SDE and hence must be identically zero if x0 =
p(0).

Thereby, if the decision x0 takes the value p(0) in Example 2.3, then the next corollary
follows from Theorem 2.1.

Corollary 2.4. The optimal control of Example 2.3 is

ui(t) = E
[
qi(t) | Zt

]
, 0 ≤ t ≤ T. (2.31)

In particular, if Zt = Ft, 0 ≤ t ≤ T , then it reduces to the case of [1], that is, ui(·) = qi(·).

From Theorem 2.1 and Corollary 2.4, we notice that the optimal control strongly
depends on the conditional expectation of (p(t), q1(t), . . . , qm(t)) with respect to Zt, 0 ≤ t ≤ T ,
where (p(·), q1(·), . . . , qm(·)) is the solution of BSDE (2.23). Since Zt is very general, the
conditional expectation is, in general, infinite dimensional. Then it is very hard to find an
explicitly observable optimal control by some usual methods. However, it is well known
that such an optimal control plays an important role in theory and reality. For this, we
desire to seek some new technique to further research the problem in the rest of this section.
Recently, Wang and Wu [7] investigate the filtering of BSDEs and use a backward separation
technique to explicitly solve an LQ optimal control problem with partial information. Please
refer to Wang and Wu [8] and Huang et al. [9] for more details about BSDEs with partial
information. Inspired by [7, 9], we shall apply the filtering of BSDEs to study the conditional
expectation mentioned above. Note that there is no general filtering result for BSDEs in the
published literature. In the rest of this section, we shall present two examples of such filtering
problems. Combining Theorem 2.1 with a property of conditional expectation, we get some
explicitly observable optimal controls. As a byproduct, we establish two new kinds of filtering
equations, which are called as backward and forward-backward stochastic differential filtering
equations. The result enriches and develops the classical filtering-control theory (see e.g.,
Liptser and Shiryayev [5], Bensoussan [10], Xiong [6], and so on).
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Example 2.5. Let Hypothesis (H2) hold, n = 1, and m = 2 in Problem (PILQ). Suppose the
observable filtration is denoted by

Zt = σ{W1(s); 0 ≤ s ≤ t}, 0 ≤ t ≤ T. (2.32)

From Theorem 2.1, the optimal control is

ui(t) = −Bi(t)
{
E[x(t) | Zt] − E

[
p(t) | Zt

]}
+ E
[
qi(t) | Zt

]

= −Bi(t)
[
x̂(t) − p̂(t)

]
+ q̂i(t),

(2.33)

where (p(·), q1(·), q2(·)) is the unique solution of

dp(t) =

[

A(t)p(t) +
2∑

i=1

Bi(t)qi(t) + g(t)

]

dt +
2∑

i=1

qi(t)dWi(t),

p(T) = ξ

(2.34)

and x(·) satisfies (2.21)withm = 2.
Similar to Example 2.3, the optimal filtering equation of x(·) is

dx̂(t) =

[

A(t)x̂(t) +
2∑

i=1

Bi(t)ui(t) + ĝ(t)

]

dt + u1(t)dW1(t),

x̂(0) = x0.

(2.35)

We proceed to calculate the optimal filtering of (p(·), q1(·), q2(·)). Recalling BSDE (2.34) and
noting that the observable filtration is Zt, it follows that

dp̂(t) =

[

A(t)p̂(t) +
2∑

i=1

Bi(t)q̂i(t) + ĝ(t)

]

dt + q̂1(t)dW1(t),

p̂(T) = E[ξ | ZT ].

(2.36)

As (2.36) is a (non-Markov) BSDE, we call it a backward stochastic differential filtering
equation which is different from the classical filtering equation for SDEs. Since q̂2(·) is absent
from the diffusion term in (2.36), then we are uncertain that if (2.36) admits a unique solution
(p̂(·), q̂1(·), q̂2(·)). But, we are sure that it is true in some special cases. See the following
example, in which we establish a forward-backward stochastic differential filtering equation
and obtain a unique solution of this equation.

Example 2.6. Let all the assumptions hold and g(·) ≡ 0 in Example 2.5. For simplicity, we set
the random variable ξ = X(T), where X(·) is the solution of

dX(t) = K(t)X(t)dt +M1(t)dW1(t) +M2(t)dW2(t),

X(0) = X0.
(2.37)
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Assume that K(·), M1(·), and M2(·) are bounded and deterministic functions with values in
R; X0 is a constant.

Similar to Example 2.5, the optimal control is

ui(t) = −Bi(t)
[
x̂(t) − p̂(t)

]
+ q̂i(t), (2.38)

where (x̂(·), p̂(·), q̂1(·), q̂2(·), X̂(·)) is the solution of

dx̂(t) =

[

A(t)x̂(t) +
2∑

i=1

Bi(t)ui(t)

]

dt + u1(t)dW1(t),

x̂(0) = x0,

(2.39)

dp̂(t) =

[

A(t)p̂(t) +
2∑

i=1

Bi(t)q̂i(t)

]

dt + q̂1(t)dW1(t),

p̂(T) = X̂(T),

(2.40)

dX̂(t) = K(t)X̂(t)dt +M1(t)dW1(t),

X̂(0) = X0.

(2.41)

It is remarkable that (2.35) together with (2.40)-(2.41) is a forward-backward stochastic diffe-
rential filtering equation. To our best knowledge, this is also a new kind of filtering equation.

We now desire to give a more explicitly observable representation of ui(·). Due to
the terminal condition of (2.40), we get by Itô’s formula and the method of undetermined
coefficients,

p̂(·) = Φ(·)X̂(·) + Ψ(·),

q̂i(·) = Φ(·)Mi(·).
(2.42)

Here X̂(·) is the solution of (2.41), and

Ψ(t) = −
∫T

t

2∑

i=1

e−
∫s
t A(r)drΦ(s)Bi(s)Mi(s)ds,

Φ(t) = e
∫T
t (K(s)−A(s))ds.

(2.43)

Thus, the optimal control is

ui(t) = −Bi(t)
[
x̂(t) −Φ(t)X̂(t) −Ψ(t)

]
+ Φ(t)Mi(t), (2.44)
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where X̂(·) satisfies (2.41) and x̂(·) is the solution of

dx̂(t) =

{[

A(t) −
2∑

i=1

Bi(t)2
]

x̂(t) +
2∑

i=1

Bi(t)[Φ(t)Mi(t) + Bi(t)(Φ(t)x̂(t) + Ψ(t))]

}

dt

+
{
B1(t)

[
Φ(t)X̂(t) − x̂(t) + Ψ(t)

]
+ Φ(t)M1(t)

}
dW1(t),

x̂(0) = x0.

(2.45)

Since X̂(·) is the solution of (2.41), it is easy to see that the above equation admits a unique
solution x̂(·). Now ui(t), 0 ≤ t ≤ T , defined by (2.44) is an explicitly observable optimal
control.

Remark 2.7. BSDE theory plays an important role in many different fields. Then we
usually treat some backward stochastic systems with partial information. For instance, to
get an explicitly observable optimal control in Theorem 2.1, it is necessary to estimate
(p(t), q1(t), . . . , qm(t)) depending on the observable filtration Zt. However, there are short of
some effective methods to deal with these estimates. In this situation, although the filtering
of BSDEs is very restricted, it can be regarded as an alternative technique (just as we see in
Examples 2.2-2.3). By the way, the study of Problem (PILQ) motivates us to establish some
general filtering theory of BSDEs in future work. To our best knowledge, this is a new and
unexplored research field.

3. Solution to the Problem (PIMV)

We now regard Problem (PIMV) as a special case of Problem (PILQ). Consequently, we can
apply the result there to solve the Problem (PIMV). From Theorem 2.1, we get the optimal
portfolio strategy

π∗
i (t) = π∗

i1(t) + π∗
i2(t) (3.1)

with

π∗
i1(t) = −μi(t) − r(t)

σi(t)2
{
E[x∗(t) | Zt] − E

[
p(t) | Zt

]}
,

π∗
i2(t) =

1
σi(t)

E
[
qi(t) | Zt

]
.

(3.2)

Here (p(·), q1(·), . . . , qm(·)) and x∗(·) are the solutions of

dp(t) =

[

r(t)p(t) +
m∑

i=1

μi(t) − r(t)
σi(t)

qi(t)

]

dt +
m∑

i=1

qi(t)dWi(t),

p(T) = ξ,

(3.3)

dx∗(t) =

[

r(t)x∗(t) +
m∑

i=1

(
μi(t) − r(t)

)
π∗
i (t)

]

dt +
m∑

i=1

σi(t)π∗
i (t)dWi(t),

x∗(0) = x0.

(3.4)

So we have the following theorem.
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Theorem 3.1. If Hypothesis (H1) holds, then the optimal portfolio strategy of Problem (PIMV) is
given by (3.1).

We now give a straightforward economic interpretation of (3.1). Introduce an adjoint
equation

−dθ(s) = r(s)θ(s)ds +
m∑

i=1

μi(s) − r(s)
σi(s)

θi(s)dWi(s), θ(t) = 1, 0 ≤ t ≤ s ≤ T. (3.5)

Applying Itô’s formula to p(·)θ(·),

p(t) = e−
∫T
t r(s)ds

E

[
ξe−

∫T
t

∑m
i=1(μi(s)−r(s))/(σi(s))dWi(s)−(1/2)

∫T
t

∑m
i=1 ((μi(s)−r(s))/σi(s))

2ds | Ft

]
. (3.6)

Note that Zt is a subfiltration of Ft, 0 ≤ t ≤ T . Then we have

E
[
p(t) | Zt

]
= e−

∫T
t r(s)ds

E

[
ξe−

∫T
t

∑m
i=1(μi(s)−r(s))/(σi(s))dWi(s)−(1/2)

∫T
t

∑m
i=1 ((μi(s)−r(s))/(σi(s)))

2ds | Zt

]
,

(3.7)

which is the partial information option price for the contingent claim ξ. According to
Corollary 2.4, π∗

i2(·) is the partial information replicating portfolio strategy for the contingent
claim ξ when the initial endowment x0 is the initial option price p(0). Then π∗

i1(·) defined
by (3.2) is exactly the partial information Merton’s portfolio strategy for the terminal utility
function U(x) = x2 (see e.g., Merton [11]). That is, the optimal portfolio strategy (3.1) is the
sum of the partial information replicating portfolio strategy for the contingent claim ξ and
the partial information Merton’s portfolio strategy. Consequently, if the initial endowment x0

is different from the initial option price p(0) necessary to hedge the contingent claim ξ, then
x0 − p(0) should be invested according to Merton’s portfolio strategy.

In particular, suppose the contingent claim ξ is a constant. In this case, it is easy to see
that the solution (p(·), q1(·), . . . , qm(·)) of (3.3) is

p(t) = e−
∫T
t r(s)dsξ, qi(t) = 0, 0 ≤ t ≤ T. (3.8)

So we have the following corollary.

Corollary 3.2. Let Hypothesis (H1) hold and ξ be a constant. Then the optimal portfolio strategy of
Problem (PIMV) is

π∗
i (t) = −μi(t) − r(t)

σi(t)2
{

E[x∗(t) | Zt] − e−
∫T
t r(s)dsξ

}
, 0 ≤ t ≤ T. (3.9)

Remark 3.3. The solution (p(·), q1(·), . . . , qm(·)) defined by (3.8) has a straightforward
interpretation in financial terms. That is, to achieve a deterministic wealth level ξ at the
terminal time T , the agent should only invest a risk-free asset (a bond) and cannot invest
any risky assets (stocks). Therefore, the optimal portfolio strategy obtained in Corollary 3.2
is only the partial information Merton’s portfolio strategy.



14 Abstract and Applied Analysis

The left part of this section will focus on a special mean-variance hedging problem
with partial information. By virtue of filtering theory, we get an explicitly observable optimal
portfolio strategy as well as a risk measure. We also plot three figures and give numerical
simulations to illustrate the theoretical result.

Example 3.4. Let m = 2 and all the conditions in Corollary 3.2 hold. Suppose the observable
filtration of an agent is

Zt = σ{S1(s) : 0 ≤ s ≤ t}, 0 ≤ t ≤ T. (3.10)

It implies that the agents can observe all the past prices of S1(·), but due to some limit factors
(e.g., bad behavior of the stock S2(·) or time and energy of the investor) they cannot (do not
want to) observe S2(·).

Set S1(·) = logS1(·), where logx (x > 0) denotes a logarithm function. It follows from
Itô’s formula that

dS1(t) =
(

μ1(t) − 1
2
σ1(t)2

)

dt + σ1(t)dW1(t). (3.11)

Since μ1(·) and σ1(·) are deterministic functions (see Hypothesis (H1)), the above filtration
Zt is equivalently rewritten as

Zt = σ{S1(s) : 0 ≤ s ≤ t} = σ{W1(s) : 0 ≤ s ≤ t}. (3.12)

Similar to Example 2.5, we get from Corollary 3.2

π∗
i (t) = −μi(t) − r(t)

σi(t)2
(
x̂∗(t) − e−

∫T
t r(s)dsξ

)
, (3.13)

where x̂∗(·) is the solution of

dx̂∗(t) =

{[

r(t) −
2∑

i=1

(
μi(t) − r(t)

σi(t)

)2
]

x̂∗(t) +
2∑

i=1

(
μi(t) − r(t)

σi(t)

)2

e−
∫T
t r(s)dsξ

}

dt

− μ1(t) − r(t)
σ1(t)

(
x̂∗(t) − e−

∫T
t r(s)dsξ

)
dW1(t),

x̂∗(0) = x0.

(3.14)

Now π̂∗
i (t), 0 ≤ t ≤ T , defined by (3.13), is an observable optimal portfolio strategy.
We now calculate the risk measure (or the value function) of the agent’s goal

RM2 := 2J(u(·);x0) = min
v(·)∈Uad

2J(v(·);x0). (3.15)
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From (3.14), we derive

Ex̂∗(t) = x0e
∫ t
0[r(s)−

∑2
i=1 ((μi(s)−r(s))/(σi(s)))

2]ds

+ ξ

∫ t

0

2∑

i=1

(
μi(s) − r(s)

σi(s)

)2

e
∫ t
s[r(ν)−

∑2
i=1 ((μi(ν)−r(ν))/(σi(ν)))

2]dν−∫Ts r(ν)dν ds,

Ex̂∗(t)2 = x2
0e
∫ t
0[2r(s)−

∑2
i=1 ((μi(s)−r(s))/(σi(s)))

2−((μ2(s)−r(s))/(σ2(s)))
2]ds

+
∫ t

0
e
∫ t
s[2r(ν)−

∑2
i=1 ((μi(ν)−r(ν))/(σi(ν)))

2−((μ2(ν)−r(ν))/(σ2(ν)))
2]dν

× e−
∫T
s r(ν)dνξ

[

2
(
μ2(s) − r(s)

σ2(s)

)2

Ex̂∗(s)

+
(
μ1(t) − r(t)

σ1(t)

)2

e−
∫T
s r(ν)dνξ

]

ds.

(3.16)

Combining (3.4), (3.14), Itô’s formula with Lemma A.1,

d̂x∗(t)2 =

[

2r(t)̂x∗(t)2 +
(
e−2

∫T
t r(s)dsξ2 − x̂∗(t)2

) 2∑

i=1

(
μi(t) − r(t)

σi(t)

)2
]

dt

+ 2
μ1(t) − r(t)

σ1(t)

(
e−2

∫T
t r(s)dsξ − x̂∗(t)

)
x̂∗(t)dW1(t),

̂x∗(0)2 = x2
0.

(3.17)

Solving the above equation,

E
̂x∗(T)2 = x2

0e
2
∫T
0 r(s)ds +

∫T

0

2∑

i=1

(
μi(t) − r(t)

σi(t)

)2[
ξ2 − e2

∫T
t r(s)ds

Ex̂∗(t)2
]
dt. (3.18)

Applying a property of conditional expectation and throughout integration by parts, we get

RM2 = E
̂x∗(T)2 − 2ξEx̂∗(T) + ξ2

=
(
ξ − x0e

∫T
0 r(t)dt

)2
(

1 −
∫T

0
ρ(t)dt

) (3.19)

with

ρ(t) =
2∑

i=1

(
μi(t) − r(t)

σi(t)

)2

e−
∫ t
0[
∑2

i=1 ((μi(s)−r(s))/(σi(s)))
2+((μ2(s)−r(s))/(σ2(s)))

2]ds. (3.20)

So we have the following proposition.
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Proposition 3.5. The optimal portfolio strategy and the risk measure are given by (3.13) and (3.19),
respectively.

To further illustrate the optimal portfolio strategy (3.13) and the risk measure (3.19),
we plot three figures and give some numerical results here. Suppose r = 0.06, μ1 = 0.12,
μ2 = 0.18, σ1 = 0.12, and σ2 = 0.24. Taking T = 1 year, we get from (3.19)

ξ = x0e0.06 +
1

√
1
3
(
1 + 2e−(3/4)

)
RM. (3.21)

In Figure 1, we let $ 0 ≤ x0 ≤ $ 2 million and $ 0 ≤ RM ≤ $ 1 million. The plane
explicitly describes the relationship among ξ, x0, and RM. In detail, the bigger x0 and RM, the
bigger ξ.

In Figure 2, we let the investment goal of the agent ξ = $ 1.2 million. The beeline shows
that RM is a deceasing function of the initial endowment x0. In particular, when x0 = $ 1.13
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million, we have RM = $ 0. This means that to achieve the investment goal $ 1.2 million at the
end of one year, the agent only needs to invest $ 1.13 million in the bond at the interest rate
6%; moreover, there is no risk for the investment strategy.

In Figure 3, we let x0 = $ 1 million. The beeline implies that RM is an increasing
function of the investment goal ξ. Consider now the agent who has an initial endowment
x0 = $ 1 million and wishes to obtain an expected return rate 20% in one year. Taking x0 = $
1 million and ξ = $ 1.2 million, we get RM = $ 0.1112 million, meaning that the risk of the
investment goal is as high as 11.12%.

Furthermore, we calculate the Merton’s portfolio strategy. Let r = 0.06, T = 1, x0 = $ 1
million, and ξ = $ 1.2 million.

(1) Set μ1 = 0.12, μ2 = 0.18, σ1 = 0.12, and σ2 = 0.24. By (3.13), the amount of money the
agent should invest in the ith stock is

π∗
i (t) =

μi − 0.06

σ2
i

(
1.2e−0.06(1−t) − x̂∗(t)

)
. (3.22)

In particular, at the initial time t = 0, π∗
1(0) = $ 0.5422 million and π∗

2(0) = $ 0.2711 million,
which implies that the agent needs to invest $ 0.5422 million and $ 0.2711 million in the stocks
S1(·) and S2(·), respectively, and invest in the bond for an amount of

1 − (0.5422 + 0.2711) = $ 0.1867million. (3.23)

(2) Set μ1 = 0.12, μ2 = 0.18, σ1 = 0.12, and σ2 = 0.17. Similarly, we have π∗
1(0) = $ 0.5422

million, π∗
2(0) = $ 0.5403 million, and

(0.5422 + 0.5403) − 1 = $ 0.0825million, (3.24)

which implies that the agent needs to borrow $ 0.0825 million from a bank and invest the
amount $ 1.0825 million in the two stocks S1(·) and S2(·). This is indeed an aggressive policy.
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4. Comparison with Existing Results

The subject of stochastic control with partial information has been discussed by many
researchers, such as Bensoussan [10] and Xiong and Zhou [3]. Usually, they made one of
the following two assumptions: (i) the filtration Z is a sigma algebra generated by some
observable process; (ii) the control systems are Markovian. From this viewpoint, our work
cannot be covered by their results.

Note that our work is related to the recent paper by Hu and Øksendal [4]. In what
follows, we shall give some detailed comparisons between them.

(1) Comparing with [4], the distinctive characteristics of our Problem (PIMV) are the
following four points. First, since ξ in our cost functional (1.5) is a random variable,
then it partly generalizes that of [4]; meanwhile, our cost functional (1.5) can
measure the risk that the contingent claim cannot be reached. Second, we give a
possible formulation of partial information in the setting of finance and interpret the
economic meaning of the optimal portfolio with partial information. Third, in terms
of filtering theory, we explicitly compute the observable optimal portfolio strategy
and the risk measure of an agent in Example 3.4. Last but not least, we present
some numerical results and figures to illustrate the optimal portfolio strategy and
the riskmeasure. Although the example is special, it is nontrivial and contains some
filtering techniques. These results show the practical sense of our paper.

(2) Since the initial state x0 in control system (2.1) may be a decision and ξ in cost
functional (2.3) is a random variable, our Problem (PILQ) is different from that of
[4]. In particular, if the foregoing x0 is also a decision, then the partial information
optimal control can be denoted by a conditional expectation of the solution of the
corresponding adjoint equation (recall Corollary 2.4). Obviously, this is different
from [1, 4].

(3) Filtering theory plays an important role in optimal control with partial information.
To get an explicitly observable optimal control, it is necessary to compute the
conditional expectation of the solution of BSDEs. However, it is not doable in most
cases. In this paper, we try to solve some stochastic control problems by using
filtering theory. As a byproduct, we establish backward and forward-backward
stochastic differential filtering equations which are different from the existing
literature about filtering theory. Although the technique of solving stochastic
control is restricted and the filtering equations are linear, we can regard them as a
contribution to filtering-control theory. By the way, the study about Problem (PILQ)
motivates us to establish some general filtering theory of BSDEs in future work.

In [4], Hu and Øksendal obtain some optimal controls and value functions with com-
plete and partial information. Note that they only denote the optimal controls by conditional
expectation. We also notice there is not any filtering result in [4]. This is different from ours.

Appendix

A Classical Filtering Equation for SDEs

We present here a classical filtering result for the readers’ convenience which was employed
in this paper. For a detailed discussion of filtering, we refer to the books [5, 6].
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Consider the following 1-dimensional state and observation equations:

θ(t) = θ0 +
∫ t

0
h(s)ds + x(t),

ξ(t) = ξ0 +
∫ t

0
a(s,ω)ds +

∫ t

0
b(s, ξ)dW(s).

(A.1)

Here (W(·)) is a 1-dimensional standard Brownian motion defined on the complete filtered
probability space (Ω,F, (Ft), P) equipped with a natural filtration Ft = σ{W(s); 0 ≤ s ≤ t},
F = FT , 0 ≤ t ≤ T ; x(t) is an Ft-martingale; h(t) is an Ft-adapted process with

∫T
0 |h(s)|ds <

+∞; the functional b(t, y), y ∈ CT , 0 ≤ t ≤ T , is Bt-measurable.
We need the following hypothesis.

(H) For any y, y ∈ CT , 0 ≤ t ≤ T , the functional b(t, ·) satisfies

∣
∣b
(
t, y
) − b

(
t, y
)∣
∣2 ≤ L1

∫ t

0

[
y(s) − y(s)

]2dK(s) + L2
[
y(t) − y(t)

]2
,

b
(
t, y
)2 ≤ L1

∫ t

0

(
1 + y(s)2

)
dK(s) + L2

(
1 + y(t)2

)
,

(A.2)

where L1 and L2 are two nonnegative constants and 0 ≤ K(·) ≤ 1 is a nondecreasing right
continuous function. Moreover, sup0≤t≤TEθ(t)2 < +∞,

∫T
0 Eh(t)2dt < +∞,

∫T
0 Ea(t, ω)2dt < +∞,

b(t, y)2 ≥ C > 0.
The following result is due to of [5, Theorem8.1].

LemmaA.1. Define θ̂(t) = E[θ(t) | Fξ
t ]. Here θ(t) can take θ(t), h(t), D(t), a(t, ω), and θ(t)a(t, ω);

Fξ
t = σ{ξ(s) : 0 ≤ s ≤ t}, 0 ≤ t ≤ T. If Hypothesis (H) holds, then the optimal nonlinear filtering

equation is

θ̂(t) = θ̂0 +
∫ t

0
ĥ(s)ds +

∫ t

0

{
D̂(s) +

[
̂θ(s)a(s,ω) − θ̂(s)â(s,ω)

]
b(s, ξ)−1

}
dW(s), (A.3)

where

W(t) =
∫ t

0

dξ(s) − â(s,ω)ds
b(s, ξ)

(A.4)

is a standard Brownian motion (with respect to Fξ
t ), and D(t) is an Ft-adapted process with

D(t) =
d〈x(t),W(t)〉

dt
. (A.5)
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