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This paper investigates the sampling analysis associated with discontinuous Sturm-Liouville
problems with eigenvalue parameters in two boundary conditions and with transmission
conditions at the point of discontinuity. We closely follow the analysis derived by Fulton (1977)
to establish the needed relations for the derivations of the sampling theorems including the
construction of Green’s function as well as the eigenfunction expansion theorem. We derive
sampling representations for transforms whose kernels are either solutions or Green’s functions.
In the special case, when our problem is continuous, the obtained results coincide with the
corresponding results in the work of Annaby and Tharwat (2006).

1. Introduction

The recovery of entire functions from a discrete sequence of points is an important problem
from mathematical and practical points of view. For instance, in signal processing it is
needed to reconstruct (recover) a signal (function) from its values at a sequence of samples.
If this aim is achieved, then an analog (continuous) signal can be transformed into a digital
(discrete) one and then it can be recovered by the receiver. If the signal is band limited,
the sampling process can be done via the celebrated Whittaker, Shannon, and Kotel’nikov
(WKS) sampling theorem [1–3]. By a band-limited signal with band width σ, σ > 0, that
is, the signal contains no frequencies higher than σ/2π cycles per second (cps), we mean
a function in the Paley-Wiener space PW2

σ of entire functions of exponential type at most σ
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which are L2(R)-functions when restricted to R. This space is characterized by the following
relation which is due to Paley and Wiener [4, 5]:

f(t) ∈ PW2
σ ⇐⇒ f(t) =

1√
2π

∫σ
−σ
eixtg(x)dx, for some function g(·) ∈ L2(−σ, σ). (1.1)

Now WKS [6, 7] sampling theorem states the following.

Theorem 1.1 (WKS). If f(t) ∈ PW2
σ , then it is completely determined from its values at the points

tk = kπ/σ, k ∈ Z, by means of the formula

f(t) =
∞∑

k=−∞
f(tk)sincσ(t − tk), t ∈ C, (1.2)

where

sinc t =

⎧⎨
⎩

sin t
t
, t /= 0,

1, t = 0.
(1.3)

The sampling series (1.2) is absolutely and uniformly convergent on compact subsets of C, uniformly
convergent on R and converges in the norm of L2(R), see [6, 8, 9].

TheWKS sampling theorem has been generalized in many different ways. Here we are
interested in two extensions. The first is concerned with replacing the equidistant sampling
points by more general ones, which is important from practical and theoretical point of view.
The following theorem which is known in some literature as Paley-Wiener theorem, [5] gives
a sampling theorem with a more general class of sampling points. Although the theorem in
its final form may be attributed to Levinson [10] and Kadec [11], it could be named after
Paley and Wiener who first derive the theorem in a more restrictive form, see [6, 7] for more
details.

Theorem 1.2 (Paley and Wiener). Let {tk}, k ∈ Z be a sequence of real numbers satisfying

D := sup
k∈Z

∣∣∣∣tk − kπ

σ

∣∣∣∣ < π

4σ
, (1.4)

and let G(t) be the entire function defined by the canonical product

G(t) := (t − t0)
∞∏
k=1

(
1 − t

tk

)(
1 − t

t−k

)
. (1.5)

Then, for any f ∈ PW2
σ

f(t) =
∑
k∈Z

f(tk)
G(t)

G′(tk)(t − tk) , t ∈ C. (1.6)
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The series (1.6) converges uniformly on compact subsets of C.

The WKS sampling theorem is a special case of this theorem because if we choose
tk = kπ/σ = −t−k, then

G(t) = t
∞∏
k=1

(
1 − t

tk

)(
1 +

t

tk

)
= t

∞∏
k=1

(
1 − (tσ/π)2

k2

)
=

sin tσ
σ

, G′(tk) = (−1)k. (1.7)

Expansion (1.6) is of Lagrange-type interpolation.
The second extension of WKS sampling theorem is the theorem of Kramer [12]. In this

theorem sampling representations were given for integral transforms whose kernels are more
general than exp(ixt).

Theorem 1.3 (Kramer). Let I be a finite closed interval,K(·, t) : I × C → C a function continuous
in t such that K(·, t) ∈ L2(I) for all t ∈ C, and let {tk}k∈Z

be a sequence of real numbers such that
{K(·, tk)}k∈Z

is a complete orthogonal set in L2(I). Suppose that

f(t) =
∫
I

K(x, t)g(x)dx, g(·) ∈ L2(I). (1.8)

Then

f(t) =
∑
k∈Z

f(tk)

∫
I K(x, t)K(x, tk)dx

‖K(·, tk)‖2L2(I)

. (1.9)

Series (1.9) converges uniformly wherever ‖K(·, t)‖L2(I) as a function of t is bounded.

Again Kramer’s theorem is a generalization of WKS theorem. If we take K(x, t) =
eitx, I = [−σ, σ], tk = kπ/σ, then (1.9) will be (1.2).

The relationship between both extensions of WKS sampling theorem has been
investigated extensively. Starting from a function theory approach, cf. [13], it is proved in
[14] that if K(x, t), x ∈ I, t ∈ C satisfies some analyticity conditions, then Kramer’s sampling
formula (1.9) turns out to be a Lagrange interpolation one, see also [15–17]. In another
direction, it is shown that Kramer’s expansion (1.9) could be written as a Lagrange-type
interpolation formula if K(·, t) and tk are extracted from ordinary differential operators, see
the survey [18] and the references cited therein. The present work is a continuation of the
second directionmentioned above.We prove that integral transforms associatedwith second-
order eigenvalue problems with an eigenparameter appearing in the boundary conditions
and also with an internal point of discontinuity can also be reconstructed in a sampling
form of Lagrange interpolation type. We would like to mention that works in direction of
sampling associated with eigenproblems with an eigenparameter in the boundary conditions
are few, see, for example, [19, 20]. Also papers in samplingwith discontinuous eigenproblems
are few, see [21–23]. However sampling theories associated with eigenproblems, which
contain eigenparameter in the boundary conditions and have at the same time discontinuity
conditions, do not exist as for as we know. Our investigation will be the first in that direction,
introducing a good example. To achieve our aim we will briefly study the spectral analysis of
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the problem. Then we derive two sampling theorems using solutions and Green’s function,
respectively.

2. The Eigenvalue Problem

In this section we define our boundary value problem and state some of its properties.
Consider the boundary value problem

�
(
y
)
:= −r(x)u′′(x) + q(x)u(x) = λu(x), x ∈ [−1, 0) ∪ (0, 1], (2.1)

with boundary conditions

U1(u) :=
(
α′1λ − α1

)
u(−1) − (α′2λ − α2

)
u′(−1) = 0, (2.2)

U2(u) :=
(
β′1λ + β1

)
u(1) − (β′2λ + β2

)
u′(1) = 0, (2.3)

and transmission conditions

U3(u) := γ1u(−0) − δ1u(+0) = 0,

U4(u) := γ2u′(−0) − δ2u′(+0) = 0,
(2.4)

where λ is a complex spectral parameter; r(x) = r21 for x ∈ [−1, 0), r(x) = r22 for x ∈ (0, 1]; r1 >
0 and r2 > 0 are given real number; q(x) is a given real-valued function, which is continuous
in [−1, 0) and (0, 1] and has a finite limit q(±0) = limx→±0q(x); γi, δi, αi, βi, α′i, β

′
i (i = 1, 2) are

real numbers; γi /= 0, δi /= 0 (i = 1, 2); ρ and γ are given by

ρ := det

(
α′1 α1

α′2 α2

)
> 0, γ := det

(
β′1 β1

β′2 β2

)
> 0. (2.5)

In some literature conditions (2.4) are called compatability conditions, see, for example, [24].
To formulate a theoretic approach to problem (2.1)–(2.4) we define the Hilbert space H :=
L2(−1, 1) ⊕ C

2 with an inner product

〈f(·),g(·)〉H :=
1
r21

∫0

−1
f(x)g(x)dx +

1
r22

∫1

0
f(x)g(x)dx +

1
ρ
f1g1 +

1
γ
f2g2, (2.6)

where

f(x) =

⎛
⎜⎜⎝
f(x)

f1

f2

⎞
⎟⎟⎠, g(x) =

⎛
⎜⎜⎝
g(x)

g1

g2

⎞
⎟⎟⎠ ∈ H, (2.7)
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f(·), g(·) ∈ L2(−1, 1) and fi, gi ∈ C, i = 1, 2. For convenience we put

(
R−1(u) R1(u)

R′
−1(u) R′

1(u)

)
:=

(
α1u(−1) − α2u′(−1) β1u(1) − β2u′(1)
α′1u(−1) − α′2u′(−1) β′1u(1) − β′2u′(1)

)
. (2.8)

For function f(x), which is defined on [−1, 0) ∪ (0, 1] and has finite limit f(±0) :=
limx→±0f(x), by f(1)(x) and f(2)(x) we denote the functions

f(1)(x) =

⎧⎨
⎩
f(x), x ∈ [−1, 0),
f(−0), x = 0,

f(2)(x) =

⎧⎨
⎩
f(x), x ∈ (0, 1],

f(+0), x = 0,
(2.9)

which are defined on I1 := [−1, 0] and I2 := [0, 1], respectively.
In the following we will define the minimal closed operator in H associated with the

differential expression �, cf. [25, 26].
Let D(A) ⊆ H be the set of all

f(x) =

⎛
⎜⎜⎝

f(x)

R′
−1
(
f
)

R′
1

(
f
)

⎞
⎟⎟⎠ ∈ H (2.10)

such that f(i)(·), f ′
(i)(·) are absolutely continuous in Ii, i = 1, 2, �(f) ∈ L2(−1, 0) ⊕ L2(0, 1) and

U3(f) = U4(f) = 0. Define the operator A : D(A) → H by

A

⎛
⎜⎜⎝

f(x)

R′
−1
(
f
)

R′
1

(
f
)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�
(
f
)

R−1
(
f
)

−R1
(
f
)

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

f(x)

R′
−1
(
f
)

R′
1

(
f
)

⎞
⎟⎟⎠ ∈ D(A). (2.11)

The eigenvalues and the eigenfunctions of the problem (2.1)–(2.4) are defined as the
eigenvalues and the first components of the corresponding eigenelements of the operator
A, respectively.

Theorem 2.1. Let γ1γ2 = δ1δ2. Then, the operator A is symmetric.

Proof. For f(·),g(·) ∈ D(A)

〈Af(·),g(·)〉H =
1
r21

∫0

−1
�
(
f(x)

)
g(x)dx +

1
r22

∫1

0
�
(
f(x)

)
g(x)dx

+
1
ρ
R−1
(
f
)
R′

−1
(
g
) − 1

γ
R1
(
f
)
R′

1

(
g
)
.

(2.12)



6 Abstract and Applied Analysis

By two partial integration we obtain

〈Af(·),g(·)〉H = 〈f(·),Ag(·)〉H +W
(
f, g;−0) −W(f, g;−1) +W(f, g; 1) −W(f, g;+0)

+
1
ρ

(
R−1
(
f
)
R′

−1
(
g
) − R′

−1
(
f
)
R−1
(
g
))

+
1
γ

(
R′

1

(
f
)
R1
(
g
) − R1

(
f
)
R′

1

(
g
))
,

(2.13)

where, as usual, byW(f, g;x)we denote the Wronskian of the functions f and g

W
(
f, g;x

)
:= f(x)g ′(x) − f ′(x)g(x). (2.14)

Since f(x) and g(x) are satisfied the boundary condition (2.2)-(2.3) and transmission
conditions (2.4)we get

R−1
(
f
)
R′

−1
(
g
) − R′

−1
(
f
)
R−1
(
g
)
= ρW

(
f, g;−1),

R′
1

(
f
)
R1
(
g
) − R1

(
f
)
R′

1

(
g
)
= −γW(f, g; 1),

γ1γ2W
(
f, g;−0) = δ1δ2W(f, g;+0).

(2.15)

Finally substituting (2.15) in (2.13) then we have

〈Af(·),g(·)〉H = 〈f(·),Ag(·)〉H, f(·),g(·) ∈ D(A), (2.16)

thus, the operator A is Hermitian. The symmetry of A arises from the well-known fact that
D(A) is dense inH see, for example, [24].

Corollary 2.2. All eigenvalues of the problem (2.1)–(2.4) are real.

We can now assume that all eigenfunctions of the problem (2.1)–(2.4) are real valued.

Corollary 2.3. Let λ1 and λ2 be two different eigenvalues of the problem (2.1)–(2.4). Then the
corresponding eigenfunctions u1 and u2 of this problem are orthogonal in the sense of

1
r21

∫0

−1
u1(x)u2(x)dx +

1
r22

∫1

0
u1(x)u2(x)dx +

1
ρ
R′

−1(u1)R
′
−1(u2) +

1
γ
R′

1(u1)R
′
1(u2) = 0. (2.17)

Proof. Formula (2.17) follows immediately from the orthogonality of corresponding eigenele-
ments

u1(x) =

⎛
⎜⎜⎝

u1(x)

R′
−1(u1)

R′
1(u1)

⎞
⎟⎟⎠, u2(x) =

⎛
⎜⎜⎝

u2(x)

R′
−1(u2)

R′
1(u2)

⎞
⎟⎟⎠ (2.18)

in the Hilbert space H.
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Now, we will construct a special fundamental system of solutions of the equation (2.1)
for λ not being an eigenvalue. Let us consider the next initial value problem:

−r21u′′(x) + q(x)u(x) = λu(x), x ∈ (−1, 0), (2.19)

u(−1) = λα′2 − α2, u′(−1) = λα′1 − α1. (2.20)

By virtue of Theorem 1.5 in [27] this problem has a unique solution u = ϕ1(x) = ϕ1λ(x), which
is an entire function of λ ∈ C for each fixed x ∈ [−1, 0]. Similarly, employing the same method
as in proof of Theorem 1.5 in [27], we see that the problem

−r22u′′(x) + q(x)u(x) = λu(x), x ∈ (0, 1), (2.21)

u(1) = λβ′2 + β2, u′(1) = λβ′1 + β1, (2.22)

has a unique solution u = χ2(x) = χ2λ(x) which is an entire function of parameter λ for each
fixed x ∈ [0, 1].

Now the functions ϕ2λ(x) and χ1λ(x) are defined in terms of ϕ1λ(x) and χ2λ(x) as
follows: the initial-value problem,

−r22u′′(x) + q(x)u(x) = λu(x), x ∈ (0, 1), (2.23)

u(0) =
γ1
δ1
ϕ1λ(0), u′(0) =

γ2
δ2
ϕ′
1λ(0), (2.24)

which contains the entire functions of eigenparameter λ (in the right-hand side), has unique
solution u = ϕ2λ(x) for each λ ∈ C.

Similarly, the following problem also has a unique solution u = χ1(x) = χ1λ(x):

−r21u′′(x) + q(x)u(x) = λu(x), x ∈ (−1, 0), (2.25)

u(0) =
δ1
γ1
χ2λ(0), u′(0) =

δ2
γ2
χ′
2λ(0). (2.26)

Since the Wronskians W(ϕiλ, χiλ;x) are independent on variable x ∈ Ii (i = 1, 2) and
ϕiλ(x) and χiλ(x) are the entire functions of the parameter λ for each x ∈ Ii (i = 1, 2), then the
functions

ωi(λ) :=W
(
ϕiλ, χiλ;x

)
, x ∈ Ii, i = 1, 2, (2.27)

are the entire functions of parameter λ.

Lemma 2.4. If the condition γ1γ2 = δ1δ2 is satisfied, then the equality ω1(λ) = ω2(λ) holds for each
λ ∈ C.

Proof. Taking into account (2.24) and (2.26), a short calculation gives γ1γ2W(ϕ1λ, χ1λ; 0) =
δ1δ2W(ϕ2λ, χ2λ; 0), so ω1(λ) = ω2(λ) for each λ ∈ C.
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Corollary 2.5. The zeros of the functions ω1(λ) and ω2(λ) coincide.

Let us construct two basic solutions of (2.1) as

ϕλ(x) =

⎧⎨
⎩
ϕ1λ(x), x ∈ [−1, 0),
ϕ2λ(x), x ∈ (0, 1],

χλ(x) =

⎧⎨
⎩
χ1λ(x), x ∈ [−1, 0),
χ2λ(x), x ∈ (0, 1].

(2.28)

By virtue of (2.24) and (2.26) these solutions satisfy both transmission conditions (2.4).
Now we may introduce to the consideration the characteristic function ω(λ) as

ω(λ) := ω1(λ) = ω2(λ). (2.29)

Theorem 2.6. The eigenvalues of the problem (2.1)–(2.4) are coincided zeros of the function ω(λ).

Proof. Let ω(λ0) = 0. Then W(ϕ1λ0 , χ1λ0 ;x) = 0, and so the functions ϕ1λ0(x) and χ1λ0(x) are
linearly dependent, that is,

χ1λ0(x) = kϕ1λ0(x), x ∈ [−1, 0], for some k /= 0. (2.30)

Consequently, χλ0(x) satisfied the boundary condition (2.3), so the function χλ0(x) is an
eigenfunction of the problem (2.1)–(2.4) corresponding to the eigenvalue λ0.

Now let u0(x) be any eigenfunction corresponding to the eigenvalue λ0, but ω(λ0)/= 0.
Then the functions ϕiλ0(x), χiλ0(x) are linearly independent on Ii, i = 1, 2. Thus, u0(x) may
be represented as in the form

u0(x) =

⎧⎨
⎩
c1ϕ1λ0(x) + c2χ1λ0(x), x ∈ [−1, 0),
c3ϕ2λ0(x) + c4χ2λ0(x), x ∈ (0, 1],

(2.31)

where at least one of the constants ci, i = 1, 2, 3, 4, is not zero.
Consider the equations

Ui(u0(x)) = 0, i = 1, 2, 3, 4 (2.32)

as the homogenous system of linear equations of the variables ci, i = 1, 2, 3, 4, and taking into
account (2.24) and (2.26), it follows that the determinant of this system is

∣∣∣∣∣∣∣∣∣∣∣

0 −ω1(λ0) 0 0

0 0 ω2(λ0) 0

γ1ϕ1λ0(0) γ1χ1λ0(0) −δ1ϕ2λ0(0) −δ1χ2λ0(0)

γ2ϕ
′
1λ0

(0) γ2χ
′
1λ0

(0) −δ2ϕ′
2λ0

(0) −δ2χ′
2λ0

(0)

∣∣∣∣∣∣∣∣∣∣∣
= δ1δ2ω1(λ0)ω2

2(λ0)/= 0. (2.33)

Thus, the system (2.32) has only trivial solution ci = 0, i = 1, 2, 3, 4, and so we get
contradiction which completes the proof.
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Lemma 2.7. If λ = λ0 is an eigenvalue, then ϕλ0(x) and χλ0(x) are linearly dependent.

Proof. Since λ0 is an eigenvalue, then from Theorem 2.6 we haveW(ϕiλ0 , χiλi ;x) = ω(λ0) = 0,
i = 1, 2. Therefore

χiλ0(x) = kiϕiλ0(x), i = 1, 2, (2.34)

for some ki /= 0, i = 1, 2. Now, we must show that k1 = k2. Suppose if possible that k1 /= k2.
Taking into account the definitions of solution ϕiλ0(x) and ϕiλ0(x), i = 1, 2, from the equalities
(2.34)we get

U3
(
χλ0
)
= γ1χλ0(−0) − δ1χλ0(+0)
= γ1χ1λ0(0) − δ1χ2λ0(0)

= γ1k1ϕ1λ0(0) − δ1k2ϕ2λ0(0)

= δ1k1ϕ2λ0(0) − δ1k2ϕ2λ0(0)

= δ1(k1 − k2)ϕ2λ0(0).

(2.35)

SinceU3(χλ0) = 0, δ1 /= 0, and k1 − k2 /= 0 it follows that

ϕ2λ0(0) = 0. (2.36)

By the same procedure from the equalityU4(χλ0) = 0 we can derive that

ϕ′
2λ0(0) = 0. (2.37)

From the fact that ϕ2λ0(x) is a solution of (2.1) on [0, 1] and satisfied the initial conditions
(2.36) and (2.37) it follows that ϕ2λ0(x) = 0 identically on [0, 1], because of the well-known
existence and uniqueness theorem for the initial value problems of the ordinary linear
differential equations.

By using (2.24), (2.36), and (2.37)we may also find

ϕ1λ0(0) = ϕ
′
1λ0(0) = 0. (2.38)

For latter discussion for ϕ2λ0(x), it follows that ϕ1λ0(x) = 0 identically on [−1, 0]. Therefore
ϕλ0(x) = 0 identically on [−1, 0) ∪ (0, 1]. But this is contradicted with (2.20), which completes
the proof.

Corollary 2.8. If λ = λ0 is an eigenvalue, then both ϕλ0(x) and χλ0(x) are eigenfunctions
corresponding to this eigenvalue.

Lemma 2.9. If the condition γ1γ2 = δ1δ2 is satisfied, then all eigenvalues λn are simple zeros of ω(λ).
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Proof. Since

1
r21

∫0

−1
�
(
ϕλ(x)

)
ϕλ0(x)dx +

1
r22

∫1

0
�
(
ϕλ(x)

)
ϕλ0(x)dx

=
1
r21

∫0

−1
ϕλ(x)�

(
ϕλ0(x)

)
dx +

1
r22

∫1

0
ϕλ(x)�

(
ϕλ0(x)

)
dx +W

(
ϕλ, ϕλ0 ; 1

) −W(ϕλ, ϕλ0 ;−1),
(2.39)

then

(λ − λ0)
[
1
r21

∫0

−1
ϕλ(x)ϕλ0(x)dx +

1
r22

∫1

0
ϕλ(x)ϕλ0(x)dx

]
=W

(
ϕλ, ϕλ0 ; 1

) − (λ − λ0)ρ, (2.40)

for any λ. Since

χλ0(x) = k0ϕλ0(x), x ∈ [−1, 0) ∪ (0, 1], (2.41)

for some k0 /= 0, then

W
(
ϕλ, ϕλn ; 1

)
=

1
kn
W
(
ϕλ, χλn ; 1

)

=
1
kn

(
λnR

′
1

(
ϕλ
)
+ R1

(
ϕλ
))

=
1
kn

[
ω(λ) − (λ − λn)R′

1

(
ϕλ
)]

= (λ − λn) 1
kn

[
ω(λ)
λ − λn − R′

1

(
ϕλ
)]
.

(2.42)

Substituting (2.42) in (2.40) and letting λ → λn we get

1
r21

∫0

−1

(
ϕλn(x)

)2
dx +

1
r22

∫1

0

(
ϕλ0(x)

)2
dx =

1
kn

[
ω′(λn) − R′

1

(
ϕλn
)] − ρ. (2.43)

Now putting

R′
1

(
ϕλn
)
=

1
kn
R′

1

(
χλn
)
=

γ

kn
(2.44)

in (2.43) it yields ω′(λn)/= 0, which completes the proof.
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If λn, n = 0, 1, 2, . . . denote the zeros of ω(λ), then the three-component vectors

Φn(x) :=

⎛
⎜⎜⎝

ϕλn(x)

R′
−1
(
ϕλn
)

R′
1

(
ϕλn
)

⎞
⎟⎟⎠ (2.45)

are the corresponding eigenvectors of the operator A satisfying the orthogonality relation

〈Φn(·),Φm(·)〉H = 0 for n/=m. (2.46)

Here {ϕλn(·)}∞n=0 will be the sequence of eigenfunctions of (2.1)–(2.4) corresponding to the
eigenvalues {λn}∞n=0. We denote by Ψn(·) the normalized eigenvectors

Ψn(x) :=
Φn(x)

‖Φn(·)‖H
=

⎛
⎜⎜⎝

ψn(x)

R′
−1
(
ψn
)

R′
1

(
ψn
)

⎞
⎟⎟⎠. (2.47)

Because of simplicity of the eigenvalues, we find nonzeros constants kn such that

χλn(x) := knϕλn(x), x ∈ [−1, 0) ∪ (0, 1], n = 0, 1, . . . . (2.48)

To study the completeness of the eigenvectors of A, and hence the completeness of the
eigenfunctions of (2.1)–(2.4), we construct the resolvent of A as well as Green’s function of
problem (2.1)–(2.4). We assume without any loss of generality that λ = 0 is not an eigenvalue
ofA. Otherwise, from discreteness of eigenvalues, we can find a real number c such that c /=λn
for all n and replace the eigenparameter λ by λ − c. Now let λ ∈ C not be an eigenvalue of A
and consider the inhomogeneous problem

(λI −A)u(x) = f(x), for f(x) =

⎛
⎜⎜⎝
f(x)

f1

f2

⎞
⎟⎟⎠ ∈ H, u(x) =

⎛
⎜⎜⎝

u(x)

R′
−1(u)

R′
1(u)

⎞
⎟⎟⎠ ∈ D(A), (2.49)

and I is the identity operator. Since

(λI −A)u(x) = λ

⎛
⎜⎜⎝

u(x)

R′
−1(u)

R′
1(u)

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝
�(u(x))

R−1(u)

−R1(u)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
f(x)

f1

f2

⎞
⎟⎟⎠, (2.50)

then we have

(λ − �)u(x) = f(x), x ∈ [−1, 0) ∪ (0, 1], (2.51)

f1 = λR′
−1(u) − R−1(u), f2 = λR′

1(u) + R1(u). (2.52)
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Now, we can represent the general solution of (2.51) in the following form:

u(x, λ) =

⎧⎨
⎩
A1ϕ1λ(x) + B1χ1λ(x), x ∈ [−1, 0),
A2ϕ2λ(x) + B2χ2λ(x), x ∈ (0, 1].

(2.53)

Applying the method of variation of the constants to (2.53), thus, the functions A1(x, λ),
B1(x, λ) and A2(x, λ), B2(x, λ) satisfy the linear system of equations

A′
1(x, λ)ϕ1λ(x) + B′

1(x, λ)χ1λ(x) = 0, A′
1(x, λ)ϕ

′
1λ(x) + B

′
1(x, λ)χ

′
1λ(x) =

f(x)

r21
, x ∈ [−1, 0),

A′
2(x, λ)ϕ2λ(x) + B′

2(x, λ)χ2λ(x) = 0, A′
2(x, λ)ϕ

′
2λ(x) + B

′
2(x, λ)χ

′
2λ(x) =

f(x)

r22
, x ∈ (0, 1].

(2.54)

Since λ is not an eigenvalue andW(ϕiλ(x), χiλ(x);x)/= 0, i = 1, 2, each of the linear systems in
(2.54) has a unique solution which leads

A1(x, λ)=
1

r21ω(λ)

∫0

x

f(ξ)χ1λ(ξ)dξ +A1, B1(x, λ)=
1

r21ω(λ)

∫x
−1
f(ξ)ϕ1λ(ξ)dξ + B1,

x ∈ [−1, 0),

A2(x, λ)=
1

r22ω(λ)

∫1

x

f(ξ)χ2λ(ξ)dξ +A2, B2(x, λ)=
1

r22ω(λ)

∫x
0
f(ξ)ϕ2λ(ξ)dξ + B2,

x ∈ (0, 1],
(2.55)

whereA1, A2, B1, and B2 are arbitrary constants. Substituting (2.55) into (2.53), we obtain the
solution of (2.51)

u(x, λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1λ(x)

r21ω(λ)

∫0

x

f(ξ)χ1λ(ξ)dξ +
χ1λ(x)

r21ω(λ)

∫x
−1
f(ξ)ϕ1λ(ξ)dξ +A1ϕ1λ(x) + B1χ1λ(x),

x ∈ [−1, 0),
ϕ2λ(x)

r22ω(λ)

∫1

x

f(ξ)χ2λ(ξ)dξ +
χ2λ(x)

r22ω(λ)

∫x
0
f(ξ)ϕ2λ(ξ)dξ +A2ϕ2λ(x) + B2χ2λ(x),

x ∈ (0, 1].
(2.56)



Abstract and Applied Analysis 13

Then from (2.52) and the transmission conditions (2.4)we get

A1 =
1

r22ω(λ)

∫1

0
f(ξ)χ2λ(ξ)dξ +

f2
ω(λ)

, B1 = − f1
ω(λ)

,

A2 =
f2
ω(λ)

, B2 =
1

r21ω(λ)

∫0

−1
f(ξ)ϕ1λ(ξ)dξ −

f1
ω(λ)

.

(2.57)

Then (2.56) can be written as

u(x, λ) =
f2
ω(λ)

ϕλ(x) −
f1
ω(λ)

χλ(x) +
χλ(x)
ω(λ)

∫x
−1

f(ξ)
r(ξ)

ϕλ(ξ)dξ +
ϕλ(x)
ω(λ)

∫1

x

f(ξ)
r(ξ)

χλ(ξ)dξ,

x, ξ ∈ [−1, 0) ∪ (0, 1].

(2.58)

Hence, we have

u(x) = (λI −A)−1f(x) =

⎛
⎜⎜⎜⎝

f2
ω(λ)

ϕλ(x) −
f1
ω(λ)

χλ(x) +
∫1

−1
G(x, ξ, λ)

f(ξ)
r(ξ)

dξ

R′
−1(u)

R′
1(u)

⎞
⎟⎟⎟⎠, (2.59)

where

G(x, ξ, λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χλ(x)ϕλ(ξ)
ω(λ)

, −1 ≤ ξ ≤ x ≤ 1, x /= 0, ξ /= 0,

χλ(ξ)ϕλ(x)
ω(λ)

, −1 ≤ x ≤ ξ ≤ 1, x /= 0, ξ /= 0,
(2.60)

is the unique Green’s function of problem (2.1)–(2.4). Obviously G(x, ξ, λ) is a meromorphic
function of λ, for every (x, ξ) ∈ ([−1, 0) ∪ (0, 1])2, which has simple poles only at the
eigenvalues. Although Green’s function looks as simple as that of Sturm-Liouville problems,
cf., for example, [28], it is a rather complicated because of the transmission conditions, see
the example at the end of this paper.

Lemma 2.10. The operator A is self-adjoint inH.

Proof. Since A is a symmetric densely defined operator, then it is sufficient to show that the

deficiency spaces are the null spaces and hence A = A∗. Indeed, if f(x) =
(

f(x)
f1
f2

)
∈ H and λ is

a nonreal number, then taking

u(x) =

⎛
⎜⎜⎜⎝

f2
ω(λ)

ϕλ(x) −
f1
ω(λ)

χλ(x) +
∫1

−1
G(x, ξ, λ)

f(ξ)
r(ξ)

dξ

R′
−1(u)

R′
1(u)

⎞
⎟⎟⎟⎠ (2.61)
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implies that u ∈ D(A). SinceG(x, ξ, λ) satisfies conditions (2.2)–(2.4), then (A−λI)u(x) = f(x).
Now we prove that the inverse of (A − λI) exists. If Au(x) = λu(x), then

(
λ − λ

)
〈u(·),u(·)〉

H
= 〈u(·), λu(·)〉H − 〈λu(·),u(·)〉H

= 〈u(·),Au(·)〉H − 〈Au(·),u(·)〉H
= 0

(
since A is symmetric

)
.

(2.62)

Since λ /∈ R, we have λ−λ/= 0. Thus 〈u(·),u(·)〉H = 0, that is, u = 0. Then R(λ;A) := (A−λI)−1,
the resolvent operator of A, exists. Thus

R(λ;A)f = (A − λI)−1f = u. (2.63)

Take λ = ±i. The domains of (A − iI)−1 and (A + iI)−1 are exactly H. Consequently the ranges
of (A − iI) and (A + iI) are also H. Hence the deficiency spaces of A are

N−i :=N(A∗ + iI) = R(A − iI)⊥ = H⊥ = {0},
Ni :=N(A∗ − iI) = R(A + iI)⊥ = H⊥ = {0}. (2.64)

Hence A is self-adjoint.

The next theorem is an eigenfunction expansion theorem, which is similar to that
established by Fulton in [29].

Theorem 2.11. (i) For u(·) ∈ H

‖u(·)‖2H =
∞∑

n=−∞
|〈u(·),Ψn(·)〉H|2. (2.65)

(ii) For u(·) ∈ D(A)

u(x) =
∞∑

n=−∞
〈u(·),Ψn(·)〉HΨn(x), (2.66)

with the series being absolutely and uniformly convergent in the first component for on [−1, 0)∪ (0, 1]
and absolutely convergent in the second component.

Proof. The proof is similar to that in [29, pages 298-299].

3. Asymptotic Formulas of Eigenvalues and Eigenfunctions

Now we derive first- and second-order asymptotics of the eigenvalues and eigenfunctions
similar to the classical techniques of [27, 30] and [29], see also [25, 26]. We begin by proving
some lemmas.
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Lemma 3.1. Let ϕλ(x) be the solutions of (2.1) defined in Section 2, and let λ = s2. Then the
following integral equations hold for k = 0 and k = 1:

dk

dxk
ϕ1λ(x) =

(
−α2 + s2α′2

) dk

dxk
cos
[
s(x + 1)

r1

]
−
(
−α1 + s2α′1

)r1
s

dk

dxk
sin
[
s(x + 1)

r1

]

+
1
r1s

∫x
−1

dk

dxk
sin

[
s
(
x − y)
r1

]
q
(
y
)
ϕ1λ
(
y
)
dy,

(3.1)

dk

dxk
ϕ2λ(x) =

γ1
δ1
ϕ1λ(−0) d

k

dxk
cos
[
sx

r2

]
+
r2γ2
δ2s

ϕ′
1λ(−0)

dk

dxk
sin
[
sx

r2

]

+
1
r2s

∫x
0

dk

dxk
sin

[
s
(
x − y)
r2

]
q
(
y
)
ϕ2λ
(
y
)
dy.

(3.2)

Proof. For proving it is enough substitute s2ϕ1λ(y) + r(y)ϕ′′
1λ(y) and s2ϕ2λ(y) + r(y)ϕ′′

2λ(y)
instead of q(y)ϕ1λ(y) and q(y)ϕ2λ(y) in the integral terms of the (3.1) and (3.2), respectively,
and integrate by parts twice.

Lemma 3.2. Let λ = s2, Im s = t. Then the functions ϕiλ(x) have the following asymptotic
representations for |λ| → ∞, which hold uniformly for x ∈ Ii (i = 1, 2):

dk

dxk
ϕ1λ(x) = s2α′2

dk

dxk
cos
[
s(x + 1)

r1

]
+O

(
|s|k+1e|t|((x+1)/r1)

)
, k = 0, 1, (3.3)

dk

dxk
ϕ2λ(x) = s2α′2

[
γ1
δ1

cos
[
s

r1

]
dk

dxk
cos
[
sx

r2

]
− r2γ2
δ2r1

sin
[
s

r1

]
dk

dxk
sin
[
sx

r2

]]

+O
(
|s|k+1e|t|((r1x+r2)/r1r2)

)
, k = 0, 1,

(3.4)

if α′2 /= 0,

dk

dxk
ϕ1λ(x) = −sr1α′1

dk

dxk
sin
[
s(x + 1)

r1

]
+O

(
|s|ke|t|((x+1)/r1)

)
, k = 0, 1, (3.5)

dk

dxk
ϕ2λ(x) = −sα′1

[
γ1r1
δ1

sin
[
s

r1

]
dk

dxk
cos
[
sx

r2

]
+
r2γ2
δ2

cos
[
s

r1

]
dk

dxk
sin
[
sx

r2

]]

+O
(
|s|ke|t|((r1x+r2)/r1r2)

)
, k = 0, 1,

(3.6)

if α′2 = 0.

Proof. Since the proof of the formulae for ϕ1λ(x) is identical to Titchmarshs proof of similar
results for ϕλ(x) (see [27, Lemma 1.7 page 9-10]), we may formulate them without proving
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them here. Therefore we will prove only the formulas for ϕ2λ(x). Let α2 /= 0. Then according
to (3.3)

ϕ1λ(−0) = s2α′2 cos
[
s

r1

]
+O(|s|e|t|/r1),

ϕ′
1λ(−0) = −s

3α′2
r1

sin
[
s

r1

]
+O

(
|s|2e|t|/r1

)
.

(3.7)

Substituting (3.7) into (3.2) (for k = 0), we get

ϕ2λ(x) =
γ1s

2α′2
δ1

cos
[
s

r1

]
cos
[
sx

r2

]
− r2s

2α′2γ2
δ2r1

sin
[
s

r1

]
sin
[
sx

r2

]

+
1
r2s

∫x
0
sin

[
s
(
x − y)
r2

]
q
(
y
)
ϕ2λ
(
y
)
dy +O

(
|s|e|t|((r1x+r2)/r1r2)

)
.

(3.8)

Multiplying (3.8) by |s|−2e−|t|((r1x+r2)/r1r2) and denoting

Fλ(x) = |s|−2e−|t|((r1x+r2)/r1r2)ϕ2λ(x) (3.9)

we get

Fλ(x) = |s|−2e−|t|((r1x+r2)/r1r2)
{
s2α′2γ1
δ1

cos
[
s

r1

]
cos
[
sx

r2

]
− r2s

2α′2γ2
δ2r1

sin
[
s

r1

]
sin
[
sx

r2

]}

+
1
r2s

∫x
0
sin

[
s
(
x − y)
r2

]
q
(
y
)
e−|t|((x−y)/r2)Fλ

(
y
)
dy +O

(
|s|−1

)
.

(3.10)

DenotingM(λ) := max0≤x≤1|Fλ(x)| from the last formula, it follows that

M(λ) ≤
∣∣γ1∣∣∣∣α′2

∣∣
|δ1| +

r2
∣∣α′2
∣∣∣∣γ2∣∣

|δ2|r1 +
M(λ)
r2|s|

∫1

0

∣∣q(y)∣∣dy +
M0

|s| (3.11)

for someM0 > 0. From this, it follows thatM(λ) = O(1) as λ → ∞, so

ϕ2λ(x) = O
(
|s|2e|t|((r1x+r2)/r1r2)

)
. (3.12)

Substituting (3.12) into the integral on the right of (3.8) yields (3.4) for k = 0. The case k = 1
of (3.4) follows by applying the same procedure as in the case k = 0. The case α′2 = 0 is proved
analogically.

Lemma 3.3. Let λ = s2, Im s = t. Then the characteristic function ω(λ) has the following asymptotic
representations.
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Case 1. If β′2 /= 0 and α′2 /= 0, then

ω(λ) = α′2β
′
2s

5
[
γ1
r2δ1

cos
[
s

r1

]
sin
[
s

r2

]
+

γ2
δ2r1

sin
[
s

r1

]
cos
[
s

r2

]]
+O

(
|s|4e|t|((r1+r2)/r1r2)

)
. (3.13)

Case 2. If β′2 /= 0 and α′2 = 0, then

ω(λ) = α′1β
′
2s

4
[
− γ1r1
r2δ1

sin
[
s

r1

]
sin
[
s

r2

]
+
γ2
δ2

cos
[
s

r1

]
cos
[
s

r2

]]
+O

(
|s|3e|t|((r1+r2)/r1r2)

)
. (3.14)

Case 3. If β′2 = 0 and α′2 /= 0, then

ω(λ) = β′1α
′
2s

4
[
γ1
δ1

cos
[
s

r1

]
cos
[
s

r2

]
− r2γ2
δ2r1

sin
[
s

r1

]
sin
[
s

r2

]]
+O

(
|s|3e|t|((r1+r2)/r1r2)

)
. (3.15)

Case 4. If β′2 = 0 and α′2 = 0, then

ω(λ) = −β′1α′1s3
[
γ1r1
δ1

sin
[
s

r1

]
cos
[
s

r2

]
+
r2γ2
δ2

cos
[
s

r1

]
sin
[
s

r2

]]
+O

(
|s|2e|t|((r1+r2)/r1r2)

)
. (3.16)

Proof. The proof is immediate by substituting (3.4) and (3.6) into the representation

ω(λ) =
(
λβ′1 + β1

)
ϕ2λ(1) −

(
λβ′2 + β2

)
ϕ′
2λ(1). (3.17)

Corollary 3.4. The eigenvalues of the problem (2.1)–(2.4) are bounded below.

Proof. Putting s = it (t > 0) in the above formulae, it follows that ω(−t2) → ∞ as t → ∞.
Hence, ω(λ)/= 0 for λ negative and sufficiently large.

Now we can obtain the asymptotic approximation formula for the eigenvalues of the
considered problem (2.1)–(2.4). Since the eigenvalues coincide with the zeros of the entire
function ω(λ), it follows that they have no finite limit. Moreover, we know from Corollaries
2.2 and 3.4 that all eigenvalues are real and bounded below. Therefore, we may renumber
them as λ0 ≤ λ1 ≤ λ2, . . ., listed according to their multiplicity.

Theorem 3.5. The eigenvalues λn = s2n, n = 0, 1, 2, . . ., of the problem (2.1)–(2.4) have the following
asymptotic representation for n → ∞, with γ1δ2r1 − γ2δ1r2 = 0.

Case 1. If β′2 /= 0 and α′2 /= 0, then

sn =
r1r2
r1 + r2

(n − 1)π +O
(
n−1
)
. (3.18)
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Case 2. If β′2 /= 0 and α′2 = 0, then

sn =
r1r2
r1 + r2

(
n − 1

2

)
π +O

(
n−1
)
. (3.19)

Case 3. If β′2 = 0 and α′2 /= 0, then

sn =
r1r2
r1 + r2

(
n − 1

2

)
π +O

(
n−1
)
. (3.20)

Case 4. If β′2 = 0 and α′2 = 0, then

sn =
r1r2
r1 + r2

nπ +O
(
n−1
)
. (3.21)

Proof. We will only consider the first case. From (3.13)we have

ω(λ) =
α′2β

′
2γ2s

5

δ2r1
sin
[
r1 + r2
r1r2

s

]
+O

(
|s|4e|t|((r1+r2)/r1r2)

)
. (3.22)

We will apply the well-known Rouche theorem, which asserts that if f(λ) and g(λ) are
analytic inside and on a closed contour C and |g(λ)| < |f(λ)| on C, then f(λ) and f(λ) + g(λ)
have the same number of zeros inside C, provided that each zero is counted according to
its multiplicity. It follows that ω(λ) has the same number of zeros inside the contour as the
leading term in (3.22). If λ0 ≤ λ1 ≤ λ2, . . ., are the zeros of ω(λ) and λn = s2n, we have

sn =
r1r2
r1 + r2

(n − 1)π + δn, (3.23)

for sufficiently large n, where |δn| < π/4, for sufficiently large n. By putting in (3.22)we have
δn = O(n−1), so the proof is completed for Case 1. The proof for the other cases is similar.

Then from (3.3)–(3.6) (for k = 0) and the above theorem, the asymptotic behavior of
the eigenfunctions

ϕλn(x) =

⎧⎨
⎩
ϕ1λn(x), x ∈ [−1, 0),
ϕ2λn(x), x ∈ (0, 1],

(3.24)



Abstract and Applied Analysis 19

of (2.1)–(2.4) is given by, γ1δ2r1 − γ2δ1r2 = 0,

ϕλn(x)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α′2 cos
(
r2(n − 1)π
r1 + r2

(x + 1)
)
+O(n−1), x ∈ [−1, 0),

γ1α
′
2

δ1
cos
(
(n − 1)π
r1 + r2

(r1x + r2)
)
+O(n−1), x ∈ (0, 1],

if β′2 /= 0, α′2 /= 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−r1α′1 sin
(
r2(n − 1/2)π

r1 + r2
(x + 1)

)
+O(n−1), x ∈ [−1, 0),

−γ1r1α
′
1

δ1
sin
(
(n − 1/2)π
r1 + r2

(r1x + r2)
)
+O(n−1), x ∈ (0, 1],

if β′2 /= 0, α′2 = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α′2 cos
(
r2(n − 1/2)π

r1 + r2
(x + 1)

)
+O(n−1), x ∈ [−1, 0),

γ1α
′
2

δ1
cos
(
(n − 1/2)π
r1 + r2

(r1x + r2)
)
+O(n−1), x ∈ (0, 1],

if β′2 = 0, α′2 /= 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−r1α′1 sin
(
r2nπ

r1 + r2
(x + 1)

)
+O(n−1), x ∈ [−1, 0),

−γ1r1α
′
1

δ1
sin
(

nπ

r1 + r2
(r1x + r2)

)
+O(n−1), x ∈ (0, 1],

if β′2 = 0, α′2 = 0.

(3.25)

All these asymptotic formulae hold uniformly for x.

4. The Sampling Theorem

In this section we derive two sampling theorems associated with problem (2.1)–(2.4). For
convenience we may assume that the eigenvectors of A are real valued.

Theorem 4.1. Consider the boundary value problem (2.1)–(2.4), and let

ϕλ(x) =

⎧⎨
⎩
ϕ1λ(x), x ∈ [−1, 0),
ϕ2λ(x), x ∈ (0, 1],

(4.1)

be the solution defined above. Let g(·) ∈ L2(−1, 1) and

F(λ) =
1
r21

∫0

−1
g(x)ϕ1λ(x)dx +

1
r22

∫1

0
g(x)ϕ2λ(x)dx. (4.2)
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Then F(λ) is an entire function of exponential type 2 that can be reconstructed from its values at the
points {λn}∞n=0 via the sampling formula

F(λ) =
∞∑
n=0

F(λn)
ω(λ)

(λ − λn)ω′(λn)
. (4.3)

The series (4.3) converges absolutely on C and uniformly on compact subset of C. Here ω(λ) is the
entire function defined in (2.29).

Proof. Relation (4.2) can be rewritten as an inner product ofH as follows

F(λ) = 〈g(·),Φλ(·)〉H =
1
r21

∫0

−1
g(x)ϕ1λ(x)dx +

1
r22

∫1

0
g(x)ϕ2λ(x)dx, (4.4)

where

g(x) =

⎛
⎜⎜⎝
g(x)

0

0

⎞
⎟⎟⎠, Φλ(x) =

⎛
⎜⎜⎝

ϕλ(x)

R′
−1
(
φλ
)

R′
1

(
φλ
)

⎞
⎟⎟⎠ ∈ H. (4.5)

Both g(·) and Φλ(·) can be expanded in terms of the orthogonal basis on eigenfunctions, that
is,

g(x) =
∞∑
n=0

ĝ(n)
Φn(x)

‖Φn(·)‖2H
, Φλ(x) =

∞∑
n=0

Φ̂λ(n)
Φn(x)

‖Φn(·)‖2H
, (4.6)

where ĝ(n) and Φ̂λ(n) are the fourier coefficients

ĝ(n) = 〈g(·),Φn(·)〉H =
1
r21

∫0

−1
g(x)ϕ1λn(x)dx +

1
r22

∫1

0
g(x)ϕ2λn(x)dx

= F(λn).

(4.7)

Applying Parseval’s identity to (4.4) and using (4.7), we obtain

F(λ) =
∞∑
n=0

F(λn)
〈Φn(·),Φλ(·)〉H

‖Φn(·)‖2H
. (4.8)

Now we calculate Φ̂λ(n) = 〈Φn(·),Φλ(·)〉H and ‖Φn(·)‖H. Let λ ∈ C not be an eigenvalue and
n ∈ N. To prove (4.3) we need to show that

〈Φn(·),Φλ(·)〉H
‖Φn(·)‖2H

=
ω(λ)

(λ − λn)ω′(λ)
, n = 0, 1, 2, . . . . (4.9)
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By the definition of the inner product of H, we have

〈Φλ(·),Φn(·)〉H =
1
r21

∫0

−1
ϕ1λ(x)ϕ1λn(x)dx +

1
r22

∫1

0
ϕ2λ(x)ϕ2λn(x)dx

+
1
ρ
R′

−1
(
ϕλ
)
R′

−1
(
ϕλn
)
+
1
γ
R′

1

(
ϕλ
)
R′

1

(
ϕλn
)
.

(4.10)

Since

1
r21

∫0

−1
�
(
ϕ1λ(x)

)
ϕ1λn(x)dx +

1
r22

∫1

0
�
(
ϕ2λ(x)

)
ϕ2λn(x)dx

=
1
r21

∫0

−1
ϕ1λ(x)�

(
ϕ1λn(x)

)
dx +

1
r22

∫1

0
ϕ2λ(x)�

(
ϕ2λn(x)

)
dx +W

(
ϕ1λ, ϕ1λn ;−0

)

−W(ϕ1λ, ϕ1λn ;−1
) −W(ϕ2λ, ϕ2λn ;+0

)
+W

(
ϕ2λ, ϕ2λn ; 1

)
,

(4.11)

then, from (2.20) and (2.24), (4.11) becomes

(λ − λn)
[
1
r21

∫0

−1
ϕ1λ(x)ϕ1λn(x)dx +

1
r22

∫1

0
ϕ2λ(x)ϕ2λn(x)dx

]
=W

(
ϕ2λ, ϕ2λn ; 1

) − (λ − λn)ρ.

(4.12)

Thus

1
r21

∫0

−1
ϕ1λ(x)ϕ1λn(x)dx +

1
r22

∫1

0
ϕ2λ(x)ϕ2λn(x)dx =

W
(
ϕ2λ, ϕ2λn ; 1

)
λ − λn − ρ. (4.13)

From (2.48), (2.22), and (2.8), the Wronskian of ϕ2λn and ϕ2λ at x = 1 will be

W
(
ϕ2λ, ϕ2λn ; 1

)
= ϕ2λ(1)ϕ′

2λn(1) − ϕ′
2λ(1)ϕ2λn(1)

= k−1n
[
χ′
2λn(1)ϕ2λ(1) − χ2λn(1)ϕ

′
2λ(1)

]

= k−1n
[(
β′1λn + β1

)
ϕ2λ(1) −

(
β′2λn + β2

)
ϕ′
2λ(1)

]

= k−1n
[
ω(λ) + (λn − λ)R′

1

(
ϕλ
)]
.

(4.14)

Relations (2.48) and R′
1(χλn) = γ and the linearity of the boundary conditions yield

1
γ
R′

1

(
ϕλ
)
R′

1

(
ϕλn
)
=
k−1n
γ
R′

1

(
ϕλ
)
R′

1

(
χλn
)
= k−1n R

′
1

(
ϕλ
)
. (4.15)
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Substituting from (4.13), (4.14), (4.15), and R′
−1(ϕλ) = R

′
−1(ϕλn) = −ρ into (4.10), we get

〈Φλ(·),Φn(·)〉H = k−1n
ω(λ)
λ − λn .

(4.16)

Letting λ → λn in (4.16) and since the zeros of ω(λ) are simple, we have

〈Φn(·),Φn(·)〉H = ‖Φn(·)‖2H = k−1n ω
′(λn). (4.17)

Therefore from (4.16) and (4.17) we establish (4.9). Since λ and n are arbitrary, then (4.3) is
proved with a pointwise convergence on C, since the case λ = λn is trivial.

Now we investigate the convergence of (4.3). First we prove that it is absolutely
convergent on C. Using Cauchy-Schwarz’ inequality for λ ∈ C,

∞∑
n=0

∣∣∣∣F(λn) ω(λ)
(λ − λn)ω′(λn)

∣∣∣∣ ≤
( ∞∑

n=0

∣∣〈g(·),Φn(·)〉H
∣∣2

‖Φn(·)‖2H

)1/2( ∞∑
n=0

|〈Φn(·),Φλ(·)〉H|2
‖Φn(·)‖2H

)1/2

. (4.18)

Since g(·), Φλ(·) ∈ H, then both series in the right-hand side of (4.18) converge. Thus series
(4.3) converges absolutely on C. For uniform convergence letM ⊂ C be compact. Let λ ∈ M
andN > 0. Define σN(λ) to be

σN(λ) :=

∣∣∣∣∣F(λ) −
N∑
n=0

F(λn)
ω(λ)

(λ − λn)ω′(λn)

∣∣∣∣∣. (4.19)

Using the same method developed above

σN(λ) ≤
( ∞∑

n=N+1

∣∣〈g(·),Φn(·)〉H
∣∣2

‖Φn(·)‖2H

)1/2( ∞∑
n=N+1

|〈Φn(·),Φλ(·)〉H|2
‖Φn(·)‖2H

)1/2

. (4.20)

Therefore

σN(λ) ≤ ‖Φλ(·)‖H
( ∞∑

n=N+1

∣∣〈g(·),Φn(·)〉H
∣∣2

‖Φn(·)‖2H

)1/2

. (4.21)

Since [−1, 1] × M is compact, then, cf., for example, [31, page 225], we can find a positive
constant CM such that

‖Φλ(·)‖H ≤ CM, ∀λ ∈M. (4.22)

Then

σN(λ) ≤ CM

( ∞∑
n=N+1

∣∣〈g(·),Φn(·)〉H
∣∣2

‖Φn(·)‖2H

)1/2

(4.23)
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uniformly onM. In view of Parseval’s equality,

( ∞∑
n=N+1

∣∣〈g(·),Φn(·)〉H
∣∣2

‖Φn(·)‖2H

)1/2

−→ 0 as N −→ ∞. (4.24)

Thus σN(λ) → 0 uniformly on M. Hence (4.3) converges uniformly on M. Thus F(λ) is
analytic on compact subsets of C and hence it is entire. From the relation

|F(λ)| ≤ 1
r21

∫0

−1

∣∣g(x)∣∣∣∣ϕ1λ(x)
∣∣dx +

1
r22

∫1

0

∣∣g(x)∣∣∣∣ϕ2λ(x)
∣∣dx (4.25)

and the fact that ϕ1λ(x) and ϕ2λ(x) are entire function of exponential type 2, we conclude that
F(λ) is also of exponential type 2.

Remark 4.2. To see that expansion (4.3) is a Lagrange-type interpolation, wemay replaceω(λ)
by the canonical product

ω̃(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∏
n=0

(
1 − λ

λn

)
, if none of the eigenvalues is zero;

λ
∞∏
n=1

(
1 − λ

λn

)
, if one of the eigenvalues, say λ0 = 0.

(4.26)

From Hadamard’s factorization theorem, see [4], ω(λ) = h(λ)ω̃(λ), where h(λ) is an entire
function with no zeros. Thus,

ω(λ)
ω′(λn)

=
h(λ)ω̃(λ)
h(λn)ω̃′(λn)

(4.27)

and (4.2), (4.3) remain valid for the function F(λ)/h(λ). Hence

F(λ) =
∞∑
n=0

F(λn)
h(λ)ω̃(λ)

h(λn)ω̃′(λn)(λ − λn) . (4.28)

We may redefine (4.2) by taking kernel ϕλ(·)/h(λ) = ϕ̃λ(·) to get

F̃(λ) =
F(λ)
h(λ)

=
∞∑
n=0

F̃(λn)
ω̃(λ)

(λ − λn)ω̃′(λn)
. (4.29)

The next theorem is devoted to give interpolation sampling expansions associated
with problem (2.1)–(2.4) for integral transforms whose kernels defined in terms of Green’s
function. There are many results concerning the use of Green’s function in sampling theory,
cf., for example, [22, 32–34]. As we see in (2.60), Green’s function G(x, ξ, λ) of problem (2.1)–
(2.4) has simple poles at {λn}∞n=0. Define the function G(x, λ) to be G(x, λ) := ω(λ)G(x, ξ0, λ),
where ξ0 ∈ [−1, 0) ∪ (0, 1] is a fixed point and ω(λ) is the function defined in (2.29) or it is the
canonical product (4.26).
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Theorem 4.3. Let g(·) ∈ L2(−1, 1) and F(λ) the integral transform

F(λ) =
1
r21

∫0

−1
G(x, λ)g(x)dx +

1
r22

∫1

0
G(x, λ)g(x)dx. (4.30)

Then F(λ) is an entire function of exponential type 2 which admits the sampling representation

F(λ) =
∞∑
n=0

F(λn)
ω(λ)

(λ − λn)ω′(λn)
. (4.31)

Series (4.31) converges absolutely on C and uniformly on compact subsets of C.

Proof. The integral transform (4.30) can be written as

F(λ) = 〈G(·, λ),g(·)〉H, (4.32)

g(x) =

⎛
⎜⎜⎝
g(x)

0

0

⎞
⎟⎟⎠, G(x, λ) =

⎛
⎜⎜⎝

G(x, λ)

R′
−1(G(x, λ))

R′
1(G(x, λ))

⎞
⎟⎟⎠ ∈ H. (4.33)

Applying Parseval’s identity to (4.32) with respect to {Φn(·)}∞n=0, we obtain

F(λ) =
∞∑
n=0

〈G(·, λ),Φn(·)〉H
〈g(·),Φn(·)〉H

‖Φn(·)‖2H
. (4.34)

Let λ/=λn. Since each Φn(·) is an eigenvector of A, then

(λI −A)Φn(x) = (λ − λn)Φn(x). (4.35)

Thus

(λI −A)−1Φn(x) =
1

λ − λnΦn(x). (4.36)

From (2.59) and (4.36) we obtain

R′
1

(
ϕλn
)

ω(λ)
ϕλ(ξ0) −

R′
−1
(
ϕλn
)

ω(λ)
χλ(ξ0) +

1
r21

∫0

−1
G(x, ξ0, λ)ϕ1λn(x)dx +

1
r22

∫1

0
G(x, ξ0, λ)ϕ2λn(x)dx

=
1

λ − λn ϕλn(ξ0).
(4.37)
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Using R′
−1(ϕλn) = −ρ, (2.48), and R′

1(χλn) = γ , (4.37) becomes

γk−1n
ω(λ)

ϕλ(ξ0) +
ρ

ω(λ)
χλ(ξ0) +

1
r21

∫0

−1
G(x, ξ0, λ)ϕ1λn(x)dx +

1
r22

∫1

0
G(x, ξ0, λ)ϕ2λn(x)dx

=
1

λ − λn ϕλn(ξ0).
(4.38)

Hence (4.38) can be rewritten as

γk−1n ϕλ(ξ0) + ρχλ(ξ0) +
1
r21

∫0

−1
G(x, λ)ϕ1λn(x)dx +

1
r22

∫1

0
G(x, λ)ϕ2λn(x)dx =

ω(λ)
λ − λn ϕλn(ξ0).

(4.39)

From the definition of G(·, λ), we have

〈G(·, λ),Φn(·)〉H =
1
r21

∫0

−1
G(x, λ)ϕ1λn(x)dx +

1
r22

∫1

0
G(x, λ)ϕ2λn(x)dx

+
1
ρ
R′

−1(G(x, λ))R
′
−1
(
ϕλn
)
+
1
γ
R′

1(G(x, λ))R
′
1

(
ϕλn
)
.

(4.40)

From formula (2.60), we get

R′
−1(G(x, λ)) = χλ(ξ0)R

′
−1
(
ϕλ
)
, R′

1(G(x, λ)) = ϕλ(ξ0)R
′
1

(
χλ
)
. (4.41)

Combining (4.41), R′
−1(ϕλ) = R′

−1(ϕλn) = −ρ, R′
1(χλ) = R′

1(χλn) = γ , and (2.48) together with
(4.40) yields

〈G(·, λ),Φn(·)〉H =
1
r21

∫0

−1
G(x, λ)ϕ1λn(x)dx +

1
r22

∫1

0
G(x, λ)ϕ2λn(x)dx + γk−1n ϕλ(ξ0) + ρχλ(ξ0).

(4.42)

Substituting from (4.39) and (4.42) gives

〈G(·, λ),Φn(·)〉H =
ω(λ)
λ − λn ϕλn(ξ0).

(4.43)

As an element of H, G(·, λ) has the eigenvectors expansion

G(x, λ) =
∞∑
i=0

〈G(·, λ),Φi(·)〉H
Φi(x)

‖Φi(·)‖2H

=
∞∑
i=0

ω(λ)
(λ − λi)ϕλi(ξ0)

Φi(x)

‖Φi(·)‖2H
.

(4.44)
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Taking the limit when λ → λn in (4.32), we get

F(λn) = lim
λ→λn

〈G(·, λ),g(·)〉H. (4.45)

The interchange of the limit and summation processes is justified by the uniform convergence
of the eigenvector expansion of G(x, λ) on [−1, 1] on compact subsets of C, cf., (2.60), (3.3)–
(3.6), and (3.18)–(3.21). Making use of (4.44), we may rewrite (4.45) as

F(λn) = lim
λ→λn

∞∑
i=0

ω(λ)
(λ − λi)ϕλi(ξ0)

〈Φi(·),g(·)〉H
‖Φi(·)‖2H

= ω′(λn)ϕλn(ξ0)
〈Φn(·),g(·)〉H

‖Φn(·)‖2H
.

(4.46)

The interchange of the limit and summation is justified by the asymptotic behavior of Φi(x)
and ω(λ). If ϕλn(ξ0)/= 0, then (4.46) gives

〈g(·),Φn(·)〉H
‖Φn(·)‖2H

=
F(λn)

ω′(λn)ϕλn(ξ0)
. (4.47)

Combining (4.43), (4.47), and (4.34) we get (4.31) under the assumption that ϕλn(ξ0)/= 0 for
all n. If ϕλn(ξ0) = 0, for some n, the same expansion holds with F(λn) = 0. The convergence
properties as well as the analytic and growth properties can be established as in Theorem 4.1.

Now, we give an example exhibiting the obtained results.

Example 4.4. The boundary value problem,

−y′′(x) + q(x)y(x) = λy(x), x ∈ [−1, 0) ∪ (0, 1],

y′(−1) = −λy(−1), y′(1) = λy(1),

2y(−0) − y(+0) = 0, y′(−0) − 2y′(+0) = 0,

(4.48)

is special case of the problem (2.1)–(2.4) when α1 = α′2 = β1 = β′2 = 0, β2 = β′1 = α2 = α′1 = r1 =
r2 = 1, γ1 = δ2 = 2, γ2 = δ1 = 1, and

q(x) =

⎧⎨
⎩
−1, x ∈ [−1, 0),
−2, x ∈ (0, 1].

(4.49)

Then ρ = γ = 1 > 0. The solutions ϕλ(·) and χλ(·) are

ϕλ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1λ(x) =

(
2ζ21λ − ζ22λ

)
sin ζ1λ(x + 1)
ζ1λ

− cos ζ1λ(x + 1), x ∈ [−1, 0),

ϕ2λ(x) = 2

((
2ζ21λ − ζ22λ

)
sin ζ1λ

ζ1λ
− cos ζ1λ

)
cos ζ2λx

+

(
2ζ21λ − ζ22λ

)
cos ζ1λ + ζ1λ sin ζ1λ
2ζ2λ

sin ζ2λx, x ∈ (0, 1],
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χλ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ1λ(x) =
1
2

(
cos ζ2λ −

2ζ21λ − ζ22λ
ζ2λ

sin ζ2λ

)
cos ζ1λx

+2

(
ζ2λ
ζ1λ

sin ζ2λ +
2ζ21λ − ζ22λ

ζ1λ
cos ζ2λ

)
sin ζ1λx, x ∈ [−1, 0),

χ2λ(x) = cos ζ2λ(x − 1) +
2ζ21λ − ζ22λ

ζ2λ
sin ζ2λ(x − 1), x ∈ (0, 1],

(4.50)

where ζ1λ :=
√
λ + 1 and ζ2λ :=

√
λ + 2. Here the characteristic function is

ω(λ) =
1

2ζ1λζ2λ

{
ζ1λ cos ζ1λ

(
−5
(
2ζ21λ − ζ22λ

)
ζ2λ cos ζ2λ +

(
ζ42λ − 8ζ21λ − 4

)
sin ζ2λ

)

+sin ζ1λ
([

−ζ21λ + 4
(
2ζ21λ − ζ22λ

)2
ζ2λ

]
cos ζ2λ+

(
2ζ21λ − ζ22λ

)(
4 + 5ζ12λ

)
sin ζ2λ

)}
.

(4.51)

By Theorem 4.1, the transform

F(λ) =
∫0

−1
g(x)

[(
2ζ21λ − ζ22λ

)
sin ζ1λ(x + 1)
ζ1λ

− cos ζ1λ(x + 1)

]
dx

+
∫1

0
g(x)

[
2

((
2ζ21λ − ζ22λ

)
sin ζ1λ

ζ1λ
− cos ζ1λ

)
cos ζ2λx

+

(
2ζ21λ − ζ22λ

)
cos ζ1λ + ζ1λ sin ζ1λ
2ζ2λ

sin ζ2λx

]
dx

(4.52)

has the following expansion:

F(λ) =
∞∑
n=0

F(λn)
ω(λ)((

2ζ21λ − ζ22λ
) − (2ζ21λn − ζ22λn

))
ω′(λn)

, (4.53)

ω′(λn) :=
1

4ζ31λnζ
3
2λn

[
sin ζ1λn

(
2ζ2λn

(
−1 + 24λ + 34λ2 + 11λ11

)
cos ζ2λn

+
(
54 + 104λ + 59λ2 − 5λ4

)
sin ζ2λn

)

+ ζ1λn cos ζ1λn
(
ζ2λn

(
−30 − 45λ − 6λ2 + 5λ3

)
cos ζ2λn

+
(
−8 + 24λ + 41λ2 + 13λ3

)
sin ζ2λn

)]
.

(4.54)
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The Green’s function has the following form:

G(x, ξ, λ)

=
1

2ζ1λζ2λ

{
ζ1λ cos ζ1λ

(
−5
(
2ζ21λ − ζ22λ

)
ζ2λ cos ζ2λ +

(
ζ42λ − 8ζ21λ − 4

)
sin ζ2λ

)

+ sin ζ1λ
([

−ζ21λ + 4
(
2ζ21λ − ζ22λ

)2
ζ2λ

]
cos ζ2λ +

(
2ζ21λ − ζ22λ

)(
4 + 5ζ12λ

)
sin ζ2λ

)}

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((
2ζ21λ − ζ22λ

)
sin ζ1λ(x + 1)
ζ1λ

− cos ζ1λ(x + 1)

)

×
[
1
2

(
cos ζ2λ −

2ζ21λ − ζ22λ
ζ2λ

sin ζ2λ

)
cos ζ1λξ+2

(
ζ2λ
ζ1λ

sin ζ2λ +
2ζ21λ − ζ22λ

ζ1λ
cos ζ2λ

)
sin ζ1λξ

]
,

−1 ≤ x ≤ ξ < 0,((
2ζ21λ − ζ22λ

)
sin ζ1λ(ξ + 1)
ζ1λ

− cos ζ1λ(ξ + 1)

)

×
[
1
2

(
cos ζ2λ −

2ζ21λ − ζ22λ
ζ2λ

sin ζ2λ

)
cos ζ1λx+2

(
ζ2λ
ζ1λ

sin ζ2λ +
2ζ21λ − ζ22λ

ζ1λ
cos ζ2λ

)
sin ζ1λx

]
,

−1 ≤ ξ ≤ x < 0,

((
2ζ21λ − ζ22λ

)
sin ζ1λ(ξ + 1)
ζ1λ

− cos ζ1λ(ξ + 1)

)[
cos ζ2λ(x − 1) +

2ζ21λ − ζ22λ
ζ2λ

sin ζ2λ(x − 1)

]
,

−1 ≤ ξ < 0, 0 < x ≤ 1,((
2ζ21λ − ζ22λ

)
sin ζ1λ(x + 1)
ζ1λ

− cos ζ1λ(x + 1)

)[
cos ζ2λ(ξ − 1) +

2ζ21λ − ζ22λ
ζ2λ

sin ζ2λ(ξ − 1)

]
,

−1 ≤ x <, 0 < ξ ≤ 1,[
cos ζ2λ(x − 1) +

2ζ21λ − ζ22λ
ζ2λ

sin ζ2λ(x − 1)

]

×
[
2

((
2ζ21λ − ζ22λ

)
sin ζ1λ

ζ1λ
− cos ζ1λ

)
cos ζ2λξ +

(
2ζ21λ − ζ22λ

)
cos ζ1λ + ζ1λ sin ζ1λ
2ζ2λ

sin ζ2λξ

]
,

0 < ξ ≤ x ≤ 1,[
cos ζ2λ(ξ − 1) +

2ζ21λ − ζ22λ
ζ2λ

sin ζ2λ(ξ − 1)

]

×
[
2

((
2ζ21λ − ζ22λ

)
sin ζ1λ

ζ1λ
− cos ζ1λ

)
cos ζ2λx +

(
2ζ21λ − ζ22λ

)
cos ζ1λ + ζ1λ sin ζ1λ
2ζ2λ

sin ζ2λx

]
,

0 < x ≤ ξ ≤ 1.

(4.55)
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Taking ξ ∈ [−1, 0) ∪ (0, 1], the transform

F(λ) =
∫0

−1
G(x, λ)g(x)dx + 4

∫1

0
G(x, λ)g(x)dx. (4.56)

has a sampling representation of the type.
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