Research Article

The Fixed Point Property in c_{0} with an Equivalent Norm

Berta Gamboa de Buen ${ }^{\mathbf{1}}$ and Fernando Núñez-Medina ${ }^{\mathbf{2}}$
${ }^{1}$ Matemáticas Básicas, Centro de Investigación en Matemáticas (CIMAT), Apartado Postal 402, 36000 Guanajuato, GTO, Mexico
${ }^{2}$ Departamento de Matemáticas Aplicadas, Universidad del Papaloapan (UNPA), 68400 Loma Bonita, OAX, Mexico

Correspondence should be addressed to Berta Gamboa de Buen, gamboa@cimat.mx
Received 7 June 2011; Accepted 27 August 2011
Academic Editor: Elena Litsyn
Copyright © 2011 B. Gamboa de Buen and F. Núñez-Medina. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the fixed point property (FPP) in the Banach space c_{0} with the equivalent norm $\|\cdot\|_{D}$. The space c_{0} with this norm has the weak fixed point property. We prove that every infinite-dimensional subspace of ($c_{0},\|\cdot\|_{D}$) contains a complemented asymptotically isometric copy of c_{0}, and thus does not have the FPP, but there exist nonempty closed convex and bounded subsets of ($c_{0},\|\cdot\|_{D}$) which are not ω-compact and do not contain asymptotically isometric c_{0}-summing basis sequences. Then we define a family of sequences which are asymptotically isometric to different bases equivalent to the summing basis in the space $\left(c_{0},\|\cdot\|_{D}\right)$, and we give some of its properties. We also prove that the dual space of $\left(c_{0},\|\cdot\|_{D}\right)$ over the reals is the Bynum space $l_{1 \infty}$ and that every infinite-dimensional subspace of $l_{1 \infty}$ does not have the fixed point property.

1. Introduction

We start with some notations and terminologies. Let K be a nonempty, convex, closed and bounded subset of a Banach space $(X,\|\cdot\|)$. A mapping $T: K \rightarrow K$ is said to be nonexpansive if

$$
\begin{equation*}
\|T x-T y\| \leq\|x-y\|, \quad x, y \in K \tag{1.1}
\end{equation*}
$$

We say that K has the fixed point property for nonexpansive mappings (FPP) if every nonexpansive mapping $T: K \rightarrow K$ has a fixed point, that is, a point $x \in K$ such that $T x=x$. We say that a Banach space $(X,\|\cdot\|)$ has the fixed point property for nonexpansive mappings (FPP) if every nonempty, convex, closed, and bounded subset K of $(X,\|\cdot\|)$ has the FPP, and we say that the Banach space $(X,\|\cdot\|)$ has the weak fixed point property for nonexpansive
mappings $(\omega$-FPP $)$ if every nonempty, convex and weakly compact subset K of $(X,\|\cdot\|)$ has the FPP.

In this paper we study the FPP in the Banach space c_{0} with the equivalent norm $\|\cdot\|_{D}$ defined by

$$
\begin{equation*}
\|x\|_{D}=\sup _{i, j \in \mathbb{N}}\left|x_{i}-x_{j}\right|, \quad x=\left\{x_{i}\right\} \in c_{0} \tag{1.2}
\end{equation*}
$$

The norm $\|\cdot\|_{D}$ was used by Hagler in [1] to construct a separable Banach space X with nonseparable dual such that l_{1} does not embed in X and every normalized weakly null sequence in X has a subsequence equivalent to the canonical basis of c_{0}.

In [2], Dowling et al. gave a characterization of nonempty, convex, closed and bounded subsets of c_{0} which are not ω-compact. Specifically, they proved that if K is a convex, closed and bounded subset of c_{0}, then K is ω-compact if and only if every nonempty, convex, closed and convex subset of K has the FPP. To do that, the authors showed that every closed, convex and bounded subset of c_{0} which is not ω-compact contains an asymptotically isometric c_{0}-summing basic sequence, aisbc $_{0}$ sequence for short, that is, a sequence $\left\{y_{n}\right\}_{n} \subset c_{0}$ such that for all $\left\{t_{n}\right\}_{n} \in l_{1}$,

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)^{-1}\left|\sum_{i=n}^{\infty} t_{i}\right| \leq\left\|\sum_{n=1}^{\infty} t_{n} y_{n}\right\| \leq \sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)\left|\sum_{i=n}^{\infty} t_{i}\right|, \tag{1.3}
\end{equation*}
$$

for some $\left\{\varepsilon_{n}\right\}_{n} \subset \mathbb{R}$ with $0 \leq \varepsilon_{n+1} \leq \varepsilon_{n}$ and $\lim _{n} \varepsilon_{n}=0$. They proved that if a convex, closed and bounded subset K of a Banach space contains an $a i s b c_{0}$ sequence, then there exists a nonempty, convex, closed and bounded subset of K without the FPP. The authors used this fact in [3] as a tool to prove that a nonempty, closed, convex and bounded subset of c_{0} is ω-compact if and only if it has the FPP.

It is easy to see that $\left(c_{0},\|\cdot\|_{D}\right)$ contains c_{0} isometrically, and then it contains aisbc c_{0} sequences.

First we prove that every infinite-dimensional subspace Y of $\left(c_{0},\|\cdot\|_{D}\right)$ has a complemented asymptotically isometric copy of c_{0} and hence by a result proved by Dowling et al. in [4], Y does not have the FPP. Also, as an immediate consequence we obtain that Y has an aisbco sequence. Nevertheless, we exhibit a nonempty closed, convex and bounded subset of $\left(c_{0},\|\cdot\|_{D}\right)$, which is not ω-compact and does not contain $a i s b c_{0}$ sequences.

Then for every selection of signs $\Theta=\left\{\theta_{i}\right\}$, we define the Θ-basis of c_{0} which is equivalent to the summing basis and define the corresponding asymptotically isometric Θ basic sequence, $a i \Theta b c_{0 D}$ sequence for short. We prove that if $\Theta_{1} \neq \pm \Theta_{2}$, then the $a i \Theta_{1} b c_{0 D}$ and $a i \Theta_{2} b c_{0 D}$ sequences are different in the sense that there exists a nonempty, closed, convex, and bounded subset of $\left(c_{0},\|\cdot\|_{D}\right)$, which is not ω-compact, contains an $a i \Theta_{1} b c_{0 D}$ sequence, and does not contain $a i \Theta_{2} b c_{0 D}$ sequences. We also show that the $a i s b c_{0}$ and $a i \Theta b c_{0 D}$ sequences are different in the last sense for all Θ. Hence, to give a similar result of Theorem 4 of [2] about convex, closed and bounded sets in $\left(c_{0},\|\cdot\|_{D}\right)$ without the FPP, it is necessary to consider the $a i \Theta b c_{0 D}$ sequences.

Next we prove that if a convex and closed subset K of a Banach space contains an asymptotically isometric $c_{0 D}$-summing basic sequence, that is, an $a i \Theta b c_{0 D}$ sequence, where Θ is such that $\theta_{i}=1$ for all i, then there exists a nonempty, convex, closed and bounded subset of K without the FPP.

Finally, we show that the dual space of $\left(c_{0},\|\cdot\|_{D}\right)$, over the reals, is the Bynum [5] space $l_{1 \infty}$. Then, by a result of Dowling et al. in [6], the space $l_{1 \infty}=\left(c_{0},\|\cdot\|_{D}\right)^{*}$ has "many" subspaces and contains an asymptotically isometric copy of l_{1} and does not have the FPP. In fact, we prove that every infinite dimensional subspace of $l_{1 \infty}$ contains an asymptotically isometric copy of l_{1} and does not have the FPP.

2. The Space $\left(c_{0},\|\cdot\|_{D}\right)$

In the sequel, we will denote by $\left\{e_{n}\right\}$ the canonical basis of c_{0} and by $\left\{\xi_{n}\right\}$ the summing basis of c_{0}, that is, $\xi_{n}=\sum_{i=1}^{n} e_{i}, n \in \mathbb{N}$.

García Falset proved in [7] that a Banach space with strongly bimonotone basis and with the weak Banach-Saks property has the ω-FPP. It is easy to see that the canonical basis of c_{0} is strongly bimonotone in $\left(c_{0},\|\cdot\|_{D}\right)$. On the other hand, since c_{0} has the weak Banach-Saks property and $\|\cdot\|_{D}$ and $\|\cdot\|_{\infty}$ are equivalent, we get that $\left(c_{0},\|\cdot\|_{D}\right)$ has the weak Banach-Saks property. Hence we have that $\left(c_{0},\|\cdot\|_{D}\right)$ has the ω-FPP.

To study the FPP in the space $\left(c_{0},\|\cdot\|_{D}\right)$ using $a i s b c_{0}$ sequences, we would expect that nonempty, convex, closed and bounded subsets K of ($c_{0},\|\cdot\|_{D}$), which are not ω-compact, contain an aisb $_{0}$ sequence. This fact is true for some ω-compact sets in $\left(c_{0},\|\cdot\|_{D}\right)$, since the space c_{0} embeds isometrically in $\left(c_{0},\|\cdot\|_{D}\right)$. In fact we have the following proposition.

Proposition 1. Let $\left\{u_{k}\right\}_{k} \subset\left(c_{0},\|\cdot\|_{D}\right)$ be a block basis of $\left\{e_{n}\right\}$ with $u_{k}=\sum_{i=p_{k}}^{q_{k}} a_{i} e_{i}, 1 \leq p_{1} \leq q_{1}<$ $p_{2} \leq q_{2}<\cdots$. If $\left\|u_{k}\right\|_{\infty}=1=a_{i^{k}}$, for some $p_{k} \leq i^{k} \leq q_{k}$, and $y_{k}=(1 / 2)\left(u_{2 k}-u_{2 k-1}\right)$, then the space $\overline{\operatorname{span}}\left\{y_{k}\right\}$ is isometric to $\left(c_{0},\|\cdot\|_{\infty}\right)$.

Proof. Since $\left\|u_{k}\right\|_{\infty}=1=a_{i^{k}}$ for every $k \in \mathbb{N}$, then $\left|a_{j}\right| \leq 1$ for all $j \in \mathbb{N}$ and

$$
\begin{equation*}
\max _{p_{2 k-1} \leq i \leq q_{2 k-1}, p_{2 k} \leq j \leq q_{2 k}}\left|a_{i}+a_{j}\right|=a_{i^{2 k-1}}+a_{i^{2 k}}=2 . \tag{2.1}
\end{equation*}
$$

Hence, it is straightforward to see that $\left\|\sum_{k=1}^{n} t_{k} y_{k}\right\|_{D}=\left\|\sum_{k=1}^{n} t_{k} e_{k}\right\|_{\infty}$.
In the following theorem, we will show, using some results proved by Dowling et al. [4, 8], that every infinite-dimensional subspace Y of $c_{0 D}$ fails to have the FPP.

Theorem 2. Let Y be an infinite-dimensional subspace of $c_{0 D}$. Then Y has a complemented asymptotically isometric copy of c_{0} and thus Y does not have the FPP.

Proof. Let $\left\{\varepsilon_{k}\right\}_{k} \subset(0,1)$ be a sequence such that $\varepsilon_{k+1}<\varepsilon_{k}, k \in \mathbb{N}$ and $\varepsilon_{k} \rightarrow 0$. As in [9] we construct sequences $\left\{n_{k}\right\} \subset \mathbb{N}$ and $\left\{y_{k}\right\}_{k} \subset Y$ such that $n_{k}<n_{k+1}, y_{k}=\sum_{i=n_{k}}^{\infty} \alpha_{i}^{k} e_{i},\left\|y_{k}\right\|_{\infty}=1$, and

$$
\begin{equation*}
\sup _{i \geq n_{k+1}}\left|\alpha_{i}^{j}\right|<\frac{\varepsilon_{k+2}}{4 k} \quad \forall j=1, \ldots, k, \text { and every } k \in \mathbb{N} . \tag{2.2}
\end{equation*}
$$

Since $\left\|y_{k}\right\|_{\infty}=1$, taking $-y_{k}$ instead of y_{k}, if necessary, we can suppose that there exists $n_{k} \leq r^{k}<n_{k+1}$ such that

$$
\begin{equation*}
\alpha_{r^{k}}^{k}=1 \tag{2.3}
\end{equation*}
$$

Define $x_{k}=\left(y_{2 k-1}-y_{2 k}\right) / 2$. Then, by (2.3) and (2.2), we get that $1-\left(\varepsilon_{k} / 2\right)<\left\|x_{k}\right\|_{D}<$ $1+\left(\varepsilon_{k} / 2\right)$ and

$$
\begin{align*}
\sum_{k=1}^{\infty} t_{k} x_{k} & =\frac{1}{2} \sum_{k=1}^{\infty} t_{k}\left(\sum_{i=n_{2 k-1}}^{\infty} \alpha_{i}^{2 k-1} e_{i}-\sum_{i=n_{2 k}}^{\infty} \alpha_{i}^{2 k} e_{i}\right) \\
& =\frac{1}{2} \sum_{k=1}^{\infty} t_{k}\left(\sum_{i=n_{2 k-1}}^{\infty}\left(\alpha_{i}^{2 k-1}-\alpha_{i}^{2 k}\right) e_{i}\right) \tag{2.4}\\
& =\frac{1}{2} \sum_{k=1}^{\infty}\left(\sum_{i=n_{2 k-1}}^{n_{2 k+1}-1}\left(\sum_{j=1}^{k} t_{j}\left(\alpha_{i}^{2 j-1}-\alpha_{i}^{2 j}\right) e_{i}\right)\right),
\end{align*}
$$

where $\alpha_{i}^{2 k}=0$ for $i=n_{2 k-1}, \ldots n_{2 k}-1, k \in \mathbb{N}$. Then by (2.3) and (2.2), if $k>1$, we get

$$
\begin{align*}
\left\|\sum_{n=1}^{\infty} t_{n} x_{n}\right\|_{D} & \geq \frac{1}{2} n_{2 k-1} \leq \max _{r<n 2 k, n k \leq s<n_{2 k+1}}\left|\sum_{j=1}^{k} t_{j}\left(\alpha_{r}^{2 j-1}-\alpha_{r}^{2 j}-\alpha_{s}^{2 j-1}+\alpha_{s}^{2 j}\right)\right| \\
\geq & \frac{1}{2}\left|\sum_{j=1}^{k} t_{j}\left(\alpha_{r^{2 k-1}}^{2 j-1}-\alpha_{r^{2 k-1}}^{2 j}-\alpha_{r^{2 k}}^{2 j-1}+\alpha_{r^{2 k}}^{2 j}\right)\right| \\
\geq & \frac{1}{2}\left|t_{k}\right|\left|\alpha_{r^{2 k-1}}^{2 k-1}-\alpha_{r^{2 k}}^{2 k-1}+\alpha_{r^{2 k}}^{2 k}\right|-\frac{1}{2} \sum_{j=1}^{k-1}\left|t_{j}\right|\left|\alpha_{r^{2 k-1}}^{2 j-1}-\alpha_{r^{2 k-1}}^{2 j}-\alpha_{r^{2 k}}^{2 j-1}+\alpha_{r^{2 k}}^{2 j}\right| \\
\geq & \frac{1}{2}\left|t_{k}\right|\left(\left|\alpha_{r^{2 k-1}}^{2 k-1}+\alpha_{r^{2 k}}^{2 k}\right|-\left|\alpha_{r^{k}}^{2 k-1}\right|\right) \tag{2.5}\\
& -\frac{1}{2} \sum_{j=1}^{k-1}\left|t_{j}\right|\left(\left|\alpha_{r^{2 k-1}}^{2 j-1}\right|+\left|\alpha_{r^{2 k-1}}^{2 j}\right|+\left|\alpha_{r^{2 k}}^{2 j-1}\right|+\left|\alpha_{r^{2 k}}^{2 j}\right|\right) \\
\geq & \frac{1}{2}\left|t_{k}\right|\left(2-\varepsilon_{k}\right)-\frac{1}{2} \sum_{j=1}^{k-1}\left|t_{j}\right| \frac{\varepsilon_{k}}{k} \\
\geq & \left|t_{k}\right|\left(1-\frac{\varepsilon_{k}}{2}\right)-\max _{1 \leq j \leq k}\left|t_{j}\right| \frac{\varepsilon_{k}}{2} .
\end{align*}
$$

On the other hand, if $n_{2 k-1} \leq r<n_{2 k+1}, n_{2 m-1} \leq s<n_{2 m+1}, k \leq m$, using (2.2), we get

$$
\begin{aligned}
& \frac{1}{2}\left|\sum_{j=1}^{k} t_{j}\left(\alpha_{r}^{2 j-1}-\alpha_{r}^{2 j}\right)-\sum_{j=1}^{m} t_{j}\left(\alpha_{s}^{2 j-1}-\alpha_{s}^{2 j}\right)\right| \\
& \quad \leq \frac{1}{2}\left[\left|t_{k}\right|\left(\left|\alpha_{r}^{2 k-1}\right|+\left|\alpha_{r}^{2 k}\right|\right)+\left|t_{m}\right|\left(\left|\alpha_{s}^{2 m-1}\right|+\left|\alpha_{s}^{2 m}\right|\right)\right] \\
& \quad+\frac{1}{2}\left[\sum_{j=1}^{k-1}\left|t_{j}\right|\left(\left|\alpha_{r}^{2 j-1}\right|+\left|\alpha_{r}^{2 j}\right|\right)+\sum_{j=1}^{m-1}\left|t_{j}\right|\left(\left|\alpha_{s}^{2 j-1}\right|+\left|\alpha_{s}^{2 j}\right|\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& \leq \frac{1}{2}\left[\left|t_{k}\right|\left(1+\varepsilon_{k}\right)+\left|t_{m}\right|\left(1+\varepsilon_{m}\right)+\sum_{j=1}^{k-1}\left|t_{j}\right| \frac{\varepsilon_{k}}{k-1}+\sum_{j=1}^{m-1}\left|t_{j}\right| \frac{\varepsilon_{m}}{m-1}\right] \\
& \leq \frac{1}{2}\left[\left|t_{k}\right|\left(1+\varepsilon_{k}\right)+\left|t_{m}\right|\left(1+\varepsilon_{m}\right)+\max _{1 \leq j<k}\left|t_{j}\right| \varepsilon_{k}+\max _{1 \leq j<m}\left|t_{j}\right| \varepsilon_{m}\right] \\
& \leq \frac{1}{2}\left[\max _{1 \leq j \leq k}\left|t_{j}\right|\left(1+\varepsilon_{k}\right)+\max _{1 \leq j \leq m}\left|t_{j}\right|\left(1+\varepsilon_{m}\right)\right] \\
& \leq \sup _{n \in \mathbb{N}}\left(\left(1+\varepsilon_{n}\right) \max _{1 \leq j \leq n}\left|t_{j}\right|\right) \leq \sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)\left|t_{n}\right| . \tag{2.6}
\end{align*}
$$

Then we obtain

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left(\left|t_{n}\right|\left(1-\frac{\varepsilon_{n}}{2}\right)-\max _{1 \leq j \leq n}\left|t_{j}\right| \frac{\varepsilon_{n}}{2}\right) \leq\left\|\sum_{n=1}^{\infty} t_{n} x_{n}\right\|_{D} \leq \sup _{n \in \mathbb{N}}\left(1+\varepsilon_{n}\right)\left|t_{n}\right| . \tag{2.7}
\end{equation*}
$$

Now, define $z_{n}=x_{n} /\left(1+\varepsilon_{n}\right)$ and $m=\left(1-\varepsilon_{1}\right) /\left(1+\varepsilon_{1}\right)$; then $\left(1-\varepsilon_{n}\right) /\left(1+\varepsilon_{n}\right) \leq\left\|z_{n}\right\|_{D}$ and $\lim _{n}\left\|z_{n}\right\|_{D}=1$. On the other hand,

$$
\begin{align*}
\left(1+\varepsilon_{1}\right) m \sup _{n \in \mathbb{N}}\left|t_{n}\right| & =\left(1-\varepsilon_{1}\right) \sup _{n \in \mathbb{N}}\left|t_{n}\right|=\left(1-\frac{\varepsilon_{1}}{2}\right) \sup _{n \in \mathbb{N}}\left|t_{n}\right|-\frac{\varepsilon_{1}}{2} \sup _{n \in \mathbb{N}}\left|t_{n}\right| \\
& \leq \sup _{n \in \mathbb{N}}\left(\left|t_{n}\right|\left(1-\frac{\varepsilon_{n}}{2}\right)-\max _{1 \leq j \leq n}\left|t_{j}\right| \frac{\varepsilon_{n}}{2}\right) . \tag{2.8}
\end{align*}
$$

Thus

$$
\begin{equation*}
m \sup _{n \in \mathbb{N}}\left|t_{n}\right| \leq \sup _{n \in \mathbb{N}}\left(\left|t_{n}\right|\left(1-\frac{\varepsilon_{n}}{2}\right)-\max _{1 \leq j \leq n}\left|t_{j}\right| \frac{\varepsilon_{n}}{2}\right) \leq\left\|\sum_{n=1}^{\infty} t_{n} z_{n}\right\|_{D} \leq \sup _{n \in \mathbb{N}}\left|t_{n}\right| \tag{2.9}
\end{equation*}
$$

Then by Theorem 2 of [8] Y contains an asymptotically isometric copy of c_{0} and since Y does not contain a copy of l_{1}, by Corollary 11 of [8] it contains a complemented asymptotically isometric copy of c_{0}. Finally by Proposition 11 of [4], Y does not have the FPP.

As a consequence of the last theorem, we get that every infinite-dimensional subspace of $\left(c_{0},\|\cdot\|_{D}\right)$ contains an aisbco sequence. Nevertheless, the following result gives an example of a nonempty, convex, closed and bounded subset of $\left(c_{0},\|\cdot\|_{D}\right)$ which is not weakly compact and without $a i s b c_{0}$ sequences.

Proposition 3. Let $\left\{\xi_{n}\right\}$ be the c_{0} summing basis. Then

$$
\begin{equation*}
C=\left\{\sum_{n=1}^{\infty} \lambda_{n} \xi_{n}: \lambda_{n} \geq 0, \sum_{n=1}^{\infty} \lambda_{n}=1\right\} \tag{2.10}
\end{equation*}
$$

does not have aisbco sequences with the norm $\|\cdot\|_{D}$.

Proof. Suppose that $\left\{y_{n}\right\}$ is an aisbc $_{0}$ sequence in C with $\|\cdot\|_{D}$ for some sequence $\left\{\varepsilon_{n}\right\}$. Then $y_{n}=\sum_{i=1}^{\infty} \lambda_{i}^{n} \xi_{i}$ for some sequence $\left\{\lambda_{i}^{n}\right\}$ such that $\lambda_{i}^{n} \geq 0$ and $\sum_{i=1}^{\infty} \lambda_{i}^{n}=1$. Fix $0<\varepsilon<1 / 4$. Passing to a subsequence we can suppose that $\varepsilon_{n+1} \leq \varepsilon_{n}<(1 / 2)-2 \varepsilon$ and $1 /\left(1+\varepsilon_{n}\right)>1-\varepsilon, n \in$ \mathbb{N}.

Assume first that there exists $M \in \mathbb{N}$ such that for every $n \geq M, \sum_{i=M+1}^{\infty} \lambda_{i}^{n} \leq(1 / 2)-\varepsilon$. Let $u_{n}=\sum_{i=1}^{M} \lambda_{i}^{n} \xi_{i}$ and $v_{n}=\sum_{i=M+1}^{\infty} \lambda_{i}^{n} \xi_{i}$; then $y_{n}=u_{n}+v_{n}$. Since $\left\{u_{n}\right\} \subset\left[\xi_{i}\right]_{i=1}^{M}$ is bounded and $\operatorname{dim}\left[\xi_{i}\right]_{i=1}^{M}=M$, passing to another subsequence we can suppose that $u_{n} \rightarrow u$ for some $u \in C$. Then, there exist $n_{1}, n_{2} \in \mathbb{N}$ with $M \leq n_{1}<n_{2}$ such that

$$
\begin{equation*}
\left\|u_{n_{1}}-u_{n_{2}}\right\|_{D}<\varepsilon \tag{2.11}
\end{equation*}
$$

Since $\sum_{i=M+1}^{\infty} \lambda_{i}^{n} \leq(1 / 2)-\varepsilon, n \geq M$, we also get

$$
\begin{align*}
\left\|v_{n_{1}}-v_{n_{2}}\right\|_{D} & =\max _{M+1 \leq r \leq k<\infty}\left|\sum_{i=r}^{k} \lambda_{i}^{n_{1}}-\sum_{i=r}^{k} \lambda_{i}^{n_{2}}\right| \tag{2.12}\\
& \leq \sum_{i=M+1}^{\infty} \lambda_{i}^{n_{1}}+\sum_{i=M+1}^{\infty} \lambda_{i}^{n_{2}} \leq 1-2 \varepsilon
\end{align*}
$$

Hence $\left\|y_{n_{1}}-y_{n_{2}}\right\|_{D} \leq 1-\varepsilon$. On the other hand, since $\left\{y_{n}\right\}$ is an aisbcose sequence, we have that $\left\|y_{n_{1}}-y_{n_{2}}\right\|_{D} \geq 1 /\left(1+\varepsilon_{n_{2}}\right)$, which contradicts the fact that $1 /\left(1+\varepsilon_{n_{2}}\right)>1-\varepsilon$.

Assume now that for all $M \in \mathbb{N}$, there exist $n \geq M$ such that $\sum_{i=M+1}^{\infty} \lambda_{i}^{n}>(1 / 2)-\varepsilon$. Denote each y_{n} by $\left\{\alpha_{i}^{n}\right\}=\sum_{i=1}^{\infty} \alpha_{i}^{n} e_{n}$, where $\left\{e_{n}\right\}$ is the canonical basis of c_{0}. Then $\alpha_{i}^{n}=\sum_{j=i}^{\infty} \lambda_{j}^{n}$. Since $y_{1}, y_{2} \in c_{0}$, there exists $M \in \mathbb{N}$ such that

$$
\begin{equation*}
\alpha_{i}^{1}, \alpha_{i}^{2}<\frac{\varepsilon}{2}, \quad i \geq M \tag{2.13}
\end{equation*}
$$

By hypothesis, there exists $n_{0} \in \mathbb{N}$ such that $\sum_{i=M+1}^{\infty} \lambda_{i}^{n_{0}}>(1 / 2)-\varepsilon$. Then

$$
\begin{equation*}
\frac{3}{2}-2 \varepsilon \leq\left\|y_{1}+y_{2}-y_{n_{0}}\right\|_{D} \tag{2.14}
\end{equation*}
$$

On the other hand, since $\left\{y_{n}\right\}$ is an aisbco sequence, we have that $\left\|y_{1}+y_{2}-y_{n_{0}}\right\|_{D} \leq 1+\varepsilon_{1}$, which contradicts the fact that $\varepsilon_{1}<(1 / 2)-2 \varepsilon$.

In view of the last proposition and motivated by the behavior of the c_{0} summing basic sequence with the norm $\|\cdot\|_{D}$, we will define the asymptotically isometric $c_{0 D}$-summing basic sequence. First we consider the following definition.

Definition 4. Let $\left\{x_{n}\right\}$ be a bounded basic sequence in a Banach space X. We say that $\left\{x_{n}\right\}$ is a convexly closed sequence if the set

$$
\begin{equation*}
C=\left\{\sum_{n=1}^{\infty} t_{n} x_{n}: t_{n} \geq 0, \sum_{n=1}^{\infty} t_{n}=1\right\} \tag{2.15}
\end{equation*}
$$

is closed, that is, if $\overline{\operatorname{conv}}\left\{x_{n}\right\}=C$.

Note that subsequences of convexly closed sequences are again convexly closed and that every basic sequence equivalent to a convexly closed sequence is convexly closed.

It is easy to see that the c_{0} summing basis, the canonical basis of l_{1}, and aisbc c_{0} sequences are convexly closed. Moreover, a weakly null basic sequence in a Banach space is not a convexly closed sequence. Hence the canonical basis of c_{0} and the canonical basis of l_{p}, $1<p<\infty$, are not convexly closed.

Definition 5. Let $\left\{x_{n}\right\}$ be a sequence in a Banach space X. We say that $\left\{x_{n}\right\}$ is an asymptotically isometric $c_{0 D}$-summing basic sequence, aisbc $c_{0 D}$ sequence for short, if $\left\{x_{n}\right\}$ is convexly closed and there exists $\left\{\varepsilon_{n}\right\} \subset(0, \infty)$ such that $\varepsilon_{n} \searrow 0$ and

$$
\begin{equation*}
\sup _{1 \leq n \leq m<\infty}\left(1+\varepsilon_{m}\right)^{-1}\left|\sum_{k=n}^{m} t_{k}\right| \leq\left\|\sum_{n=1}^{\infty} t_{n} x_{n}\right\| \leq \sup _{1 \leq n \leq m<\infty}\left(1+\varepsilon_{m}\right)\left|\sum_{k=n}^{m} t_{k}\right|, \quad \forall\left\{t_{n}\right\} \in l_{1} . \tag{2.16}
\end{equation*}
$$

Now, we prove that the analogous of the operator defined in [2] is still contractive and then Banach spaces containing aisbc $_{0 D}$ sequences does not have the FPP.

Proposition 6. Let K be a nonempty, convex, closed and bounded subset of a Banach space X. Let $\left\{\varepsilon_{n}\right\} \subset(0, \infty)$ be a sequence such that $\varepsilon_{n} \rightarrow 0$ and $\varepsilon_{n}<2^{-1} 4^{-n}, n \geq 2$. If K contains an aisbc $c_{0 D}$ sequence with this $\left\{\varepsilon_{n}\right\}$, then there exists a nonempty, convex and closed subset C of K and $T: C \rightarrow C$ affine, nonexpansive, and fixed-point-free. Moreover, T is contractive.

Proof. Let $\left\{x_{n}\right\}$ be an aisbc $c_{0 D}$ sequence in K with $\left\{\varepsilon_{n}\right\} \subset(0, \infty)$ such that $\varepsilon_{n}<2^{-1} 4^{-n}, n \geq 2$. Set

$$
\begin{equation*}
C=\overline{\operatorname{conv}}\left\{x_{n}\right\}=\left\{\sum_{n=1}^{\infty} t_{n} x_{n}: t_{n} \geq 0, n \in \mathbb{N} y \sum_{n=1}^{\infty} t_{n}=1\right\} \subset K . \tag{2.17}
\end{equation*}
$$

Thus C is nonempty, convex, closed and bounded. Define $T x_{n}=\sum_{j=1}^{\infty}\left(\left(x_{n+j}\right) / 2^{j}\right), n \in \mathbb{N}$, and extend T linearly to C, that is, if $x=\sum_{n=1}^{\infty} t_{n} x_{n} \in C$ then define $T\left(\sum_{n=1}^{\infty} t_{n} x_{n}\right)=\sum_{n=1}^{\infty} t_{n} T x_{n}$. It is easy to see that $T(C) \subset C$ and that T is affine and fixed-point-free, see [2]. We only need to show that T is a contractive mapping. Let $x, y \in C$, with $x \neq y$. Then $x=\sum_{n=1}^{\infty} t_{n} x_{n}$ and $y=\sum_{n=1}^{\infty} s_{n} x_{n}$, with $t_{n}, s_{n} \geq 0$, and $\sum_{n=1}^{\infty} t_{n}=\sum_{n=1}^{\infty} s_{n}=1$. Let $\beta_{n}=t_{n}-s_{n}, n \in \mathbb{N}$, such that $\sum_{n=1}^{\infty} \beta_{n}=0$. As in [2] we have

$$
\begin{equation*}
T(x)-T(y)=\sum_{n=1}^{\infty} B_{n} x_{n} \tag{2.18}
\end{equation*}
$$

where $B_{1}=0$ and $B_{n}=\left(\beta_{1} / 2^{n-1}\right)+\left(\beta_{2} / 2^{n-2}\right)+\cdots+\left(\beta_{n-1} / 2\right), n \geq 2$. Consequently,

$$
\begin{equation*}
\|T(x)-T(y)\|=\left\|\sum_{n=1}^{\infty} B_{n} x_{n}\right\| \leq \sup _{1 \leq n \leq m<\infty}\left(1+\varepsilon_{m}\right)\left|\sum_{k=n}^{m} B_{k}\right| . \tag{2.19}
\end{equation*}
$$

Take $n, m \in \mathbb{N}$ with $n \leq m$. Since

$$
\begin{align*}
\sum_{k=n}^{m} B_{k}= & \frac{\beta_{1}}{2^{n-1}}+\frac{\beta_{2}}{2^{n-2}}+\cdots+\frac{\beta_{n-1}}{2} \\
& +\frac{\beta_{1}}{2^{n}}+\frac{\beta_{2}}{2^{n-1}}+\cdots+\frac{\beta_{n-1}}{2^{2}}+\frac{\beta_{n}}{2}+\cdots \\
& +\frac{\beta_{1}}{2^{m-1}}+\frac{\beta_{2}}{2^{m-2}}+\cdots+\frac{\beta_{n-1}}{2^{m-(n-1)}}+\frac{\beta_{n}}{2^{m-n}}+\frac{\beta_{n+1}}{2^{m-(n+1)}}+\cdots+\frac{\beta_{m-1}}{2} \\
= & \frac{1}{2}\left(\beta_{n-1}+\beta_{n}+\cdots+\beta_{m-1}\right) \tag{2.20}\\
& +\frac{1}{2^{2}}\left(\beta_{n-2}+\beta_{n-1}+\cdots+\beta_{m-2}\right)+\cdots \\
& +\frac{1}{2^{n-1}}\left(\beta_{1}+\beta_{2}+\cdots+\beta_{m-(n-1)}\right)+\cdots \\
& +\frac{1}{2^{m-2}}\left(\beta_{1}+\beta_{2}\right)+\frac{1}{2^{m-1}}\left(\beta_{1}\right)
\end{align*}
$$

we have

$$
\begin{align*}
&\left(1+\varepsilon_{m}\right)\left|\sum_{k=n}^{m} B_{k}\right| \leq\left(1+\varepsilon_{m}\right)\left(\frac{1+2 \varepsilon_{m-1}}{2} \frac{1}{1+2 \varepsilon_{m-1}}\left|\beta_{n-1}+\beta_{n}+\cdots+\beta_{m-1}\right|\right. \\
&+\frac{1+2 \varepsilon_{m-2}}{2^{2}} \frac{1}{1+2 \varepsilon_{m-2}}\left|\beta_{n-2}+\beta_{n-1}+\cdots+\beta_{m-2}\right|+\cdots \\
&+\frac{1+2 \varepsilon_{m-(n-1)}}{2^{n-1}} \frac{1}{1+2 \varepsilon_{m-(n-1)}}\left|\beta_{1}+\beta_{2}+\cdots+\beta_{m-(n-1)}\right|+\cdots \tag{2.21}\\
&\left.+\frac{1+2 \varepsilon_{2}}{2^{m-2}} \frac{1}{1+2 \varepsilon_{2}}\left|\beta_{1}+\beta_{2}\right|+\frac{1+2 \varepsilon_{1}}{2^{m-1}} \frac{1}{1+2 \varepsilon_{1}}\left|\beta_{1}\right|\right) \\
& \leq\left(\sup _{1 \leq i \leq j \leq m}\left(1+2 \varepsilon_{j}\right)^{-1}\left|\sum_{k=i}^{j} \beta_{k}\right|\right) Q_{n m}
\end{align*}
$$

where

$$
\begin{aligned}
& Q_{n m}=\left(1+\varepsilon_{m}\right)\left(\frac{1+2 \varepsilon_{m-1}}{2}+\frac{1+2 \varepsilon_{m-2}}{2^{2}}+\cdots+\right. \\
&\left.+\frac{1+2 \varepsilon_{m-(n-1)}}{2^{n-1}}+\frac{1+2 \varepsilon_{m-n}}{2^{n}}+\cdots+\frac{1+2 \varepsilon_{2}}{2^{m-2}}+\frac{1+2 \varepsilon_{1}}{2^{m-1}}\right) \\
& \leq\left(1+\frac{1}{2 \cdot 4^{m}}\right)\left[\left(\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{m-1}}\right)+\left(\frac{1}{2 \cdot 4^{m-1}}+\cdots+\frac{1}{2^{m-1} \cdot 4^{1}}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& =\left(1+\frac{1}{2 \cdot 4^{m}}\right)\left[\left(1-\frac{1}{2^{m-1}}\right)+\left(\frac{1}{2^{2 m-1}}+\frac{1}{2^{2 m-2}}+\cdots+\frac{1}{2^{m+1}}\right)\right] \\
& <\left(1+\frac{1}{4^{m}}\right)\left[\left(1-\frac{1}{2^{m-1}}\right)+\frac{1}{2^{m}}\right]<1 \tag{2.22}
\end{align*}
$$

Then we get

$$
\begin{align*}
\sup _{1 \leq n \leq m<\infty}\left(1+\varepsilon_{m}\right)\left|\sum_{k=n}^{m} B_{k}\right| & \leq \sup _{1 \leq n \leq m<\infty}\left(1+2 \varepsilon_{m}\right)^{-1}\left|\sum_{k=n}^{m} \beta_{k}\right|<\sup _{1 \leq n \leq m<\infty}\left(1+\varepsilon_{m}\right)^{-1}\left|\sum_{k=n}^{m} \beta_{k}\right| \\
& \leq\left\|\sum_{n=1}^{\infty} \beta_{n} x_{n}\right\|=\|x-y\| \tag{2.23}
\end{align*}
$$

Thus T is contractive.
Next for any sequence of signs we will define a basis in c_{0} equivalent to $\left\{\xi_{n}\right\}$, the summing basis of c_{0}, and a sequence asymptotically isometric to it.

Let $\left\{e_{n}\right\}$ be the canonical basis of c_{0} and for any selection of signs $\Theta=\left\{\theta_{i}\right\}_{i}$, that is, $\theta_{i} \in\{-1,1\}, i \in \mathbb{N}$, let $\left\{\zeta_{n}^{\Theta}\right\}_{n}$ be the sequence defined by

$$
\begin{equation*}
\zeta_{n}^{\Theta}=\sum_{k=1}^{n} \theta_{k} e_{k}, \quad n \in \mathbb{N} \tag{2.24}
\end{equation*}
$$

Since $\left\|\sum_{n=1}^{m} t_{n} \xi_{n}\right\|_{\infty}=\left\|\sum_{n=1}^{m} t_{n} \zeta_{n}^{\Theta}\right\|_{\infty}$ for all $\left\{t_{n}\right\}_{n=1}^{m} \subset \mathbb{K}$, we get that $\left\{\zeta_{n}^{\Theta}\right\}$ is a basis of c_{0} equivalent to the c_{0} summing basis. The sequence $\left\{\zeta_{n}^{\Theta}\right\}$ is called the Θ-basis of c_{0}. Let $\Theta_{0}=\left\{\theta_{i}\right\}$, where $\theta_{i}=1, i \in \mathbb{N}$. Then the Θ_{0}-basis of c_{0} is the c_{0} summing basis. If we define $C=$ $\left\{\sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}: t_{n} \geq 0\right.$ and $\left.\sum_{n=1}^{\infty} t_{n}=1\right\}$, then C is nonempty, convex and bounded. Since $\|\cdot\|_{\infty}$ and $\|\cdot\|_{D}$ are equivalent, we have that $\left\{\zeta_{n}^{\Theta}\right\}$ is convexly closed in $\left(c_{0},\|\cdot\|_{D}\right)$.

The set $C=\left\{\sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}: t_{n} \geq 0\right.$ and $\left.\sum_{n=1}^{\infty} t_{n}=1\right\}$ is not ω-compact. The following result shows that the set C contains neither aisbcon sequences nor $a i s b c_{0}$ sequences with the norm $\|\cdot\|_{D}$ if $\Theta \neq \pm \Theta_{0}$.

Proposition 7. For $\Theta \neq \pm \Theta_{0}$, let $\left\{\zeta_{n}^{\Theta}\right\}$ be the Θ-basis of c_{0} considered in $\left(c_{0},\|\cdot\|_{D}\right)$. If

$$
\begin{equation*}
C=\left\{\sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}: t_{n} \geq 0, \sum_{n=1}^{\infty} t_{n}=1\right\} \tag{2.25}
\end{equation*}
$$

then the set C contains neither aisbc $c_{0 D}$ sequences nor aisbco sequences with the norm $\|\cdot\|_{D}$.
Proof. Let $\left\{y_{k}\right\} \subset C$. Then $y_{k}=\sum_{n=1}^{\infty} \lambda_{n}^{k} \zeta_{n}^{\Theta}$ for some $\lambda_{n}^{k} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{n}^{k}=1$. Suppose that $\left\{y_{k}\right\}$ is an $a i s b c_{0 D}$ sequence (resp. an aisbc $_{0}$ sequence) with the norm $\|\cdot\|_{D}$. Let $n_{0}=\min \{n$: $\left.\theta_{n} \neq \theta_{1}\right\}$. If there exists $0<\rho<1$ such that $\sum_{i=1}^{n_{0}-1} \lambda_{i}^{k} \leq 1-\rho$ for all $k \geq 1$, then for all $k \geq 1$,

$$
\begin{equation*}
\left\|y_{k}\right\|_{D} \geq \sum_{n=1}^{\infty} \lambda_{n}^{k}+\sum_{n=n_{0}}^{\infty} \lambda_{n}^{k} \geq 1+\rho \tag{2.26}
\end{equation*}
$$

Since $\left\{y_{k}\right\}$ is an aisbcod sequence (resp. an aisbco sequence) with the norm $\|\cdot\|_{D}$, then $\left\|y_{k}\right\|_{D} \leq 1+\varepsilon_{k} \rightarrow 1$ and this is impossible. Now, if $\lim \sup _{k} \sum_{i=1}^{n_{0}-1} \lambda_{i}^{k}=1$, as in the proof of Proposition 3, we obtain a subsequence $\left\{y_{k_{i}}\right\}$ of $\left\{y_{k}\right\}$ with $\left\|y_{k_{i}}-y_{k_{i+1}}\right\|_{D} \rightarrow 0$. Since $\left\{y_{n}\right\}$ is an aisbcod with the norm $\|\cdot\|_{D}$, then $\left(1+\varepsilon_{k_{i}}\right)^{-1} \leq\left\|y_{k_{i}}-y_{k_{i+1}}\right\|_{D}$ (resp. $\left(1+\varepsilon_{k_{i+1}}\right)^{-1} \leq$ $\left\|y_{k_{i}}-y_{k_{i+1}}\right\|_{D}$) and making $i \rightarrow \infty$ we get that $1 \leq 0$. This contradiction proves the result.

Although the set C of the last proposition has neither $a_{i s b c_{0 D}}$ sequences nor $a i s b c_{0}$ sequences, for some Θ it does not have the FPP.

For $\Theta=\left\{\theta_{i}\right\}$, let F_{n} be the set such that if $i, j \in F_{n}$, then $\theta_{i}=\theta_{j}$, and if $i \in F_{n+1}$ and $j \in F_{n}$, then $\theta_{i} \neq \theta_{j}$. Denote by r_{n} the cardinality of F_{n}. If $r_{n}<\infty$, define $p_{0}=0, p_{n-1}=\min F_{n}-1$, and $p_{n}=\max F_{n}$.

Proposition 8. Let $\Theta \neq \pm \Theta_{0}$. Then

$$
\begin{equation*}
C=\left\{\sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}: t_{n} \geq 0, \sum_{n=1}^{\infty} t_{n}=1\right\} \tag{2.27}
\end{equation*}
$$

does not have the FPP in the following cases.
(1) There exists $k \geq 1$ such that $r_{n} \leq r_{n+k}<\infty, n \in \mathbb{N}$.
(2) $r_{1}=1$ and $r_{2}=\infty$.
(3) There exists $\left\{i_{n}\right\}$, with $i_{1}>1$, such that for any $k, l \in \mathbb{N}$ with $i_{k-1}<l<i_{k}$ we have $\theta_{l}=\theta_{i_{k}}$ and also $\theta_{k} \neq \theta_{i_{k}}$ for all $k \geq 2$ or $\theta_{k}=\theta_{i_{k}}$ for all $k \geq 2$.

Proof. Let $\Theta \neq \pm \Theta_{0}$.
(1) If there exists $k \geq 1$ such that $r_{n} \leq r_{n+k}<\infty, n \in \mathbb{N}$, define $q_{n}=\sum_{j=n-(k-2)}^{n+1} r_{j}, n \geq k$ and $T: C \rightarrow C$ by

$$
\begin{equation*}
T \sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}=T \sum_{n=1}^{\infty} \sum_{i=p_{n-1}+1}^{p_{n}} t_{i} \zeta_{i}^{\Theta}=\sum_{n=k i=w_{n}}^{\infty} \sum_{n-q_{n}}^{p_{n+1}} t_{i} \zeta_{i}^{\Theta}, \tag{2.28}
\end{equation*}
$$

where $w_{n}=p_{n}+r_{n+1}-r_{n+1-k}+1$. The idea is to translate the coefficients of $\sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}$ in the block F_{n} into the last r_{n} terms of the block F_{n+k}. Then it is easy to see that T does not have fixed points. To prove that T is nonexpansive first observe that if k is even the signs of the θ_{i} and θ_{j} with $i \in F_{n}$ and $j \in F_{n+k}$ are the same and are different if k is odd. Now let $x=\sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}$, $y=\sum_{n=1}^{\infty} s_{n} \zeta_{n}^{\Theta}$, and $x-y=\sum_{n=1}^{\infty} \alpha_{n} \zeta_{n}^{\Theta}$. Then $\alpha_{n}=t_{n}-s_{n}$ and $\sum_{n=1}^{\infty} \alpha_{n}=0$. Hence

$$
\begin{align*}
x-y & =\sum_{n=1}^{\infty} \sum_{i=p_{n-1}+2}^{p_{n}} \theta_{p_{n}}\left(\sum_{n=i}^{\infty} \alpha_{n}\right) e_{i}, \tag{2.29}\\
T(x-y) & =\sum_{n=k}^{\infty}\left(\theta_{p_{n+1}} \sum_{n=i-q_{n}}^{\infty} \alpha_{n}\right)\left(\sum_{i=p_{n}+1}^{w_{n}} e_{i}\right) \sum_{i=w_{n}+1}^{p_{n+1}} \theta_{p_{n+1}}\left(\sum_{n=i-q_{n}}^{\infty} \alpha_{n}\right) e_{i} \tag{2.30}
\end{align*}
$$

are the expressions of $x-y$ and $T(x-y)$ with respect to the canonical basis. Since the coefficients in (2.29) and (2.30) are the same, or the same with opposite signs, with perhaps some repetitions in (2.30), T is an isometry.
(2) Suppose now that $r_{1}=1$ and $r_{2}=\infty$. In this case, define $T \sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}=\sum_{n=1}^{\infty} t_{n} \zeta_{n+1}^{\Theta}$. Clearly T is nonexpansive and fixed-point-free.
(3) In this case it is straightforward to see that the operator $T: C \rightarrow C$ defined by $T \sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}=\sum_{n=1}^{\infty} t_{n} \zeta_{i_{n}}^{\Theta}$ is nonexpansive and does not have fixed points.

Proposition 9. Let $\Theta \neq \pm \Theta_{0}$. Suppose Θ does not satisfy the hypotheses of the above proposition, and let $\left\{i_{n}\right\}$ be a sequence with $i_{1}>1$. Then the operator $T: C \rightarrow C$ defined by $T \sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta}=\sum_{n=1}^{\infty} t_{n} \zeta_{i_{n}}^{\Theta}$ is expansive.

Proof. Since Θ does not satisfy the hypotheses (1) and (2) of the above proposition, there are three possibilities.
(I) $r_{n}<\infty$ for every $n \geq 2$; then for every k there exists n such that $r_{n+k}<r_{n}$.
(II) $r_{2}=\infty$; then $r_{1}>1$.
(III) There exists $k>2$ such that $r_{k}=\infty$.

Let $\left\{i_{n}\right\}$ be fixed with $i_{1}>1$ and denote $i_{0}=0$. Since Θ does not satisfy the hypotheses (3) of the above proposition, there exist k and l with $i_{k-1}<l<i_{k}$ such that $\theta_{l} \neq \theta_{i_{k}}$ or there exists $k_{1} \geq 2$ with $\theta_{k_{1}}=\theta_{i_{k_{1}}}$ and there exists $k_{2} \geq 2$ with $\theta_{k_{2}} \neq \theta_{i_{k_{2}}}$.

Case 1. For every k there exists n such that $r_{n+k}<r_{n}$.
There are two subcases.
Subcase 1.1. There are k and l with $i_{k-1}<l<i_{k}$ such that $\theta_{l} \neq \theta_{i_{k}}$.
Let $x=(1 / 8) \zeta_{1}^{\Theta}+(3 / 8) \zeta_{k-1}^{\Theta}+(1 / 2) \zeta_{k}^{\Theta}$ and $y=(1 / 16) \zeta_{1}^{\Theta}+(3 / 16) \zeta_{k-1}^{\Theta}+(3 / 4) \zeta_{k}^{\Theta}$. Then $x-y=(1 / 16) \zeta_{1}^{\Theta}+(3 / 16) \zeta_{k-1}^{\Theta}-(1 / 4) \zeta_{k}^{\Theta}=-(1 / 16) \sum_{i=2}^{k-1} \theta_{i} e_{i}-(1 / 4) \theta_{k} e_{k}$ and $\|x-y\|_{D} \leq$ 5/16. On the other hand, $T x-T y=(1 / 16) \zeta_{i_{1}}^{\Theta}+(3 / 16) \zeta_{i_{k-1}}^{\Theta}-(1 / 4) \zeta_{i_{k}}^{\Theta}=-(1 / 16) \sum_{j=i_{1}+1}^{i_{k-1}} \theta_{j} e_{j}-$ $(1 / 4) \sum_{j=i_{k-1}+1}^{i_{k}} \theta_{j} e_{j}$ and $\|T x-T y\|_{D}=1 / 2$.

Subcase 1.2. For any $k \in \mathbb{N}$ and l with $i_{k-1}<l<i_{k}$, we have $\theta_{l}=\theta_{i_{k}}$.
There are two subsubcases. (1) $\theta_{1}=\theta_{i_{1}}$ and (2) $\theta_{1} \neq \theta_{i_{1}}$.
(1) $\theta_{1}=\theta_{i_{1}}$

If $\theta_{k}=\theta_{i_{k}}$ for every k; then we would have $F_{1}=\mathbb{N}$, which implies $\Theta= \pm \Theta_{0}$. Then there is k such that $\theta_{k} \neq \theta_{i_{k}}$. Let $s=\min \left\{l: \theta_{l} \neq \theta_{i_{l}}\right\}$. Then $s>1$.

There are two possibilities: (A) there exists $r>s$ such that $\theta_{r}=\theta_{i_{r}}$ and (B) $\theta_{k} \neq \theta_{i_{k}}$ for all $k \geq s$.
(A) Let $k+1=\min \left\{r>s: \theta_{r}=\theta_{i_{r}}\right\}$. We need to consider the following cases.
(a) $\theta_{k}=\theta_{k+1}$.

Let $x=(1 / 2) \zeta_{k-1}^{\Theta}+(1 / 2) \zeta_{k+1}^{\Theta}$ and $y=(3 / 4) \zeta_{k-1}^{\Theta}+(1 / 4) \zeta_{k+1}^{\Theta}$. Then $x-y=$ $-(1 / 4) \zeta_{k-1}^{\Theta}+(1 / 4) \zeta_{k+1}^{\Theta}=\theta_{k+1}\left((1 / 4) e_{k}+(1 / 4) e_{k+1}\right)$ and $\|x-y\|_{D}=1 / 4$. On the other hand, $T x-T y=-(1 / 4) \zeta_{i_{k-1}}^{\Theta}+(1 / 4) \zeta_{i_{k+1}}^{\Theta}=(1 / 4) \sum_{j=i_{k-1}+1}^{i_{k}} \theta_{j} e_{j}+$ $(1 / 4) \sum_{j=i_{k}+1}^{i_{k+1}} \theta_{j} e_{j}=-(1 / 4) \theta_{k+1} \sum_{j=i_{k-1}+1}^{i_{k}} e_{j}+(1 / 4) \theta_{k+1} \sum_{j=i_{k}+1}^{i_{k+1}} e_{j}$ and $\|T x-T y\|_{D}$ $=1 / 2$.
(b) $\theta_{k} \neq \theta_{k+1}$.

Let $x=(1 / 2) \zeta_{k-1}^{\Theta}+(1 / 2) \zeta_{k+1}^{\Theta}$ and $y=(3 / 4) \zeta_{k}^{\Theta}+(1 / 4) \zeta_{k+1}^{\Theta}$. Then $x-y=$ $(1 / 2) \zeta_{k-1}^{\Theta}-(3 / 4) \zeta_{k}^{\Theta}+(1 / 4) \zeta_{k+1}^{\Theta}=-(1 / 2) \theta_{k} e_{k}+(1 / 4) \theta_{k+1} e_{k+1}=\theta_{k+1}\left((1 / 2) e_{k}+\right.$ $\left.(1 / 4) e_{k+1}\right)$ and $\|x-y\|_{D}=1 / 2$. On the other hand, $T x-T y=(1 / 2) \zeta_{i_{k-1}}^{\Theta}-$ $(3 / 4) \zeta_{i_{k}}^{\Theta}+(1 / 4) \zeta_{i_{k+1}}^{\Theta}=-(1 / 2) \sum_{j=i_{k-1}+1}^{i_{k}} \theta_{j} e_{j}+(1 / 4) \sum_{j=i_{k}+1}^{i_{k+1}} \theta_{j} e_{j}=-(1 / 2)$ $\theta_{k} \sum_{j=i_{k-1}+1}^{i_{k}} e_{j}+(1 / 4) \theta_{k} \sum_{j=i_{k}+1}^{i_{k+1}} e_{j}$ and $\|T x-T y\|_{D}=3 / 4$.
(B) $\theta_{k} \neq \theta_{i_{k}}$ for all $k \geq s$. By hypothesis we have that $s>2$. There are two cases.
(a) $\theta_{s-1}=\theta_{s}$. Then $\theta_{i_{s-1}} \neq \theta_{i_{s}}$. Let $x=(1 / 4) \zeta_{s-2}^{\Theta}+(1 / 2) \zeta_{s-1}^{\Theta}+(1 / 4) \zeta_{s}^{\Theta}$ and $y=$ $(1 / 4) \zeta_{s-1}^{\Theta}+(3 / 4) \zeta_{s}^{\Theta}$. Then $x-y=(1 / 4) \zeta_{s-2}^{\Theta}+(1 / 4) \zeta_{s-1}^{\Theta}-(1 / 2) \zeta_{s}^{\Theta}=-\theta_{s}\left((1 / 4) e_{s-1}\right.$ $\left.+(1 / 2) e_{s}\right)$ and $\|x-y\|_{D}=1 / 2$. On the other hand, $T x-T y=(1 / 4) \zeta_{i_{s-2}}^{\Theta}+$ $(1 / 4) \zeta_{i_{s-1}}^{\Theta}-(1 / 2) \zeta_{i_{s}}^{\Theta}=-(1 / 4) \theta_{s} \sum_{j=i_{s-2}+1}^{i_{s-1}} e_{j}+(1 / 2) \theta_{s} \sum_{j=i_{s-1}+1}^{i_{s}} e_{j}$ and $\|T x-T y\|_{D}$ $=3 / 4$.
(b) $\theta_{s-1} \neq \theta_{s}$. Then $\theta_{i_{s-1}}=\theta_{i_{s}}$. Let $x=(1 / 4) \zeta_{s-2}^{\Theta}+(1 / 4) \zeta_{s-1}^{\Theta}+(1 / 2) \zeta_{s}^{\Theta}$ and $y=$ $(3 / 4) \zeta_{s-1}^{\Theta}+(1 / 4) \zeta_{s}^{\Theta}$. Then $x-y=(1 / 4) \zeta_{s-2}^{\Theta}-(1 / 2) \zeta_{s-1}^{\Theta}+(1 / 4) \zeta_{s}^{\Theta}=-(1 / 4) \theta_{s-1} e_{s-1}$ $+(1 / 4) \theta_{s} e_{s}=\theta_{s}\left((1 / 4) e_{s-1}+(1 / 4) e_{s}\right)$ and $\|x-y\|_{D}=1 / 4$. On the other hand, $T x-T y=(1 / 4) \zeta_{i_{s-2}}^{\Theta}-(1 / 2) \zeta_{i_{s-1}}^{\Theta}+(1 / 4) \zeta_{i_{s}}^{\Theta}=-(1 / 4) \theta_{i_{s-1}} \sum_{j=i_{s-2}+1}^{i_{s-1}} e_{j}+(1 / 4)$ $\theta_{i_{s}} \sum_{j=i_{s-1}+1}^{i_{s}} e_{j}=\theta_{s-1}\left(-(1 / 4) \sum_{j=i_{s-2}+1}^{i_{s-1}} e_{j}+(1 / 4) \sum_{j=i_{s-1}+1}^{i_{s}} e_{j}\right)$ and $\|T x-T y\|_{D}=1 / 2$.
(2) $\theta_{1} \neq \theta_{i_{1}}$

In this case there exists k such that $\theta_{k}=\theta_{i_{k}}$. If $s=\min \left\{l: \theta_{l}=\theta_{i_{l}}\right\}$, then $s>1$.
Hence consider the cases: (A) there exists $r>s$ such that $\theta_{r} \neq \theta_{i_{r}}$ and (B) $\theta_{k}=\theta_{i_{k}}$ for all $k \geq s$ and proceed as in the Case (1).

Case 2. $r_{2}=\infty$ and $r_{1}>1$.
Then $\theta_{p_{1}} \neq \theta_{i_{p_{1}}}$ with $1<p_{1}$. Hence we can proceed as in Subcase 1.2(1)(A) above taking $k=p_{1}$.

Case 3. There is $s>1$ such that $r_{s+1}=\infty$.
Then $\theta_{p_{s}} \neq \theta_{i_{s}}$ with $1<p_{s}$. Hence we can proceed as in Subcase 1.2(1)(A) above taking $k=p_{s}$.

Next, for every selection of signs $\Theta \neq \pm \Theta_{0}$, we will define the asymptotically isometric $c_{0 D}-\Theta$-basic sequences. To this end, let us consider the following notation.

Let

$$
\begin{align*}
& \mathfrak{S}_{\Theta}=\left\{(n, m): \theta_{n}=\theta_{m}\right\}, \tag{2.31}\\
& \mathfrak{D}_{\Theta}=\left\{(n, m): \theta_{n} \neq \theta_{m}\right\} .
\end{align*}
$$

Definition 10. Let $\left\{x_{n}\right\}$ be a sequence in a Banach space X. We say that $\left\{x_{n}\right\}$ is an asymptotically isometric $c_{0 D}-\Theta$-basic sequence ($a i \Theta b c_{0 D}$ sequence for short) if $\left\{x_{n}\right\}$ is convexly closed
and there exists $\left\{\varepsilon_{n}^{\Theta}\right\} \subset(0,(1 / 2))$ such that $\varepsilon_{n}^{\Theta} \searrow 0$, and

$$
\begin{align*}
L\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{S}_{\Theta}\right) \vee L\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{D}_{\Theta}\right) & \leq\left\|\sum_{n=1}^{\infty} t_{n} x_{n}\right\| \tag{2.32}\\
& \leq R\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{S}_{\Theta}\right) \vee R\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{D}_{\Theta}\right)
\end{align*}
$$

holds for all $\left\{t_{n}\right\} \in l_{1}$, where

$$
\begin{align*}
& L\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{S}_{\Theta}\right)=\left(\sup _{n<l,(n, l) \in \mathfrak{S}_{\Theta}}\left(1+\varepsilon_{l-1}^{\Theta}\right)^{-1}\left|\sum_{k=n}^{l-1} t_{k}\right|\right) \\
& L\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{D}_{\Theta}\right)=\left(\sup _{n<l,(n, l) \in \mathfrak{Q}_{\Theta}}\left(1+\varepsilon_{l-1}^{\Theta}\right)^{-1}\left|\sum_{k=n}^{l-1} t_{k}+2 \sum_{k=l}^{\infty} t_{k}\right|\right) \tag{2.33}\\
& R\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{S}_{\Theta}\right)=\left(\sup _{n<l,(n, l) \in \mathfrak{S}_{\Theta}}\left(1+\varepsilon_{l-1}^{\Theta}\right)\left|\sum_{k=n}^{l-1} t_{k}\right|\right), \\
& R\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{D}_{\Theta}\right)=\left(\sup _{n<l,(n, l) \in \mathfrak{D}_{\Theta}}\left(1+\varepsilon_{l-1}^{\Theta}\right)\left|\sum_{k=n}^{l-1} t_{k}+2 \sum_{k=l}^{\infty} t_{k}\right|\right)
\end{align*}
$$

We are interested in $a i \Theta b c_{0 D}$ sequences for which the numbers ε_{n}^{Θ} of Definition 10 are small. We are taking $\left\{\varepsilon_{n}^{\Theta}\right\} \subset(0,(1 / 2))$.

We know that the set C of Proposition 3 does not have $a i s b c_{0}$ sequences. Now we also prove that C does not contain $a i \Theta b c_{0 D}$ sequences with the norm $\|\cdot\|_{D}$ if $\Theta \neq \pm \Theta_{0}$.

Proposition 11. Let $\Theta \neq \pm \Theta_{0}$. The set $C=\left\{\sum_{n=1}^{\infty} t_{n} \xi_{n}: t_{n} \geq 0\right.$ and $\left.\sum_{n=1}^{\infty} t_{n}=1\right\}$ does not contain $a i \Theta b c_{0 D}$ sequences with the norm $\|\cdot\|_{D}$.

Proof. Let $\left\{y_{k}\right\} \subset C$. Then $y_{k}=\sum_{n=1}^{\infty} \lambda_{n}^{k} \xi_{n}$ for some $\lambda_{n}^{k} \geq 0$ with $\sum_{n=1}^{\infty} \lambda_{n}^{k}=1$. Suppose that $\left\{y_{k}\right\}$ is an $a i \Theta b c_{0 D}$ with $\|\cdot\|_{D}$. Since $\Theta \neq \pm \Theta_{0}$, there exist $m \in \mathbb{N}$ and $\left\{n_{k}\right\} \subset \mathbb{N}$ with $n_{1}<n_{2}$ $<\cdots$, such that for all $k \in \mathbb{N}, m<n_{k}$ and $\theta_{n_{k}} \neq \theta_{m}$. Let $t_{n}=0$ for $n \neq m, n_{k}$ and $t_{m}=t_{n_{k}}=1$. Thus

$$
\begin{align*}
\left(1+\varepsilon_{n_{k}-1}^{\Theta}\right)^{-1} 3 & \leq L\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{S}_{\Theta}\right) \vee L\left(\left\{\varepsilon_{n}^{\Theta}\right\},\left\{t_{n}\right\}, \mathfrak{D}_{\Theta}\right) \\
& \leq\left\|\sum_{n=1}^{\infty} t_{n} y_{n}\right\|_{D}=\left\|y_{m}+y_{n_{k}}\right\|_{D}=2 . \tag{2.34}
\end{align*}
$$

Since (2.34) holds for all $k \in \mathbb{N}$, making $k \rightarrow \infty$ in (2.34), we get that $3 \leq 2$, which is a contradiction.

Proposition 12. Let $\Theta_{1}=\left\{\theta_{i}^{1}\right\}_{i}$ and $\Theta_{2}=\left\{\theta_{i}^{2}\right\}_{i}$ such that $\Theta_{1} \neq \pm \Theta_{2}$ and $\Theta_{1}, \Theta_{2} \neq \pm \Theta_{0}$. Let $\left\{\zeta_{n}^{\Theta_{1}}\right\}$ be the Θ_{1}-basis of c_{0} considered in $\left(c_{0},\|\cdot\|_{D}\right)$ and let

$$
\begin{equation*}
C\left(\Theta_{1}\right)=\left\{\sum_{n=1}^{\infty} t_{n} \zeta_{n}^{\Theta_{1}}: t_{n} \geq 0, \sum_{n=1}^{\infty} t_{n}=1\right\} \tag{2.35}
\end{equation*}
$$

The set $C\left(\Theta_{1}\right)$ does not contain ai $\Theta_{2} b c_{0 D}$ sequences with the norm $\|\cdot\|_{D}$.
Proof. Let $\left\{y_{k}\right\} \subset C$. Then $y_{k}=\sum_{n=1}^{\infty} \lambda_{n}^{k} \zeta_{n}^{\Theta_{1}}$ for some $\lambda_{n}^{k} \geq 0$ with $\sum_{n=1}^{\infty} \lambda_{n}^{k}=1$. Suppose that $\left\{y_{k}\right\}$ is an $a i \Theta_{2} b c_{0 D}$ with the norm $\|\cdot\|_{D}$.

Suppose first $\theta_{1}^{1}=\theta_{1}^{2}$; since $\Theta_{1} \neq \Theta_{2}$, there exists $m>1$ such that $\theta_{m}^{1} \neq \theta_{m}^{2}$.
There are two cases.
Case 1. $(1, m) \in \mathfrak{S}_{\Theta_{1}}$. In this case $(1, m) \in \mathfrak{D}_{\Theta_{2}}$. Let $t_{n}=0$ for $n \neq 1, m$ and $t_{1}=t_{m}=1$. Thus

$$
\begin{align*}
\left(1+\varepsilon_{m-1}^{\Theta_{2}}\right)^{-1} 3 & \leq L\left(\left\{\varepsilon_{n}^{\Theta_{2}}\right\},\left\{t_{n}\right\}, \mathfrak{S}_{\Theta_{2}}\right) \vee L\left(\left\{\varepsilon_{n}^{\Theta_{2}}\right\},\left\{t_{n}\right\}, \mathfrak{D}_{\Theta_{2}}\right) \\
& \leq\left\|\sum_{n=1}^{\infty} t_{n} y_{n}\right\|_{D}=\left\|y_{1}+y_{m}\right\|_{D} \leq 2 \tag{2.36}
\end{align*}
$$

Since $\varepsilon_{m-1}^{\Theta_{2}}<1 / 2$, we get a contradiction.
Case 2. $(1, m) \in \mathfrak{D}_{\Theta_{1}}$. In this case $(1, m) \in \mathfrak{S}_{\Theta_{2}}$. Let $t_{n}=0$ for $n \neq 1, m$ and $t_{1}=t_{m}=1$. Thus

$$
\begin{align*}
2 & \leq \sum_{n=1}^{\infty} \lambda_{n}^{1}+\sum_{n=1}^{\infty} \lambda_{n}^{m}+\sum_{n=m}^{\infty} \lambda_{n}^{1}+\sum_{n=m}^{\infty} \lambda_{n}^{m} \leq\left\|\sum_{n=1}^{\infty} t_{n} y_{n}\right\|_{D}=\left\|y_{1}+y_{m}\right\|_{D} \tag{2.37}\\
& \leq R\left(\left\{\varepsilon_{n}^{\Theta_{2}}\right\},\left\{t_{n}\right\}, \mathfrak{S}_{\Theta_{2}}\right) \vee R\left(\left\{\varepsilon_{n}^{\Theta_{2}}\right\},\left\{t_{n}\right\}, \mathfrak{D}_{\Theta_{2}}\right) \leq\left(1+\varepsilon_{m-1}^{\Theta_{2}}\right)
\end{align*}
$$

Since $\varepsilon_{m-1}^{\Theta_{2}}<1 / 2$, we get a contradiction.
Suppose now $\theta_{1}^{1} \neq \theta_{1}^{2}$; since $\Theta_{1} \neq-\Theta_{2}$, there exists m such that $\theta_{m}^{1}=\theta_{m}^{2}$.
There are two cases.
Case 1. $(1, m) \in \mathfrak{S}_{\Theta_{1}}$; in this case $(1, m) \in \mathfrak{D}_{\Theta_{2}}$. Let $t_{n}=0$ for $n \neq 1, m$ and $t_{1}=t_{m}=1$. Thus

$$
\begin{align*}
\left(1+\varepsilon_{m-1}^{\Theta_{2}}\right)^{-1} 3 & \leq L\left(\left\{\varepsilon_{n}^{\Theta_{2}}\right\},\left\{t_{n}\right\}, \mathfrak{S}_{\Theta_{2}}\right) \vee L\left(\left\{\varepsilon_{n}^{\Theta_{2}}\right\},\left\{t_{n}\right\}, \mathfrak{D}_{\Theta_{2}}\right) \\
& \leq\left\|\sum_{n=1}^{\infty} t_{n} y_{n}\right\|_{D}=\left\|y_{1}+y_{m}\right\|_{D} \leq 2 \tag{2.38}
\end{align*}
$$

Since $\varepsilon_{m-1}^{\Theta_{2}}<1 / 2$, we get a contradiction.

Case 2. $(1, m) \in \mathfrak{D}_{\Theta_{1}}$. In this case $(1, m) \in \mathfrak{S}_{\Theta_{2}}$. Let $t_{n}=0$ for $n \neq 1, m$ and $t_{1}=t_{m}=1$. Thus

$$
\begin{align*}
2 & \leq \sum_{n=1}^{\infty} \lambda_{n}^{1}+\sum_{n=1}^{\infty} \lambda_{n}^{m}+\sum_{n=m}^{\infty} \lambda_{n}^{1}+\sum_{n=m}^{\infty} \lambda_{n}^{m} \leq\left\|\sum_{n=1}^{\infty} t_{n} y_{n}\right\|_{D}=\left\|y_{1}+y_{m}\right\|_{D} \tag{2.39}\\
& \leq R\left(\left\{\varepsilon_{n}^{\Theta_{2}}\right\},\left\{t_{n}\right\}, \mathfrak{S}_{\Theta_{2}}\right) \vee R\left(\left\{\varepsilon_{n}^{\Theta_{2}}\right\},\left\{t_{n}\right\}, \mathscr{D}_{\Theta_{2}}\right) \leq\left(1+\varepsilon_{m-1}^{\Theta_{2}}\right) .
\end{align*}
$$

Since $\varepsilon_{m-1}^{\Theta_{2}}<1 / 2$, we get a contradiction.
Propositions 3, 7, and 11 show that, in contrast with Theorem 4 of the Dowling et al. paper [2] for aisbc $_{0}$ sequences in c_{0}, in the space ($c_{0},\|\cdot\|_{D}$) we need an infinite number of sequences (at least $a i s b c_{0}$ and $a i \Theta b c_{0 D}$ sequences) to have a similar result.

3. The Space $\left(c_{0},\|\cdot\|_{D}\right)^{*}$

It is known that the dual of the Bynum space c_{01} is the Bynum space $l_{1 \infty 0}$. Below we prove that the dual space of $\left(c_{0},\|\cdot\|_{D}\right)$ when the scalar field is the set of real numbers is also the Bynum space $l_{1 \infty}$. Let us suppose then that $\mathbb{K}=\mathbb{R}$. First we calculate the extreme points of the unit ball of $\left(c_{0},\|\cdot\|_{D}\right)$.

Lemma 13. Let $X=\left(c_{0},\|\cdot\|_{D}\right)$. Then we have

$$
\begin{equation*}
\mathcal{E}\left(B_{X}\right)=\left\{\left\{x_{n}\right\} \in S_{X}: x_{n} \in\{1,0\}, n \in \mathbb{N}\right\} \cup\left\{\left\{x_{n}\right\} \in S_{X}: x_{n} \in\{-1,0\}, n \in \mathbb{N}\right\} . \tag{3.1}
\end{equation*}
$$

Proof. First note that if $\left\{x_{n}\right\} \in S_{X}$ then $\left|x_{n}-x_{m}\right| \leq 1, n, m \in \mathbb{N}$ and $\left|x_{n}\right| \leq 1, n \in \mathbb{N}$. Consequently, if $\left\{x_{n}\right\} \in S_{X}$ with $x_{n_{0}}=1$ for some $n_{0} \in \mathbb{N}$, then $0 \leq x_{n} \leq 1$, for all $n \in \mathbb{N}$. Analogously if $\left\{x_{n}\right\} \in S_{X}$ with $x_{n_{0}}=-1$ for some $n_{0} \in \mathbb{N}$, then $-1 \leq x_{n} \leq 0$, for all $n \in \mathbb{N}$. Let $A=\left\{\left\{x_{n}\right\} \in S_{X}: x_{n} \in\{1,0\}, n \in \mathbb{N}\right\}$ and $B=\left\{\left\{x_{n}\right\} \in S_{X}: x_{n} \in\{-1,0\}, n \in \mathbb{N}\right\}$. Thus $A, B \subset S_{X}$.

Take $x=\left\{x_{n}\right\} \in A$ and suppose that $x=(y+z) / 2$ with $y, z \in S_{X}$. Also suppose that $y=\left\{y_{n}\right\}$ and $z=\left\{z_{n}\right\}$. Since $x \in A$, there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}}=1$. Since $x_{n}=\left(y_{n}+z_{n}\right) / 2$ and $y_{n}, z_{n} \leq 1$, if $x_{n}=1$ for some $n \in \mathbb{N}$, we have that $x_{n}=y_{n}=z_{n}$. Thus $x_{n_{0}}=y_{n_{0}}=z_{n_{0}}=1$. On the other hand, if $x_{n}=0$ for some $n \in \mathbb{N}$, we also have that $x_{n}=y_{n}=z_{n}$, because if $y_{n}<0$ we get that $\left|y_{n}-y_{n_{0}}\right|>1$, which contradicts that $\left|y_{n}-y_{m}\right| \leq 1, n, m \in \mathbb{N}$ and if $y_{n}>0$ then $z_{n}<0$ and we also have a contradiction. Therefore, $x=y=z$. Hence $x \in \mathcal{E}\left(B_{X}\right)$. Thus $A \subset \mathcal{E}\left(B_{X}\right)$. Analogously $B \subset \mathcal{E}\left(B_{X}\right)$.

Take now $x=\left\{x_{n}\right\} \in S_{X} \backslash\{A \cup B\}$. Then there exists $n_{0} \in \mathbb{N}$ such that $0<\left|x_{n_{0}}\right|<1$. Let $a=\inf _{n} x_{n}$ and $b=\sup _{n} x_{n}$. If $x_{n_{0}} \in(a, b)$, define $c=\min \left(\left|x_{n_{0}}-a\right|,\left|x_{n_{0}}-b\right|\right), y_{n}=z_{n}=$ $x_{n}, n \neq n_{0}, y_{n_{0}}=x_{n_{0}}-c$, and $z_{n_{0}}=x_{n_{0}}+c$. Thus, $x_{n}=(y+z) / 2$ with $y, z \in S_{X}$ and $x \neq y, x \neq z$. Therefore, $x \in S_{X} \backslash \mathcal{\varepsilon}\left(B_{X}\right)$. Suppose now that $x_{n_{0}}=a$ or $x_{n_{0}}=b$. Since $0<\left|x_{n_{0}}\right|<1$ and $\sup _{n, m \in \mathbb{N}}\left|x_{n}-x_{m}\right|=1$, we have that $0 \in(a, b)$. Since $x_{n} \rightarrow 0$, there exists $n_{1}>n_{0}$ such that $x_{n_{1}} \in(a, b)$, which implies that $x \in S_{X} \backslash \varepsilon\left(B_{X}\right)$. Consequently, $\mathcal{\varepsilon}\left(B_{X}\right) \subset A \cup B$.

Theorem 14. Let $f \in\left(c_{0},\|\cdot\|_{D}\right)^{*}$. There exists a unique sequence $\left\{c_{n}\right\} \in l_{1}$ such that $f=\sum_{n=1}^{\infty} c_{n} e_{n}^{*}$ and

$$
\begin{equation*}
\|f\|_{D}=\max \left(\sum_{n=1}^{\infty} c_{n}^{+}, \sum_{n=1}^{\infty} c_{n}^{-}\right) \tag{3.2}
\end{equation*}
$$

where $c_{n}^{+}=\max \left(c_{n}, 0\right)$ and $c_{n}^{-}=-\min \left(c_{n}, 0\right)$.
Proof. Let $f \in\left(c_{0},\|\cdot\|_{D}\right)^{*}$. Since $\left\{e_{n}\right\}$ is a shrinking basis of $\left(c_{0},\|\cdot\|_{D}\right)$, there exists a unique sequence $\left\{c_{n}\right\} \subset \mathbb{K}$ such that $f=\sum_{n=1}^{\infty} c_{n} e_{n}^{*}$. As sets $\left(c_{0},\|\cdot\|_{D}\right)^{*}=\left(c_{0}\right)^{*}$ and hence $f \in\left(c_{0}\right)^{*}$. Thus $f=R\left\{a_{n}\right\}$ where $R: l_{1} \rightarrow c_{0}^{*}$ is the Riesz representation. Consequently,

$$
\begin{equation*}
c_{n}=f\left(e_{n}\right)=R\left\{a_{n}\right\}\left(e_{n}\right)=a_{n} \tag{3.3}
\end{equation*}
$$

Therefore, $\left\{c_{n}\right\}=\left\{a_{n}\right\} \in l_{1}$. Thus

$$
\begin{align*}
\|f\|_{D} & =\sup _{x \in B_{X}}|f(x)|=\sup _{x \in \mathcal{E}\left(B_{X}\right)}|f(x)| \\
& =\sup \left\{\left|\sum_{n \in F} c_{n}\right|: F \subset \mathbb{N}, F \text { finite }\right\} \tag{3.4}\\
& =\max \left(\sum_{n=1}^{\infty} c_{n}^{+}, \sum_{n=1}^{\infty} c_{n}^{-}\right)
\end{align*}
$$

where $c_{n}^{+}=\max \left(c_{n}, 0\right)$ and $c_{n}^{-}=-\min \left(c_{n}, 0\right)$.
Corollary 15. $\left(c_{0},\|\cdot\|_{D}\right)^{*}$ is the Bynum space $l_{1 \infty}$ and it has the ω-FPP.
Remark 16. It is well known that $l_{1}\left(c_{0}\right)^{*}$ has the ω^{*} fixed point property for left reversible semigroups, that is, whenever S is a semigroup such that $a S \cap b S \neq \emptyset$ for any $a, b \in S$, and $S=\left\{T_{s}: s \in S\right\}$ is a representation of S as nonexpansive mappings on a nonempty ω^{*}-compact convex subset K of l_{1}, there is a common fixed point in K for \mathcal{S}. (see [10-12]). In particular, l_{1} has the ω^{*} fixed point property. Is this the case for $\left(c_{0},\|\cdot\|_{D}\right)^{*}$?

Next we will see that every infinite-dimensional subspace of $l_{1 \infty}$ contains an asymptotically isometric copy of l_{1} and then, by a result of Dowling and Lennard [13], it does not have the FPP.

First recall that a Banach space $(X,\|\cdot\|)$ contains an asymptotically isometric copy of l_{1} if there exists $\left\{x_{n}\right\}_{n} \subset X$ and $\left\{\varepsilon_{n}\right\} \subset(0,1), \varepsilon_{n} \rightarrow 0$ such that for every $k \in \mathbb{N}$ and every scalars b_{1}, \ldots, b_{k},

$$
\begin{equation*}
\sum_{i=1}^{k}\left(1-\varepsilon_{i}\right)\left|b_{i}\right| \leq\left\|\sum_{i=1}^{k} b_{i} x_{i}\right\| \leq \sum_{i=1}^{k}\left(1+\varepsilon_{i}\right)\left|b_{i}\right| \tag{3.5}
\end{equation*}
$$

In this case we say that $\left\{x_{n}\right\}_{n}$ is an asymptotically isometric l_{1}-sequence (ail l_{1}-sequence for short).

Observe that if $\left\{y_{n}\right\}_{n}$ is another sequence in X such that $\left\|y_{n}-x_{n}\right\|<\delta_{n}$ for all n, where $\left\{\varepsilon_{n}+\delta_{n}\right\} \subset(0,1)$ and $\delta_{n} \rightarrow 0$, then for every k and every scalars b_{1}, \ldots, b_{k},

$$
\begin{equation*}
\sum_{i=1}^{k}\left(1-\varepsilon_{i}-\delta_{i}\right)\left|b_{i}\right| \leq\left\|\sum_{i=1}^{k} b_{i} y_{i}\right\| \leq \sum_{i=1}^{k}\left(1+\varepsilon_{i}+\delta_{i}\right)\left|b_{i}\right| \tag{3.6}
\end{equation*}
$$

and $\left\{y_{n}\right\}$ is also an ail $_{1}$-sequence.
Proposition 17. Let $\left\{u_{i}\right\}_{i} \subset l_{1 \infty 0}$, and let $\left\{n_{i}\right\}$ be a strictly increasing sequence in \mathbb{N} such that $u_{i}=$ $\sum_{j=n_{i}+1}^{n_{i+1}} a_{j}^{i} e_{j}$. If $\sum_{j=n_{i}+1}^{n_{i+1}}\left(a_{j}^{i}\right)^{+}=\sum_{j=n_{i}+1}^{n_{n+1}}\left(a_{j}^{i}\right)^{-}$, then $\left\{u_{i}\right\}_{i}$ is isometrically equivalent to the canonical basis in l_{1}, that is, for every $k \in \mathbb{N}$ and every scalars b_{1}, \ldots, b_{k}, we have that $\left\|\sum_{i=1}^{k} b_{i} u_{i}\right\|=\sum_{i=1}^{k}\left|b_{i}\right|$.

Proof. Let b_{1}, \ldots, b_{k} be scalars; then

$$
\begin{align*}
\sum_{i=1}^{k}\left|b_{i}\right| & \leq \sum_{i=1}^{k} b_{i}^{+} \sum_{j=n_{i}+1}^{n_{i+1}}\left(a_{j}^{i}\right)^{+}+\sum_{i=1}^{k} b_{i}^{-} \sum_{j=n_{i}+1}^{n_{i+1}}\left(a_{j}^{i}\right)^{-} \\
& =\sum_{i=1}^{k} \sum_{j=n_{i}+1}^{n_{i+1}}\left(b_{i} a_{j}^{i}\right)^{+} \tag{3.7}\\
& \leq\left\|\sum_{i=1}^{k} b_{i} u_{i}\right\|_{1 \infty} \leq \sum_{i=1}^{k}\left|b_{i}\right| .
\end{align*}
$$

Theorem 18. Every infinite-dimensional subspace of $l_{1 \infty}$ contains an asymptotically isometric copy of l_{1} and hence it does not have the FPP.

Proof. Let Y be an infinite-dimensional subspace of $l_{1 \infty 0},\left\{\varepsilon_{n}\right\} \subset(0,(1 / 2)), \varepsilon_{n} \searrow 0$ and $\left\{x_{n}\right\}$ a sequence in S_{Y} such that $x_{i}=\sum_{j=m_{i}+1}^{\infty} a_{j}^{i} e_{j}$, where $0=m_{0}<m_{1}<\cdots$ and $\sum_{j=m_{i+1}+1}^{\infty}\left|a_{j}^{i}\right|<$ $\varepsilon_{i} / 8$. Define

$$
\begin{gather*}
w_{i}=\sum_{j=m_{i}+1}^{m_{i+1}} a_{j}^{i} e_{j}, \\
c_{i}^{+}=\frac{1}{\left\|w_{i}\right\|_{1 \infty}} \sum_{j=m_{i}+1}^{m_{i+1}}\left(a_{j}^{i}\right)^{+} \leq 1, \tag{3.8}\\
c_{i}^{-}=\frac{1}{\left\|w_{i}\right\|_{1 \infty}} \sum_{j=m_{i}+1}^{m_{i+1}}\left(a_{j}^{i}\right)^{-} \leq 1 .
\end{gather*}
$$

Changing w_{i} by $-w_{i}$, if necessary, we can assume that $c_{i}^{+}=1, n \in \mathbb{N}$. If there is a sequence $\left\{k_{i}\right\}$ such that $c_{k_{i}}^{-}=1$, then by Proposition 17, $\left\{w_{k_{i}} /\left\|w_{k_{i}}\right\|_{1 \infty}\right\}$ is isometrically equivalent to the canonical basis of l_{1}. It is straightforward to see that $\left\|x_{k_{i}}-\left(w_{k_{i}} /\left\|w_{k_{i}}\right\|_{1 \infty}\right)\right\|_{1 \infty}<(1 / 4) \varepsilon_{k_{i}}$. Then by the above remark, $\left\{x_{k_{i}}\right\}$ is an ail $_{1}$-sequence.

Suppose that $c_{i}^{-} \neq 1$ for all i and let

$$
\begin{equation*}
\alpha_{i}=\frac{1-c_{2 i}^{-}}{1-c_{2 i}^{-} c_{2 i-1}^{-}}, \quad \beta_{i}=\frac{1-c_{2 i-1}^{-}}{1-c_{2 i-1}^{-} c_{2 i}^{-}} . \tag{3.9}
\end{equation*}
$$

Then $0 \leq \alpha_{i}<1,0 \leq \beta_{i}<1$ and

$$
\begin{equation*}
\alpha_{i} c_{2 i-1}^{+}+\beta_{i} c_{2 i}^{-}=\alpha_{i} c_{2 i-1}^{-}+\beta_{i} c_{2 i}^{+}=1 \tag{3.10}
\end{equation*}
$$

Now let

$$
\begin{equation*}
v_{i}=\alpha_{i} \frac{w_{2 i-1}}{\left\|w_{2 i-1}\right\|_{1 \infty}}-\beta_{i} \frac{w_{2 i}}{\left\|w_{2 i}\right\|_{1 \infty}} . \tag{3.11}
\end{equation*}
$$

Suppose that $v_{i}=\sum_{j=m_{2 i-1}+1}^{m_{2 i+1}} b_{j}^{i} e_{j}$. It is easy to check, using (3.10), that

$$
\begin{equation*}
\sum_{j=m_{2 i-1}+1}^{m_{2 i+1}}\left(b_{j}^{i}\right)^{+}=\sum_{j=m_{2 i-1}+1}^{m_{2 i+1}}\left(b_{j}^{i}\right)^{-}=1 \tag{3.12}
\end{equation*}
$$

Hence, by Proposition 17, $\left\{v_{i}\right\}$ is isometrically equivalent to the canonical basis of l_{1}.
Now, if we define $y_{n}=\alpha_{n} x_{2 n-1}-\beta_{n} x_{2 n} \in Y$, it is straightforward to see that $\left\|y_{n}-v_{n}\right\|_{1 \infty}$ $<\varepsilon_{n}$ and by the above remark, $\left\{y_{n}\right\}$ is an ail -sequence.

Finally in [13] Dowling and Lennard proved that if a Banach space contains an ail ${ }_{1}$-sequence, then it does not have the FPP. Hence Y does not have the FPP.

Acknowledgments

This work was partially funded by Grant SEP CONACYT 102380 and partially supported by Conacyt Scholarship 165342 and CIMAT Scholarship.

References

[1] J. Hagler, "A counterexample to several questions about Banach spaces," Studia Mathematica, vol. 60, no. 3, pp. 289-308, 1977.
[2] P. N. Dowling, C. J. Lennard, and B. Turett, "Characterizations of weakly compact sets and new fixed point free maps in c_{0}," Studia Mathematica, vol. 154, no. 3, pp. 277-293, 2003.
[3] P. N. Dowling, C. J. Lennard, and B. Turett, "Weak compactness is equivalent to the fixed point property in c_{0}," Proceedings of the American Mathematical Society, vol. 132, no. 6, pp. 1659-1666, 2004.
[4] P. N. Dowling, C. J. Lennard, and B. Turett, "Reflexivity and the fixed-point property for nonexpansive maps," Journal of Mathematical Analysis and Applications, vol. 200, no. 3, pp. 653-662, 1996.
[5] W. L. Bynum, "A class of spaces lacking normal structure," Compositio Mathematica, vol. 25, pp. 233236, 1972.
[6] P. N. Dowling, W. B. Johnson, C. J. Lennard, and B. Turett, "The optimality of James's distortion theorems," Proceedings of the American Mathematical Society, vol. 125, no. 1, pp. 167-174, 1997.
[7] J. García Falset, "Basis and fixed points for nonexpansive mappings," Radovi Matematički, vol. 8, no. 1, pp. 67-75, 1992/96.
[8] P. N. Dowling, C. J. Lennard, and B. Turett, "Asymptotically isometric copies of c_{0} in Banach spaces," Journal of Mathematical Analysis and Applications, vol. 219, no. 2, pp. 377-391, 1998.
[9] P. N. Dowling, C. J. Lennard, and B. Turett, "Failure of the FPP inside an asymptotically isometric-free copy of $c_{0}, "$ Nonlinear Analysis, Theory, Methods and Applications, vol. 73, no. 5, pp. 1175-1179, 2010.
[10] R. D. Holmes and A. T. Lau, "Non-expansive actions of topological semigroups and fixed points," Journal of the London Mathematical Society Second Series, vol. 5, pp. 330-336, 1972.
[11] A. T.-M. Lau and P. F. Mah, "Fixed point property for Banach algebras associated to locally compact groups," Journal of Functional Analysis, vol. 258, no. 2, pp. 357-372, 2010.
[12] T. C. Lim, "Asymptotic centers and nonexpansive mappings in conjugate Banach spaces," Pacific Journal of Mathematics, vol. 90, no. 1, pp. 135-143, 1980.
[13] P. N. Dowling and C. J. Lennard, "Every nonreflexive subspace of $L_{1}[0,1]$ fails the fixed point property," Proceedings of the American Mathematical Society, vol. 125, no. 2, pp. 443-446, 1997.

